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1 Introduction
In [5], the third author established that for a fixed r ∈ Q, there are only a finite number of positive
integers n and m for which f(n!) = r · m! where f is one of the arithmetic functions d (the
number of divisors function), φ (Euler’s φ-function), or σ (the sum of the divisors function). In
this paper, we establish a generalization of these results. A similar result that we do not address
here was given by the third author and I. Shparlinski [6] for the function τ , that is Ramanujan’s tau
function. Denoting by ω(n) the number of distinct prime divisors of n, the following is an easily
stated consequence of our main results.

Theorem 1. Let f denote one of the arithmetic functions d, φ or σ, and let k be a fixed positive
integer. Then there are at most finitely many positive integers n, m, a and b such that

b · f(n!) = a ·m!, gcd(a, b) = 1 and ω(ab) ≤ k. (1)

Alternatively, Theorem 1 is asserting that the total number of distinct primes dividing the nu-
merator and denominator of the fraction obtained by reducing the quotient f(n!)/m! tends to in-
finity as the product nm tends to infinity.

For the proof of Theorem 1, we note that it suffices to show that (1) implies that there is a
positive integer N = N(k) such that the inequality n ≤ N holds. In fact, once n ≤ N is
established, we can deduce that the left-hand side of the first equation in (1) has a bounded number
of distinct prime factors (depending only on k). This then implies that m is bounded and, hence,
that there are only a finite number of possibilities for the value of a/b = f(n!)/m!. Given that
gcd(a, b) = 1, we can then deduce that there are only a finite number of possibilities for the
quadruple (n,m, a, b).

We will establish results considerably stronger than Theorem 1 for each of the arithmetic func-
tions given there. Our argument for the case f = σ will be more involved than our arguments for
f = d and f = φ. This is due to the difficulty in estimating the number of large distinct prime
divisors of σ(n!). We are therefore able to more easily prove the cases when f = d and f = φ.

Theorem 2. There are at most finitely many positive integers a, b, n and m such that

b · d(n!) = a ·m!, gcd(a, b) = 1, ω(b) ≤ m1/4 and P0(a) ≤ log n

22
, (2)

where P0(a) denotes the least prime not dividing a.
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Theorem 3. There are at most finitely many positive integers a, b, n and m, with n > 1, such that

b · φ(n!) = a ·m!, gcd(a, b) = 1 and max{ω(a), ω(b)} ≤ n

7 log n
. (3)

Theorem 4. Fix ε > 0. Then there are at most finitely many positive integers a, b, n and m such
that

b · σ(n!) = a ·m!, gcd(a, b) = 1, ω(ab) ≤ n0.2−ε. (4)

These three results are meant to reflect the flavor of what the arguments produce. Regarding
Theorem 2, the bounds on ω(b) and P0(a) can be sharpened slightly and altered to the extent that
one can weaken (or strengthen) the bound for ω(b) if one wants to improve (or is willing to weaken,
respectively) the bound for P0(a).

Although the bound on max{ω(a), ω(b)} in Theorem 3 is not sharp, by considering m = bn/2c
and a and b having prime factors from [2, n/2], it is not difficult to see that one cannot, for any
ε > 0, replace the estimate max{ω(a), ω(b)} ≤ n/(7 log n) with ω(ab) ≤ n/

(
(2 − ε) log n

)
. In

particular, the bound is within a constant factor of being best possible.
As with Theorem 1, one can reduce establishing Theorem 2, 3 or 4 to showing that there is

a positive integer N for which n ≤ N . To see this, suppose such an N exists. In the case of
Theorem 2, we deduce that the number of distinct primes dividing the left-hand side of the first
equation in (2) is at most a function of N plus m1/4. In the case of Theorems 3 and 4, we deduce
that the number of distinct prime factors on the left-hand side of the first equation in (3) and (4),
respectively, is bounded by a function of N . As the number of distinct prime divisors of m! is
� m/ log m by the Prime Number Theorem (or simply a Chebyshev estimate), we obtain that in
any case m is bounded, and we deduce as before that there are at most a finite number of quadruples
(n,m, a, b).

It is not difficult to see that Theorems 2, 3 and 4 imply Theorem 1 for f = φ, d, and σ,
respectively. To see this, let f be one of these three multiplicative functions. We have already seen
that the number of quadruples (n,m, a, b) as in (1) is bounded if n is fixed. In the case that f = d,
as we will see in the next section, it is also the case that the number of quadruples is bounded if m
is fixed and n, a and b are allowed to vary. For n large, if ω(ab) ≤ k, then the conditions in (3) and
(4) are satisfied. For n and m large, if ω(ab) ≤ k, then the conditions in (2) are satisfied. Hence,
Theorems 2, 3 and 4 imply that there are only a finite number of quadruples (n, m, a, b) as in (1).

2 The function d

We establish Theorem 2 (and, hence, Theorem 1 in the case that f = d). Recall that it suffices to
show that under the conditions of (2), n is bounded. We therefore consider n large and assume that
we have a solution (n, m, a, b) to (2) with the goal of obtaining a contradiction. We first show that
m must also be large. To establish this, we may suppose m ≤ 2n. Consider a prime q ≤ log2 n.
Let p be a prime in the interval (n/q, n/(q − 1)]. Using the logarithmic integral approximation of
π(x) in the Prime Number Theorem with an appropriate error term gives that the number of such
primes is

∼ n

q(q − 1) log n
.
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For each such prime p, we have p >
√

n so that νp(n!) = bn/pc = q − 1, and we deduce that
q = νp(n!)+1 is a prime divisor of d(n!). Moreover, for q a prime≤ log2 n, we have that νq

(
d(n!)

)
is at least the number of primes p ∈ (n/q, n/(q − 1)]. Thus,

νq

(
bd(n!)

)
≥ νq

(
d(n!)

)
≥ n

2q(q − 1) log n
for q ≤ log2 n. (5)

We consider a prime q ≤ log2 n that does not divide a, which exists by the condition on a in (2).
As n is large, we deduce from (5) that the left-hand side of the first equation in (2) is divisible by a
large power of q. We deduce then that m too must be large. Note that this implies that the number
of quadruples (n,m, a, b) as in (2) is bounded if m is fixed as was indicated in the introduction.

We will want a general estimate for the exponent in the highest power of a prime p dividing n!.
A classical formula is

νp(n!) =
∞∑

j=1

⌊
n

pj

⌋
.

Alternatively,

νp(n!) =
n− sp(n)

p− 1
,

where sp(n) is the sum of the base p digits of n (cf. [1]). For this section, we use that the latter
formula easily implies νp(n!) ≤ (n− 1)/(p− 1). One easily deduces that for n a positive integer
and p a prime ≤ n, we have

νp(n!) + 1 ≤ n− 1

p− 1
+ 1 ≤ 2n

p
.

It follows that

log d(n!) = log
∏
p≤n

(
νp(n!)+ 1

)
≤

∑
p≤n

(
log 2+ log n− log p

)
= π(n)

(
log 2+ log n

)
−

∑
p≤n

log p.

Classical Prime Number Theorem estimates imply that the right-hand side above is < 2n/ log n.
On the other hand, Stirling’s formula easily gives that

log(m!) > m log m−m.

Indeed, this last inequality can be seen from

em =
∞∑

j=0

jm

j!
>

mm

m!
.

For an arbitrary prime p, we use νp(m!) ≤ (m− 1)/(p− 1) < 2m/p. Hence,

log
∏
p≤m
p|b

pνp(m!) =
∑
p≤m
p|b

νp(m!) log p ≤ 2m
∑
p≤m
p|b

log p

p
.

If b 6= 3, this last sum is no bigger than the sum one obtains with b replaced by the product of the
first ω(b) primes. This allows us to deduce from a direct computation that if ω(b) ≤ 100, then∑

p≤m
p|b

log p

p
≤

3 log
(
ω(b) + 1

)
2

. (6)
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For ω(b) > 100, we appeal to (3.13) and (3.23) of [8]. The former implies that the ω(b)th prime is
< 2ω(b) log ω(b). The latter implies

∑
p≤2ω(b) log ω(b)

log p

p
< log ω(b) + log log ω(b) <

3 log
(
ω(b)

)
2

,

all under the condition ω(b) > 100. In any case, (6) holds independent of the value of ω(b), and
we obtain

log
∏
p≤m
p|b

pνp(m!) < 3m log
(
ω(b) + 1

)
.

From (2), we have log
(
ω(b)+1

)
≤ 0.26 log m. We deduce that the logarithm of the product of the

primes (to their multiplicities) on the right-hand side of the first equation in (2) that do not divide
b is at least

m log m−m− 0.78 m log m >
m log m

5
,

where we have used that m is large. This then is a lower bound for log d(n!), and we deduce

2n

log n
>

m log m

5
.

As n and m are large, we obtain m ≤ 11n/ log2 n. Hence,

νq(m!) ≤ m− 1

q − 1
<

11n

(q − 1) log2 n
.

We obtain from (5) that for each q ≤ (log n)/22, we have νq

(
b d(n!)

)
> νq(m!). We deduce from

the first equation in (2) that each prime ≤ (log n)/22 divides a, contradicting the condition on a in
Theorem 2 and, hence, completing the proof.

3 The function φ

In this section, we establish Theorem 3 (and, hence, Theorem 1 in the case that f = φ). We again
consider n large and assume that we have a solution (n,m, a, b) to (3) with the goal of obtaining a
contradiction. We begin by using the bound n/(7 log n) on ω(b). Observe that every prime factor
of φ(n!) is ≤ n/2. Also, using that n is large and the Prime Number Theorem, we have

π(0.65n)− π(0.5n) >
n

7 log n
≥ ω(b).

It follows that there is a prime ≤ 0.65n that does not divide b · φ(n!). As every prime ≤ m divides
the right-hand side of the first equation in (3), we deduce m < 0.65n.

Next, we use that ω(a) ≤ n/(7 log n). This inequality together with n being large and the
Prime Number Theorem imply that there is a prime q satisfying

√
n < q ≤ 0.15n that does not

divide a. We fix such a q. Observe that the exponent in the largest power of q dividing φ(n!) is at
least bn/qc − 1 > (n/q) − 2. Since m < n so that q >

√
n >

√
m, the exponent in the largest
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power of q dividing m! is bm/qc ≤ m/q. As q - a, we have a contradiction to the first equation in
(3) if

n

q
− 2 ≥ m

q
.

Given that m < 0.65n and q ≤ 0.15n, we have

n

q
− m

q
>

0.35n

q
> 2.

The theorem follows.

4 Preliminaries for the function σ

In this section, we discuss a few preliminary results we will use in our proof of Theorem 1 for
f = σ. We denote by ΦN(x) the N th cyclotomic polynomial. We use the following cyclotomic
polynomial identities. Let N be a positive integer, and let p be a prime. Then

ΦpN(x) =

{
ΦN(xp) if p|N
ΦN(xp)/ΦN(x) if p - N.

(7)

In addition, we use that
xN − 1 =

∏
d|N

Φd(x). (8)

We begin by analyzing the highest power of a given prime q that can divide an expression of
the form aN − 1. We have in mind here obtaining information about the prime factorization of
σ(n!) which involves factors of the form (pN − 1)/(p− 1). The approach we use takes advantage
of the factorization given in (8); hence, we are interested in estimates for νq

(
Φd(a)

)
. We use the

notation ordq(a) for the order of a modulo q. The next result, at least for the most part, is fairly
well-known. We give a proof that is motivated in part by a 1905 paper by L. E. Dickson [2].

Lemma 1. Let q be a prime, and let a and N be integers with N ≥ 1. Write N = qrM where r
and M are integers with r ≥ 0 and q - M . Then q|ΦN(a) if and only if M = ordq(a). Also, if
r ≥ 1 and N > 2, then q2 - ΦN(a).

Proof. To prove the first assertion, let s = ordq(a). First, consider the case that M = s. We obtain
from (8) that ∏

d|M

Φd(a) ≡ aM − 1 ≡ 0 (mod q).

If q|Φd(a) for some d, then ad ≡ 1 (mod q) so that M |d (since M = ordq(a)). We deduce that
the only factor on the left that can be divisible by q is ΦM(a). Hence, q|ΦM(a). Observe that (7)
implies

ΦN(x) ≡ ΦM(x)qr−1(q−1) (mod q). (9)

Setting x = a, we deduce q|ΦN(a).
Assume now that q|ΦN(a) and M 6= s. We want to obtain a contradiction. Since q|ΦN(a), we

have aM ≡ aN ≡ 1 (mod q). We deduce a 6≡ 0 (mod q), s|M and, hence, s < M . It follows
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that (xs − 1)ΦM(x) is a factor of xM − 1. The definition of s implies x − a is a factor of xs − 1
modulo q. From (9) and q|ΦN(a), we have that x − a is a factor of ΦM(x) modulo q. We obtain
that xM −1 ≡ (x−a)2g(x) (mod q) for some g(x) ∈ Z[x]. One obtains a contradiction by taking
derivatives and setting x = a.

For the second assertion, we use that ΦN(x) is a factor of(
xN/q

)q − 1

xN/q − 1
=

(
xN/q

)q−1
+

(
xN/q

)q−2
+ · · ·+

(
xN/q

)2
+ xN/q + 1.

Substituting x = a on the left, we see that if q|ΦN(a), then necessarily aN/q ≡ 1 (mod q). Writing
aN/q = kq + 1, where k ∈ Z, observe that the expression on the right with xN/q replaced by aN/q

is

(kq + 1)q−1 + (kq + 1)q−2 + · · ·+ (kq + 1) + 1 ≡ q +
kq2(q − 1)

2
(mod q2).

Since the left-hand side is divisible by ΦN(a), we see that if q 6= 2, then q2 - ΦN(a), as desired.
If q = 2, in fact a stronger assertion is true. In this case, q2 - ΦN(a) independent of whether

q|N . To see this, note that for every prime p, we have Φp(1) = p. From (7), ΦN(1) = p if N is
a power of a prime p and ΦN(1) = 1 if N is an integer with more than one distinct prime factor.
Also, N > 1 implies ΦN(0) = 1. Hence, ΦN(a) ≡ 1 (mod 2) if N is not a power of 2 or if a is
even. If N = 2r with r ≥ 2 and if a is odd, then

ΦN(a) ≡ Φ2r(a) ≡ a2r−1

+ 1 ≡ 2 (mod 4).

Thus, in any case, 4 - ΦN(a) for N > 2.

The following consequence of Lemma 1 is worth noting.

Corollary 1. Let q be a prime, and let a and N be integers with N > 2. If q|ΦN(a), then either
q ≡ 1 (mod N) or we have that both q is the largest prime factor of N and q2 - ΦN(a).

The condition N > 2 in each of the above results is important as Φ2(a) = a + 1 can clearly,
for the right choice of a, be divisible by an arbitrarily large power of 2.

Lemma 2. Let q be an odd prime, and let j and ` be positive integers. Let f(x) = x` + x`−1 +
· · ·+ x + 1. Then f(x) has ≤ gcd

(
φ(qj), ` + 1

)
distinct roots modulo qj . Furthermore, f(x) has

≤ 2 gcd
(
φ(2j), ` + 1

)
distinct roots modulo 2j .

Proof. Observe that (x − 1)f(x) = x`+1 − 1. Let N = ` + 1. The lemma follows from the fact
(cf. [4], page 45) that xN ≡ 1 (mod qj) has exactly gcd

(
φ(qj), N

)
roots modulo qj if q is odd or

q = 2 and j ∈ {1, 2} and has exactly 1 or 2 gcd
(
2j−2, N

)
roots modulo 2j if j ≥ 3 depending on

whether N is odd or even, respectively.

In regards to Lemma 2, we will only be using that the number of distinct roots of f(x) modulo
qj is � gcd

(
φ(qj), ` + 1

)
, and we could easily get away with only concerning ourselves with

odd primes q. The above lemma will, however, allow us not to worry about the parity of q in our
lemmas.

We will also make use of the following version of the Brun-Titchmarsh inequality (cf. [7]).
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Lemma 3. Let x and y be positive real numbers, and let h and k be integers with 1 ≤ k < y ≤ x.
The number of primes in the interval (x, x + y] that are h modulo k is

≤ 2y

φ(k) log(y/k)
.

5 The function σ

In this section, we establish Theorem 1 in the case that f = σ. To avoid confusion with our use of
d when talking about divisors of n and the number of divisors function d discussed earlier in this
paper, we use here the notation σ0(n) (i.e., the sum of the divisors of n each raised to the power 0)
for the number of divisors of n. We also use the notations f(n) . g(n) and f(n) & g(n) to denote
f(n) ≤

(
1 + o(1)

)
g(n) and f(n) ≥

(
1 + o(1)

)
g(n), respectively. All asymptotic estimates in this

section using . or & will be with respect to n.

Lemma 4. Let q be a prime, and let a and N be integers with a > 1 and N > 0. Then

νq

(
aN − 1

)
≤ log N + ordq(a) log a + log(a + 1)

log q
,

where the term log(a + 1) in the numerator is only necessary in the case q = 2.

Proof. To obtain our result, we estimate the power of q dividing each factor on the right of aN−1 =∏
d|N Φd(a). Writing N = qrM where r is a nonnegative integer and M is a positive integer

relatively prime to q, we observe that each divisor of N can be written uniquely in the form qjd
where j is a nonnegative integer ≤ r and d is a divisor of M . In other words,

aN − 1 =
r∏

j=0

∏
d|M

Φqjd(a).

Setting d′ = ordq(a), Lemma 1 implies that the only factors on the right that are divisible by q are
of the form Φqjd′(a). We consider the factors on the right with j ≥ 1 and j = 0 separately.

Observe that
r ≤ log N

log q
.

We apply Lemma 1 to Φqjd(a), noting that the case qjd ≤ 2 below requires separate consideration.
We obtain

νq

( r∏
j=1

∏
d|M

Φqjd(a)

)
≤ νq

( r∏
j=1

Φqjd′(a)

)
+

log(a + 1)

log q

≤ r +
log(a + 1)

log q
≤ log N + log(a + 1)

log q
.

Also,

νq

( ∏
d|M

Φd(a)

)
= νq

(
Φd′(a)

)
≤ log(ad′ − 1)

log q
<

d′ log a

log q
.

The lemma follows.
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Lemma 5. Let q be a prime number, j a positive integer, and L ≥ 1. Then∑
`≤L

gcd(φ(qj), `)

`2
� log log(q + 1).

Before going to the proof, we make some observations. First, the wording of the above lemma
is somewhat awkward but appropriate for our needs. A cleaner statement would be to take the
sum on the left to be an infinite series and then to assert that the series converges and its value is
O

(
log log(q +1)

)
. The implied constant here (and in the lemma) is absolute. The reason for using

log log(q + 1) instead of log log q is simply to handle the case q = 2 where log log q is negative.

Proof. Notice that for a positive integer r,∑
`≤L

gcd(r, `)

`2
=

∑
t|r

∑
`≤L

gcd(r,`)=t

t

`2
=

∑
t|r

∑
s≤L/t

gcd(r/t,s)=1

1

s2t
≤ ζ(2)

∑
t|r

1

t
= ζ(2)

σ(r)

r
.

When r = φ(qj) = qj−1(q − 1), the right-hand side above is

< ζ(2)
σ(q − 1)

q − 1

∞∑
i=0

1

qi
� log log(q + 1)

since σ(N) � N log log N .

Lemma 6. Let r be a positive integer, L ≥ 1, and M = min{r, L}. Then∑
`≤L

` gcd(r, `) ≤ L2
∑
d≤M

d|r

φ(d)

d
.

Moreover, if K ≥ 1, then∑
`≤q2 logq n

` gcd(φ(qK), `) ≤ 3q4(logq n)2σ0(q − 1) + (logq n)9,

where q is a prime and logq n denotes the logarithm of n to the base q (i.e., logq n = log n/ log q).

Proof. Using the fact that
∑

d|N φ(d) = N , we have∑
`≤L

` gcd(r, `) =
∑
`≤L

`
∑

d|gcd(r,`)

φ(d) =
∑
d≤M

d|r

∑
`≤L
d|`

`φ(d)

=
∑
d≤M

d|r

∑
t≤L/d

tdφ(d) ≤ L2
∑
d≤M

d|r

φ(d)

d
.

Now, let r = φ(qK) = qK−1(q−1) and L = q2 logq n. If q > logq n, then the sum on the right-hand
side above is

≤
∑
d<q3

d|q2(q−1)

φ(d)

d
≤ σ0

(
q2(q − 1)

)
≤ 3σ0(q − 1).
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In the case that q ≤ logq n, we easily have∑
`≤L

` gcd(r, `) ≤
∑
`≤L

`2 ≤ L3 = q6(logq n)3 ≤ (logq n)9.

The lemma follows.

Lemma 7. If 0 < ε < 1/5 and q is a prime ≤ n1/5−ε, then

(i) νq

(
σ(n!)

)
� n log log(q + 1)

q log n
.

If 0 < δ < 1/3 and q is a prime, then

(ii) νq

( ∏
n1−δ<p≤n

σ
(
pνp(n!)

))
� n log log(q + 1)

q
+

n3δ log n

log q
.

Proof. Let e(p) = νp(n!), and set N(p) = e(p) + 1. We also let L =
⌊
q2 logq n

⌋
. We begin by

proving the first part of the lemma. We will estimate the contribution of factors of q ≤ n1/5−ε

arising from σ
(
pe(p)

)
separately depending on whether p ≤ n/L or p > n/L. In other words,

noting that

σ(n!) =
∏

p≤n/L

σ(pe(p)) ·
∏

n/L<p≤n

σ(pe(p)) =
∏

p≤n/L

pN(p) − 1

p− 1
·

∏
n/L<p≤n

pN(p) − 1

p− 1
,

we combine estimates for

V = V(q) = νq

( ∏
p≤n/L

σ(pe(p))

)
= νq

( ∏
p≤n/L

pN(p) − 1

p− 1

)
and

V ′ = V ′(q) = νq

( ∏
n/L<p≤n

σ(pe(p))

)
= νq

( ∏
n/L<p≤n

pN(p) − 1

p− 1

)
.

From Lemma 4, for any prime q we have that

V �
∑

p≤n/L

log N(p) + ordq(p) log p

log q
,

where the term log(a + 1) appearing in the numerator of the bound given in Lemma 4 has been
absorbed by the implied constant above. We use that N(p) ≤ n, which follows easily from

e(p) =
∞∑

u=1

⌊
n

pu

⌋
<

∞∑
u=1

n

pu
=

n

p− 1
≤ n, (10)

and that ordq(p) divides φ(q). Since also π(x) � x/ log x, we obtain

V �
∑

p≤n/L

log n

log q
+

∑
p≤n/L

q log p

log q
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�
π
(
n/L

)
log n

log q
+

q

log q

∑
p≤n/L

log p

� q n

L log q
� n

q log n
.

We divide up our consideration of larger primes p as follows. For each positive integer ` < L,
we consider the contribution of q’s from σ

(
pe(p)

)
with p ∈ I` = (n/(` + 1), n/`]. Fix such an `

and a prime p ∈ I`. As n is sufficiently large, the definition of L implies p >
√

n. Since p ∈ I`,
we obtain

N(p) = bn/pc+ 1 = ` + 1.

Let f`(x) = x` + x`−1 + · · · + x2 + x + 1. Then σ(pe(p)) = f`(p). Observe that this polynomial
defining σ(pe(p)) does not change as p varies over the primes in I`. We now let p vary over the
primes in I` and use that

νq

(
σ

( ∏
p∈I`

pe(p)

))
=

∑
p∈I`

νq

(
f`(p)

)
=

∑
j≥1

∑
p∈I`

f`(p)≡0 (mod qj)

1. (11)

Let J = logq(log n) + 1 so that qJ = q log n. For each ` < L, we obtain from q ≤ n1/5−ε that

|I`|
qJ

≥ n

L2qJ
≥ n

q5(logq n)2 log n
≥ n5ε

log3
2 n

� nε. (12)

We consider the numbers

ρj,` = ρj,`(q) =
∣∣{t ∈ Z : 0 ≤ t ≤ qj − 1, f`(t) ≡ 0 (mod qj)}

∣∣.
For each a ∈ {0, 1, . . . , qj − 1} with j ≤ J and f`(a) ≡ 0 (mod qj), we obtain from Lemma 3
that

π
(
n/`; qj, a

)
− π

(
n/(` + 1); qj, a

)
≤ 2|I`|

φ(qj) log
(
|I`|/qj

) .

Now, we consider the j > J . Recall that N(p) = ` + 1 for each p ∈ I`. Define

K = K` = (` + 1) logq n.

We show that K can be used as an upper bound on the j appearing in (11) as follows. Observe that
if qj divides f`(p) for some p ∈ I`, then N = `+1 implies that qj ≤ (pN − 1)/(p− 1). We deduce
that qj < pN and, hence,

j < N logq p ≤ N logq n = (` + 1) logq n = K. (13)

Thus, for ` fixed, we need only consider the positive integer values of j such that J < j < K. For
each such j, we proceed as before by counting the number of primes p ∈ I` such that qj divides
f`(p). For each j > J , we simply use that the number of primes p ∈ I` for which qj divides f`(p)
is

≤ ρj,`

(
|I`|
qj

+ 1

)
.

10



Altogether, we deduce that

V ′ =
∑
`<L

∑
p∈I`

νq

(
f`(p)

)
≤

∑
`<L

( ∑
1≤j≤J

2|I`|ρj,`

φ(qj) log
(
|I`|/qj

) +
∑

J<j<KL

|I`|ρj,`

qj
+

∑
J<j<K`

ρj,`

)
.

We view the right-hand side above as three double sums and estimate each in turn. Note that
|I`| � n/(` + 1)2 and, from Lemma 2, we have ρj,` ≤ 2 gcd

(
φ(qj), ` + 1

)
. From the estimate in

(12) and Lemma 5, we deduce∑
`<L

∑
1≤j≤J

2|I`|ρj,`

φ(qj) log
(
|I`|/qj

) � ∑
1≤j≤J

∑
`<L

n gcd
(
φ(qj), ` + 1

)
φ(qj)(` + 1)2 log

(
|I`|/qj

)
�

∑
1≤j≤J

∑
`<L

n gcd
(
φ(qj), ` + 1

)
φ(qj)(` + 1)2 log n

�
∑

1≤j≤J

n log log(q + 1)

φ(qj) log n

�
∞∑

j=1

n log log(q + 1)

qj log n

� n log log(q + 1)

q log n
.

Recall that qJ = q log n. Hence,∑
`<L

∑
J<j<KL

|I`|ρj,`

qj
�

∑
J<j<KL

∑
`<L

n gcd
(
φ(qj), ` + 1

)
qj(` + 1)2

�
∑
j>J

n log log(q + 1)

qj

� n log log(q + 1)

qJ

� n log log(q + 1)

q log n
.

Recall K` = (` + 1) logq n, and observe that

ρj,` ≤ 2 gcd
(
φ(qj), ` + 1

)
≤ 2 gcd

(
φ
(
qbK`c

)
, ` + 1

)
.

From Lemma 6, we obtain∑
`<L

∑
J<j<K`

ρj,` �
∑
`<L

∑
J<j<K`

gcd
(
φ
(
qbK`c

)
, ` + 1

)
�

∑
`<L

K` gcd
(
φ
(
qbK`c

)
, ` + 1

)
11



� (logq n)
∑
`<L

(` + 1) gcd
(
φ
(
qbK`c

)
, ` + 1

)
� q4σ0(q − 1)(logq n)3 + (logq n)10.

For fixed ε > 0 and q ≤ n1/5−ε, this sum is � n1−ε/q � n/(q log n). Combining the above, we
obtain for q ≤ n1/5−ε that

νq

(
σ(n!)

)
= V + V ′ � n log log(q + 1)

q log n
.

For the second part of the lemma, we can give a similar but simpler argument. We take L = nδ.
We partition the interval I` into congruence classes of length qj . For each ` < L, we consider all
possible values of 1 ≤ j ≤ K` together. Doing so, we obtain∑

`<L

∑
p∈I`

νq

(
f`(p)

)
≤

∑
`<L

∑
1≤j<K`

ρj,`

(
|I`|
qj

+ 1

)
≤

∑
1≤j<KL

∑
`<L

ρj,`
|I`|
qj

+
∑
`<L

∑
1≤j<KL

ρj,`.

Applying Lemma 2 and Lemma 5 to the first double sum on the right-hand side above and using
that ρj,` � ` to the latter, we obtain

νq

( ∏
n1−δ<p≤n

pN(p) − 1

p− 1

)
=

∑
`<nδ

∑
p∈I`

νq

(
f`(p)

)
� n log log(q + 1)

q
+

n3δ log n

log q
.

The lemma follows.

Proof of Theorem 4: Set c = 1/5 − 2ε where 0 < ε < 1/10. It suffices to show that ω(ab) ≤ nc

has no solutions for n sufficiently large. So assume n is sufficiently large and ω(ab) ≤ nc.
First, we consider the case that ω

(
σ(n!)

)
≥ 2nc. Then there exists ≥ nc distinct primes p

dividing σ(n!) and not dividing ab. The equation b · σ(n!) = a ·m! implies that any such prime p
must divide m! and, hence, every prime ≤ p divides b · σ(n!). We deduce that among the first 2nc

primes, there is an odd prime q that divides σ(n!) and not ab. Note that q ≤ nc+ε ≤ n1/5−ε. Since
q does not divide ab, we have

νq

(
σ(n!)

)
= νq(m!) ≥ m

q
− 1.

Lemma 7 (i) now implies

m � n log log n

log n
. (14)

Before proceeding, we note that the case when ω
(
σ(n!)

)
< 2nc also gives (14). Indeed, in this

case we have
m

log m
� π(m) = ω(m!) ≤ ω

(
b · σ(n!)

)
≤ ω(b) + ω

(
σ(n!)

)
� nc

implying that m � nc log n.
Observe that

log σ(n!) ≥ log(n!) ∼ n log n

12



and, from (14),
log(m!) ∼ m log m � n log log n.

Hence, b · σ(n!) = a ·m! implies

log a = log(b/m!) + log σ(n!) & n log n.

Fix 0 < δ < 1/3. Also, let

a′ =
∏

p≤n1−δ

σ
(
pe(p)

)
and a′′ = gcd

(
a, σ(n!)/a′

)
.

Clearly, a ≤ a′a′′. As a consequence of (10), we have

n

p
− 1 < e(p) <

n

p− 1

from which we deduce

log a′ .
∑

p≤n1−δ

e(p) log p ∼
(
1− δ

)
n log n.

Combining the above, we get

n log n . log a ≤ log a′ + log a′′ . (1− δ)n log n +
∑
q|a′′

νq(a
′′) log q. (15)

From Lemma 7,∑
q|a′′

νq(a
′′) log q �

∑
q|a′′

q≤nc+ε

n log log n

q log n
log q +

∑
q|a′′

q>nc+ε

(
n log log(q + 1)

q
log q + n3δ log n

)
.

For the first sum on the right, we have∑
q|a′′

q≤nc+ε

n log log n

q log n
log q ≤ n log log n

log n

∑
q≤nc+ε

log q

q
� n log log n.

For the second sum, we use that the number of terms is bounded by ω(a). We obtain∑
q|a′′

q>nc+ε

n log log(q + 1)

q
log q ≤ ω(a) · n log log(nc+ε + 1)

nc+ε
log nc+ε

� nc · n log log n

nc+ε
log n � n1−(ε/2)

and ∑
q|a′′

q>nc+ε

n3δ log n � ω(a)n3δ log n.

13



Thus, ∑
q|a′′

νq(a
′′) log q � n log log n + n1−(ε/2) + ω(a)n3δ log n.

By (15), this last sum must exceed (1 + o(1))δn log n. Consequently,

ω(a)n3δ log n � n log n.

Taking δ = 4/15 < 1/3, the left-hand side is � n and we reach the desired contradiction. Hence,
the theorem is complete.
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