Factoring Sparse Polynomials

Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a_{0}, \ldots, a_{r}. Let

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

Then there exist finite sets \boldsymbol{S} and \boldsymbol{T} of matrices satisfying:

Theorem 1 (Schinzel): Let \boldsymbol{r} be a positive integer, and fix non-zero integers a_{0}, \ldots, a_{r}. Let
$F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}$.
Then there exist finite sets \boldsymbol{S} and \boldsymbol{T} of matrices satisfying:
(i) Each matrix in S or \boldsymbol{T} is an $\boldsymbol{r} \times \rho$ matrix with integer entries and of rank ρ for some $\rho \leq r$.

Theorem 1 (Schinzel): Let \boldsymbol{r} be a positive integer, and fix non-zero integers a_{0}, \ldots, a_{r}. Let
$F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}$.
Then there exist finite sets \boldsymbol{S} and \boldsymbol{T} of matrices satisfying:
(i) Each matrix in S or \boldsymbol{T} is an $\boldsymbol{r} \times \rho$ matrix with integer entries and of rank ρ for some $\rho \leq r$.
(ii) The matrices in \boldsymbol{S} and \boldsymbol{T} are computable.
(iii) For every set of positive integers d_{1}, \ldots, d_{r} with $d_{1}<d_{2}<\cdots<d_{r}$, the non-reciprocal part of $\boldsymbol{F}\left(\boldsymbol{x}^{\boldsymbol{d}_{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{d}_{r}}\right)$ is reducible if and only if there is an $\boldsymbol{r} \times \rho$ matrix N in S and integers v_{1}, \ldots, v_{ρ} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

but there is no $r \times \rho^{\prime}$ matrix M in T with $\rho^{\prime}<\rho$ and no integers $\boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{\rho^{\prime}}^{\prime}$ satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right) .
$$

the non-reciprocal part of $\boldsymbol{F}\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)$ is reducible
the non-reciprocal part of $\boldsymbol{F}\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)$ is reducible

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

the non-reciprocal part of $\boldsymbol{F}\left(\boldsymbol{x}^{d_{1}}, \ldots, \boldsymbol{x}^{d_{r}}\right)$ is reducible

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

$$
F\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Theorem 2 (Schinzel): Let \boldsymbol{r} be a positive integer, and fix non-zero integers a_{0}, \ldots, a_{r}. Let

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

Then there exist finite sets \boldsymbol{S} and \boldsymbol{T} of matrices satisfying:

Theorem 2 (Schinzel): Let r be a positive integer, and fix non-zero integers a_{0}, \ldots, a_{r}. Let
$F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}$.
Then there exist finite sets \boldsymbol{S} and \boldsymbol{T} of matrices satisfying:
(i) Each matrix in S or T is an $r \times \rho$ matrix with integer entries and of rank ρ for some $\rho \leq r$.

Theorem 2 (Schinzel): Let \boldsymbol{r} be a positive integer, and fix non-zero integers a_{0}, \ldots, a_{r}. Let
$F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}$.
Then there exist finite sets \boldsymbol{S} and \boldsymbol{T} of matrices satisfying:
(i) Each matrix in S or \boldsymbol{T} is an $\boldsymbol{r} \times \rho$ matrix with integer entries and of rank ρ for some $\rho \leq r$.
(ii) The matrices in \boldsymbol{S} and \boldsymbol{T} are computable.
(iii) For every set of positive integers d_{1}, \ldots, d_{r} with $\boldsymbol{F}\left(\boldsymbol{x}^{d_{1}}, \ldots, \boldsymbol{x}^{d_{r}}\right)$ not reciprocal and $\boldsymbol{d}_{1}<\boldsymbol{d}_{2}<\cdots<\boldsymbol{d}_{\boldsymbol{r}}$, the non-cyclotomic part of $\boldsymbol{F}\left(x^{d_{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{d}_{r}}\right)$ is reducible if and only if there is an $\boldsymbol{r} \times \rho$ matrix N in S and integers v_{1}, \ldots, v_{ρ} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

but there is no $r \times \rho^{\prime}$ matrix \boldsymbol{M} in T with $\rho^{\prime}<\rho$ and no integers $v_{1}^{\prime}, \ldots, \boldsymbol{v}_{\rho^{\prime}}^{\prime}$ satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{7}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

(iii) For every set of positive integers $\boldsymbol{d}_{1}, \ldots, d_{r}$ with $\boldsymbol{F}\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)$ not reciprocal and $\boldsymbol{d}_{1}<\boldsymbol{d}_{2}<\cdots<\boldsymbol{d}_{\boldsymbol{r}}$, the non-cyclotomic part of $\boldsymbol{F}\left(x^{d_{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{d}_{r}}\right)$ is reducible if and only if there is an $\boldsymbol{r} \times \rho$ matrix N in S and integers v_{1}, \ldots, v_{ρ} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

but there is no $r \times \rho^{\prime}$ matrix \boldsymbol{M} in T with $\rho^{\prime}<\rho$ and no integers $v_{1}^{\prime}, \ldots, \boldsymbol{v}_{\rho^{\prime}}^{\prime}$ satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{7}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

(iii) For every set of positive integers d_{1}, \ldots, d_{r} with $\boldsymbol{F}\left(x^{d_{1}}, \ldots, \boldsymbol{x}^{d_{r}}\right)$ not reciprocal and $\boldsymbol{d}_{1}<\boldsymbol{d}_{2}<\cdots<\boldsymbol{d}_{\boldsymbol{r}}$, the non-cyclotomic part of $\boldsymbol{F}\left(x^{d_{1}}, \ldots, \boldsymbol{x}^{\boldsymbol{d}_{r}}\right)$ is reducible if and only if there is an $\boldsymbol{r} \times \rho$ matrix N in S and integers v_{1}, \ldots, v_{ρ} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

but there is no $r \times \rho^{\prime}$ matrix \boldsymbol{M} in T with $\rho^{\prime}<\rho$ and no integers $v_{1}^{\prime}, \ldots, \boldsymbol{v}_{\rho^{\prime}}^{\prime}$ satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{7}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

Theorem: There is an algorithm with the following property: Given a non-reciprocal $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ with N nonzero terms, degree \boldsymbol{n} and height \boldsymbol{H}, the algorithm determines whether $f(\boldsymbol{x})$ is irreducible in time

$$
c(N, H)(\log n)^{c^{\prime}(N)}
$$

where $c(\boldsymbol{N}, \boldsymbol{H})$ depends only on \boldsymbol{N} and \boldsymbol{H} and $\boldsymbol{c}^{\prime}(\boldsymbol{N})$ depends only on N.

Theorem: There is an algorithm with the following property: Given a non-reciprocal $f(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ with \boldsymbol{N} nonzero terms, degree \boldsymbol{n} and height \boldsymbol{H}, the algorithm determines whether $f(\boldsymbol{x})$ is irreducible in time

$$
c(N, H)(\log n)^{c^{\prime}(N)}
$$

where $\boldsymbol{c}(\boldsymbol{N}, \boldsymbol{H})$ depends only on \boldsymbol{N} and \boldsymbol{H} and $\boldsymbol{c}^{\prime}(\boldsymbol{N})$ depends only on N.

Proof. Let

$$
f(x)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0} .
$$

Proof. Let

$$
f(x)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Consider

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

so that

$$
F\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Proof. Let

$$
f(x)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Consider

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

so that

$$
F\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Begin the algorithm by constructing the finite sets S and \boldsymbol{T} of matrices in Schinzel's Theorem 2.

Proof. Let

$$
f(x)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Consider

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

so that

$$
F\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Begin the algorithm by constructing the finite sets \boldsymbol{S} and \boldsymbol{T} of matrices in Schinzel's Theorem 2. Observe that S and \boldsymbol{T} depend on \boldsymbol{F} and not on the $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{\boldsymbol{r}}$.

Proof. Let

$$
f(x)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Consider

$$
F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

so that

$$
F\left(x^{d_{1}}, \ldots, x^{d_{r}}\right)=a_{r} x^{d_{r}}+\cdots+a_{1} x^{d_{1}}+a_{0}
$$

Begin the algorithm by constructing the finite sets S and \boldsymbol{T} of matrices in Schinzel's Theorem 2. Observe that S and \boldsymbol{T} depend on \boldsymbol{F} and not on the $\boldsymbol{d}_{1}, \ldots, \boldsymbol{d}_{\boldsymbol{r}}$, so this takes running time $\leq c_{1}(N, H)$.

Next, the algorithm checks each matrix N in S to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

for some integers $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$.

Next, the algorithm checks each matrix N in S to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

for some integers $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$. In other words, $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$ are unknowns and elementary row operations are done to solve the above system of equations.

Next, the algorithm checks each matrix N in S to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

for some integers $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$. In other words, $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$ are unknowns and elementary row operations are done to solve the above system of equations. The rank of N is ρ, so if a solution exists, then it is unique.

Next, the algorithm checks each matrix N in S to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

for some integers $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$. In other words, $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$ are unknowns and elementary row operations are done to solve the above system of equations. The rank of N is ρ, so if a solution exists, then it is unique. This involves performing elementary operations $(+,-, \times$, and \div) with entries in \boldsymbol{N} and the $\boldsymbol{d}_{\boldsymbol{j}}$ (which are $\leq \boldsymbol{n}$).

Next, the algorithm checks each matrix N in S to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=N\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\rho}
\end{array}\right)
$$

for some integers $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$. In other words, $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\rho}}$ are unknowns and elementary row operations are done to solve the above system of equations. The rank of N is ρ, so if a solution exists, then it is unique. This involves performing elementary operations $(+,-, \times$, and \div) with entries in \boldsymbol{N} and the $\boldsymbol{d}_{\boldsymbol{j}}$ (which are $\leq \boldsymbol{n}$). The running time here is $\leq c_{2}(N, H) \log ^{2} n$.

Next, the algorithm checks each matrix \boldsymbol{M} in \boldsymbol{T} to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

for some integers $v_{1}^{\prime}, \ldots, v_{\rho^{\prime}}^{\prime}$ by using elementary row operations to solve the system of equations for the v_{j}^{\prime}.

Next, the algorithm checks each matrix \boldsymbol{M} in \boldsymbol{T} to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

for some integers $v_{1}^{\prime}, \ldots, v_{\rho^{\prime}}^{\prime}$ by using elementary row operations to solve the system of equations for the $\boldsymbol{v}_{\boldsymbol{j}}^{\prime}$. The rank of M is ρ^{\prime}, so if a solution exists, then it is unique.

Next, the algorithm checks each matrix \boldsymbol{M} in \boldsymbol{T} to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

for some integers $v_{1}^{\prime}, \ldots, v_{\rho^{\prime}}^{\prime}$ by using elementary row operations to solve the system of equations for the $\boldsymbol{v}_{j}^{\prime}$. The rank of M is ρ^{\prime}, so if a solution exists, then it is unique. This involves performing elementary operations $(+,-$, \times, and \div) with entries in \boldsymbol{M} and the $\boldsymbol{d}_{\boldsymbol{j}}($ which are $\leq \boldsymbol{n})$.

Next, the algorithm checks each matrix \boldsymbol{M} in \boldsymbol{T} to see if

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1}^{\prime} \\
v_{2}^{\prime} \\
\vdots \\
v_{\rho^{\prime}}^{\prime}
\end{array}\right)
$$

for some integers $v_{1}^{\prime}, \ldots, v_{\rho^{\prime}}^{\prime}$ by using elementary row operations to solve the system of equations for the $\boldsymbol{v}_{\boldsymbol{j}}^{\prime}$. The rank of M is ρ^{\prime}, so if a solution exists, then it is unique. This involves performing elementary operations $(+,-$, \times, and \div) with entries in \boldsymbol{M} and the $\boldsymbol{d}_{\boldsymbol{j}}$ (which are $\leq \boldsymbol{n}$). The running time is again $\leq c_{2}(N, H) \log ^{2} n$.

Schinzel's Theorem 2 now indicates to us whether $f(x)$ has a reducible non-cyclotomic part.

Schinzel's Theorem 2 now indicates to us whether $f(x)$ has a reducible non-cyclotomic part. If so, then we output that $f(x)$ is reducible. If not, we have more work to do.

Recall, we had the following theorem.
Theorem: There is an algorithm that has the following property: given $f(x)=\sum_{j=1}^{N} a_{j} x^{d_{j}} \in \mathbb{Z}[x]$ with $\operatorname{deg} f=n$, the algorithm determines whether $f(x)$ has a cyclotomic factor and with running time
$\ll \exp ((2+o(1)) \sqrt{N / \log N}(\log N+\log \log n))$ $\times \log (H+1)$
as N tends to infinity, where $\boldsymbol{H}=\max _{1 \leq j \leq N}\left\{\left|\boldsymbol{a}_{j}\right|\right\}$.

Recall, we had the following theorem.
Theorem: There is an algorithm that has the following property: given $f(x)=\sum_{j=1}^{N} a_{j} x^{d_{j}} \in \mathbb{Z}[x]$ with $\operatorname{deg} f=n$, the algorithm determines whether $f(x)$ has a cyclotomic factor and with running time
$\ll \exp ((2+o(1)) \sqrt{N / \log N}(\log N+\log \log n))$ $\times \log (H+1)$
as N tends to infinity, where $\boldsymbol{H}=\max _{1 \leq j \leq N}\left\{\left|a_{j}\right|\right\}$.
We'll come back to this.

$$
\begin{gathered}
\exp ((2+o(1)) \sqrt{N / \log N}(\log N+\log \log n)) \\
\times \log (H+1)
\end{gathered}
$$

$$
\begin{gathered}
\exp ((2+o(1)) \sqrt{N / \log N}(\log N+\log \log n)) \\
\times \log (H+1)
\end{gathered}
$$

split into two parts
$\exp ((2+o(1)) \sqrt{N / \log N}(\log N)) \times \log (H+1)$ $\exp ((2+o(1)) \sqrt{N / \log N}(\log \log n))$

$\exp ((2+o(1)) \sqrt{N / \log N}(\log N+\log \log n))$ $\times \log (H+1)$

split into two parts

$$
\begin{gathered}
c_{3}(N, H) \\
\exp ((2+o(1)) \sqrt{N / \log N}(\log \log n))
\end{gathered}
$$

$\exp ((2+o(1)) \sqrt{N / \log N}(\log N+\log \log n))$ $\times \log (H+1)$

split into two parts

$$
\begin{gathered}
c_{3}(N, H) \\
(\log n)^{c_{4}(N)}
\end{gathered}
$$

Theorem: There is an algorithm that has the following property: given $f(x)=\sum_{j=1}^{N} a_{j} x^{d_{j}} \in \mathbb{Z}[x]$ with $\operatorname{deg} f=n$, the algorithm determines whether $f(x)$ has a cyclotomic factor and with running time

$$
\leq c_{3}(N, H)(\log n)^{c_{4}(N)}
$$

as N tends to infinity, where $\boldsymbol{H}=\max _{1 \leq j \leq N}\left\{\left|a_{j}\right|\right\}$.

Theorem: There is an algorithm that has the following property: given $f(x)=\sum_{j=1}^{N} a_{j} x^{d_{j}} \in \mathbb{Z}[x]$ with $\operatorname{deg} f=n$, the algorithm determines whether $f(x)$ has a cyclotomic factor and with running time

$$
\leq c_{3}(N, H)(\log n)^{c_{4}(N)}
$$

as N tends to infinity, where $\boldsymbol{H}=\max _{1 \leq j \leq N}\left\{\left|\boldsymbol{a}_{\boldsymbol{j}}\right|\right\}$.
Algorithm Continued: If the non-cyclotomic part of $f(x)$ is irreducible, then use the algorithm in the above theorem.

Theorem: There is an algorithm that has the following property: given $f(x)=\sum_{j=1}^{N} a_{j} x^{d_{j}} \in \mathbb{Z}[x]$ with $\operatorname{deg} f=n$, the algorithm determines whether $f(x)$ has a cyclotomic factor and with running time

$$
\leq c_{3}(N, H)(\log n)^{c_{4}(N)}
$$

as N tends to infinity, where $\boldsymbol{H}=\max _{1 \leq j \leq N}\left\{\left|a_{j}\right|\right\}$.
Algorithm Continued: If the non-cyclotomic part of $f(x)$ is irreducible, then use the algorithm in the above theorem. This completes the proof of the theorem.

A Curious Connection with

 the Odd Covering Problem
Coverings of the Integers:

A covering of the integers is a system of congruences

$$
x \equiv a_{j} \quad\left(\bmod m_{j}\right)
$$

having the property that every integer satisfies at least one of the congruences.

Coverings of the Integers:

A covering of the integers is a system of congruences

$$
x \equiv a_{j} \quad\left(\bmod m_{j}\right)
$$

having the property that every integer satisfies at least one of the congruences.

Example 1:

$$
\begin{array}{ll}
x \equiv 0 & (\bmod 2) \\
x \equiv 1 & (\bmod 2)
\end{array}
$$

Example 2:

$$
\begin{array}{ll}
x \equiv 0 & (\bmod 2) \\
x \equiv 2 & (\bmod 3) \\
x \equiv 1 & (\bmod 4) \\
x \equiv 1 & (\bmod 6) \\
x \equiv 3 & (\bmod 12)
\end{array}
$$

Example 2:

$$
\begin{array}{ll}
x \equiv 0 & (\bmod 2) \\
x \equiv 2 & (\bmod 3) \\
x \equiv 1 & (\bmod 4) \\
x \equiv 1 & (\bmod 6) \\
x \equiv 3 & (\bmod 12)
\end{array}
$$

Open Problem:

Does there exist an "odd covering" of the integers, a covering consisting of distinct odd moduli >1 ?

Open Problem:

Does there exist an "odd covering" of the integers, a covering consisting of distinct odd moduli >1 ?

Erdôs: $\$ 25$ (for proof none exists)

Open Problem:

Does there exist an "odd covering" of the integers, a covering consisting of distinct odd moduli >1 ?

Erdôs: \$25 (for proof none exists)
Selfridge: $\$ 2000$ (for explicit example)

Sierpinski's Application:

There exist infinitely many (even a positive proportion of) positive integers k such that $k \times 2^{n}+1$ is composite for all non-negative integers n.

Sierpinski's Application:

There exist infinitely many (even a positive proportion of) positive integers k such that $k \times 2^{n}+1$ is composite for all non-negative integers n.

Selfridge's Example: $k=78557$
(smallest odd known)

Sierpinski's Application:

There exist infinitely many (even a positive proportion of) positive integers k such that $k \times 2^{n}+1$ is composite for all non-negative integers n.

Selfridge's Example: $k=78557$
(smallest odd known)

Polynomial Question: Does there exist $f(x) \in \mathbb{Z}[x]$ such that $f(x) x^{n}+1$ is reducible for all non-negative integers n ?

Sierpinski's Application:

There exist infinitely many (even a positive proportion of) positive integers k such that $k \times 2^{n}+1$ is composite for all non-negative integers n.

Selfridge's Example: $k=78557$
(smallest odd known)

Polynomial Question: Does there exist $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ such that $f(x) x^{n}+1$ is reducible for all non-negative integers \boldsymbol{n} ?

Require: $f(1) \neq-1$

Sierpinski's Application:

There exist infinitely many (even a positive proportion of) positive integers k such that $k \times 2^{n}+1$ is composite for all non-negative integers n.

Selfridge's Example: $k=78557$
(smallest odd known)

Polynomial Question: Does there exist $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ such that $f(1) \neq-1$ and $f(x) x^{n}+1$ is reducible for all non-negative integers \boldsymbol{n} ?

Sierpinski's Application:

There exist infinitely many (even a positive proportion of) positive integers k such that $k \times 2^{n}+1$ is composite for all non-negative integers n.

Selfridge's Example: $k=78557$
(smallest odd known)

Polynomial Question: Does there exist $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ such that $f(1) \neq-1$ and $f(x) x^{n}+1$ is reducible for all non-negative integers \boldsymbol{n} ?

Answer: Nobody knows.

Schinzel's Example:

$$
\begin{gathered}
\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12 \\
\text { is reducible for all non-negative integers } n
\end{gathered}
$$

Schinzel's Example:
$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Comment: For each \boldsymbol{n}, the above polynomial is divisible by at least one of

$$
\Phi_{k}(x) \quad \text { where } k \in\{2,3,4,6,12\}
$$

Schinzel's Example:

$$
\begin{gathered}
\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12 \\
\text { is reducible for all non-negative integers } n
\end{gathered}
$$

Comment: For each \boldsymbol{n}, the above polynomial is divisible by at least one of

$$
\begin{gathered}
\Phi_{k}(x) \quad \text { where } k \in\{2,3,4,6,12\} \\
n \equiv 0(\bmod 2) \Longrightarrow f(x) x^{n}+12 \equiv 0(\bmod x+1)
\end{gathered}
$$

Schinzel's Example:

$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Comment: For each \boldsymbol{n}, the above polynomial is divisible by at least one of

$$
\Phi_{k}(x) \quad \text { where } k \in\{2,3,4,6,12\}
$$

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \Longrightarrow f(x) x^{n}+12 \equiv 0(\bmod x+1) \\
& n \equiv 2(\bmod 3) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+x+1\right)
\end{aligned}
$$

Schinzel's Example:

$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Comment: For each \boldsymbol{n}, the above polynomial is divisible by at least one of

$$
\Phi_{k}(x) \quad \text { where } k \in\{2,3,4,6,12\}
$$

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \Longrightarrow f(x) x^{n}+12 \equiv 0(\bmod x+1) \\
& n \equiv 2(\bmod 3) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+x+1\right) \\
& n \equiv 1(\bmod 4) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+1\right)
\end{aligned}
$$

Schinzel's Example:

$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Comment: For each \boldsymbol{n}, the above polynomial is divisible by at least one of

$$
\Phi_{k}(x) \quad \text { where } k \in\{2,3,4,6,12\}
$$

$$
\begin{aligned}
& n \equiv 0(\bmod 2) \Longrightarrow f(x) x^{n}+12 \equiv 0(\bmod x+1) \\
& n \equiv 2(\bmod 3) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+x+1\right) \\
& n \equiv 1(\bmod 4) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+1\right) \\
& n \equiv 1(\bmod 6) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}-x+1\right)
\end{aligned}
$$

Schinzel's Example:
$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Comment: For each \boldsymbol{n}, the above polynomial is divisible by at least one of

$$
\Phi_{k}(x) \quad \text { where } k \in\{2,3,4,6,12\}
$$

$$
n \equiv 0(\bmod 2) \Longrightarrow f(x) x^{n}+12 \equiv 0(\bmod x+1)
$$

$$
n \equiv 2(\bmod 3) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+x+1\right)
$$

$$
n \equiv 1(\bmod 4) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}+1\right)
$$

$$
n \equiv 1(\bmod 6) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{2}-x+1\right)
$$

$$
n \equiv 3(\bmod 12) \Longrightarrow f(x) x^{n}+12 \equiv 0\left(\bmod x^{4}-x^{2}+1\right)
$$

Schinzel's Example:

$$
\begin{gathered}
\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12 \\
\text { is reducible for all non-negative integers } n
\end{gathered}
$$

Theorem. There exists an $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ with non-negative coefficients such that $f(x) x^{n}+4$ is reducible for all nonnegative integers \boldsymbol{n}.

Schinzel's Example:

$$
\begin{gathered}
\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12 \\
\text { is reducible for all non-negative integers } n
\end{gathered}
$$

Theorem. There exists an $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ with non-negative coefficients such that $f(x) x^{n}+4$ is reducible for all nonnegative integers \boldsymbol{n}.

Schinzel's Example:

$$
\begin{gathered}
\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12 \\
\text { is reducible for all non-negative integers } n
\end{gathered}
$$

Theorem. There exists an $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ with non-negative coefficients such that $f(x) x^{n}+4$ is reducible for all nonnegative integers \boldsymbol{n}.

Schinzel's Example:

$$
\begin{gathered}
\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12 \\
\text { is reducible for all non-negative integers } n
\end{gathered}
$$

Theorem. There exists an $f(x) \in \mathbb{Z}[x]$ with non-negative coefficients such that $f(x) x^{n}+4$ is reducible for all nonnegative integers \boldsymbol{n}.

Comment: For each \boldsymbol{n}, the first polynomial is divisible by at least one $\Phi_{k}(x)$ where k divides 12 .

Schinzel's Example:
$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Theorem. There exists an $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ with non-negative coefficients such that $f(x) x^{n}+4$ is reducible for all nonnegative integers \boldsymbol{n}.

Comment: For each \boldsymbol{n}, the second polynomial is divisible by at least one $\Phi_{k}(x)$ where k divides some integer N having more than 10^{17} digits.

Schinzel's Example:

$\left(5 x^{9}+6 x^{8}+3 x^{6}+8 x^{5}+9 x^{3}+6 x^{2}+8 x+3\right) x^{n}+12$ is reducible for all non-negative integers \boldsymbol{n}

Theorem. There exists an $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ with non-negative coefficients such that $f(x) x^{n}+4$ is reducible for all nonnegative integers \boldsymbol{n}.

Comment: For each \boldsymbol{n}, the second polynomial is divisible by at least one $\Phi_{k}(\boldsymbol{x})$ where \boldsymbol{k} divides

$$
2^{436750334086348800} 3^{41} 5^{31} 7^{37} 11^{29} 13^{23} 17^{16} 19^{18} 23^{23} 29^{29} 31^{31} 37^{37} 41^{41} .
$$

Schinzel's Theorem: If there is an $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ such that $f(1) \neq-1$ and $f(x) x^{n}+1$ is reducible for all non-negative integers \boldsymbol{n}, then there is an odd covering of the integers.

Turán’s Conjecture

Conjecture: There is an absolute constant C such that if

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x]
$$

then there is a

$$
g(x)=\sum_{j=0}^{r} b_{j} x^{j} \in \mathbb{Z}[x]
$$

irreducible $($ over $\mathbb{Q})$ such that $\sum_{j=0}^{r}\left|b_{j}-a_{j}\right| \leq C$.

Conjecture: There is an absolute constant \boldsymbol{C} such that if

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x]
$$

then there is a

$$
g(x)=\sum_{j=0}^{r} b_{j} x^{j} \in \mathbb{Z}[x]
$$

irreducible (over \mathbb{Q}) such that $\sum_{j=0}^{r}\left|b_{j}-a_{j}\right| \leq C$.
Comment: The conjecture remains open. If we take $\boldsymbol{g}(\boldsymbol{x})=\sum_{j=0}^{s} b_{j} \boldsymbol{x}^{j} \in \mathbb{Z}[x]$ where possibly $s>r$, then the problem has been resolved by Schinzel.

First Attack on Turán's Problem:

Old Theorem: When \boldsymbol{m} is large, either $\boldsymbol{u}(\boldsymbol{x}) \boldsymbol{x}^{m}+\boldsymbol{v}(\boldsymbol{x})$ has an obvious factorization or the non-reciprocal part of $\boldsymbol{u}(\boldsymbol{x}) \boldsymbol{x}^{m}+\boldsymbol{v}(\boldsymbol{x})$ is irreducible.

First Attack on Turán's Problem:

Old Theorem: When m is large, either $u(x) x^{m}+v(x)$ has an obvious factorization or the non-reciprocal part of $\boldsymbol{u}(\boldsymbol{x}) \boldsymbol{x}^{m}+\boldsymbol{v}(\boldsymbol{x})$ is irreducible.

Idea: Consider

$$
g(x)=x^{n}+f(x)
$$

If one can show $\boldsymbol{g}(\boldsymbol{x})$ is irreducible for some \boldsymbol{n}, then the conjecture of Turán (modified so $\operatorname{deg} g>\operatorname{deg} f$ is allowed) is resolved with $C=1$.

First Attack on Turán's Problem:

Old Theorem: When \boldsymbol{m} is large, either $\boldsymbol{u}(\boldsymbol{x}) \boldsymbol{x}^{m}+\boldsymbol{v}(\boldsymbol{x})$ has an obvious factorization or the non-reciprocal part of $\boldsymbol{u}(\boldsymbol{x}) \boldsymbol{x}^{m}+\boldsymbol{v}(\boldsymbol{x})$ is irreducible.

Idea: Consider

$$
g(x)=x^{n}+f(x)
$$

If $f(0)=0$ or $f(1)=-1$, then consider instead

$$
g(x)=x^{n}+f(x) \pm 1
$$

If one can show $\boldsymbol{g}(\boldsymbol{x})$ is irreducible for some \boldsymbol{n}, then the conjecture of Turán (modified so $\operatorname{deg} g>\operatorname{deg} f$ is allowed) is resolved with $C=2$.

First Attack on Turán's Problem:

Idea: Consider

$$
g(x)=x^{n}+f(x)
$$

If $f(0)=0$ or $f(1)=-1$, then consider instead

$$
g(x)=x^{n}+f(x) \pm 1
$$

If one can show $\boldsymbol{g}(\boldsymbol{x})$ is irreducible for some \boldsymbol{n}, then the conjecture of Turán (modified so $\operatorname{deg} g>\operatorname{deg} f$ is allowed) is resolved with $C=2$.

First Attack on Turán's Problem:

Idea: Consider

$$
g(x)=x^{n}+f(x)
$$

If $f(0)=0$ or $f(1)=-1$, then consider instead

$$
g(x)=x^{n}+f(x) \pm 1
$$

If one can show $\boldsymbol{g}(\boldsymbol{x})$ is irreducible for some \boldsymbol{n}, then the conjecture of Turán (modified so $\operatorname{deg} g>\operatorname{deg} f$ is allowed) is resolved with $C=2$.

Problem: Dealing with $\boldsymbol{g}(\boldsymbol{x})=x^{n}+\boldsymbol{f}(\boldsymbol{x})$ is essentially equivalent to the odd covering problem. So this is hard.

Second Attack on Turán's Problem:

Idea: Consider

$$
g(x)=x^{m} \pm x^{n}+f(x)
$$

If $f(0)=0$, then consider instead

$$
g(x)=x^{m} \pm x^{n}+f(x) \pm 1
$$

Theorem (Schinzel): For every

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x],
$$

there exist infinitely many irreducible

$$
g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in \mathbb{Z}[x]
$$

such that

$$
\sum_{j=0}^{\max \{r, s\}}\left|a_{j}-b_{j}\right| \leq \begin{cases}2 & \text { if } f(0) \neq 0 \\ 3 & \text { always. }\end{cases}
$$

Theorem (Schinzel): For every

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x]
$$

there exist infinitely many irreducible

$$
g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in \mathbb{Z}[x]
$$

such that

$$
\sum_{j=0}^{\max \{r, s\}}\left|a_{j}-b_{j}\right| \leq \begin{cases}2 & \text { if } f(0) \neq 0 \\ 3 & \text { always }\end{cases}
$$

One of these is such that

$$
s<\exp \left((5 r+7)\left(\|f\|^{2}+3\right)\right)
$$

Ideas Behind Proof:

Ideas Behind Proof:

- Consider $\boldsymbol{F}(x)=x^{m}+x^{n}+f(x)$ with $m \in$ ($M, 2 M]$ and $n \in(N, 2 N]$ where M and N are large and $M>N$.

Ideas Behind Proof:

- Consider $\boldsymbol{F}(x)=x^{m}+x^{n}+f(x)$ with $m \in$ $(M, 2 M]$ and $n \in(N, 2 N]$ where M and N are large and $M>N$.
- Apply result on $\boldsymbol{u}(\boldsymbol{x}) \boldsymbol{x}^{m}+\boldsymbol{v}(\boldsymbol{x})$ with $\boldsymbol{u}(\boldsymbol{x})=1$ and $\boldsymbol{v}(\boldsymbol{x})=x^{n}+\boldsymbol{f}(\boldsymbol{x})$ to reduce problem to consideration of reciprocal factors.

Ideas Behind Proof:

- Consider $\boldsymbol{F}(x)=x^{m}+x^{n}+f(x)$ with $m \in$ $(M, 2 M]$ and $n \in(N, 2 N]$ where M and N are large and $M>N$.
- Apply result on $u(x) x^{m}+v(x)$ with $u(x)=1$ and $\boldsymbol{v}(\boldsymbol{x})=x^{n}+f(x)$ to reduce problem to consideration of reciprocal factors.
- Find a bound on the number of $x^{m}+x^{n}+f(x)$ with reciprocal non-cyclotomic factors.

Ideas Behind Proof:

- To bound the $x^{m}+x^{n}+f(x)$ with cyclotomic factors, set
$\mathcal{A}=\{(m, n): M<m \leq 2 M, N<n \leq 2 N\}$,
and let $\mathcal{A}_{p} \subset \boldsymbol{A}$ (arising from when $\boldsymbol{F}\left(\zeta_{p^{k}}\right)=0$).
Use a "sieve" argument to estimate the size of

$$
\mathcal{A}-\bigcup \mathcal{A}_{p}
$$

Ideas Behind Proof:

- To bound the $x^{m}+x^{n}+f(x)$ with cyclotomic factors, set
$\mathcal{A}=\{(m, n): M<m \leq 2 M, N<n \leq 2 N\}$, and let $\mathcal{A}_{p} \subset \boldsymbol{A}$ (arising from when $\boldsymbol{F}\left(\zeta_{p^{k}}\right)=0$). Use a "sieve" argument to estimate the size of

$$
\mathcal{A}-\bigcup \mathcal{A}_{p}
$$

- Deduce that some $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{x}^{m}+x^{n}+\boldsymbol{f}(\boldsymbol{x})$ with $m \in(M, 2 M]$ and $n \in(N, 2 N]$ is irreducible (where M and N are large and $M>N$).

Current Knowledge:

Theorem: Given $f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x]$, there are infinitely many irreducible $g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in \mathbb{Z}[x]$ such that $\quad \max \{r, s\}$

$$
\sum_{j=0}\left|a_{j}-b_{j}\right| \leq 5
$$

One of these is such that

$$
s \leq 4 r \exp \left(4\|f\|^{2}+12\right)
$$

Current Knowledge:

Theorem: Given $f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x]$, there are infinitely many irreducible $g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in \mathbb{Z}[x]$ such that $\quad \max \{r, s\}$

$$
\sum_{j=0}\left|a_{j}-b_{j}\right| \leq 5
$$

One of these is such that

$$
s \leq 4 r \exp \left(4\|f\|^{2}+12\right)
$$

Current Knowledge:

Theorem: Given $f(x)=\sum_{j=0}^{r} a_{j} x^{j} \in \mathbb{Z}[x]$, there are infinitely many irreducible $g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in \mathbb{Z}[x]$ such that $\quad \max \{r, s\}$

$$
\sum_{j=0}\left|a_{j}-b_{j}\right| \leq 3
$$

One of these is such that

$$
s \leq \text { some polynomial in } r \text {. }
$$

