
9 Weyl’s Theorem

We will give some preliminary material before introducing Weyl’s Theorem and its proof. In
particular, the following result is fairly straightforward, but nevertheless it leads to some nice
examples.

Theorem 23. Letk be an integer. Then

1

2π

∫ 2π

0

eikx dx =

{
0 if k 6= 0

1 if k = 0.

Equivalently, ∫ 1

0

ei2πkx dx =

{
0 if k 6= 0

1 if k = 0.

Also, ifn > |k|, then
n−1∑
j=0

ei2πkj/n =

{
0 if k 6= 0

n if k = 0.

We give a few examples of the usefulness of Theorem 23. We do this by posing problems and
demonstrating a solution to each based on the above theorem. It should be kept in mind that we do
not mean to imply the the following solutions are the most elegant.

Example 1 (Putnam A-5, 1985):Let

Im =

∫ 2π

0

cos(x) cos(2x) cos(3x) · · · cos(mx) dx.

For which integersm, 1 ≤ m ≤ 10, is Im 6= 0?

Solution: Recall that

cos x =
eix + e−ix

2
.

Hence,

Im =

∫ 2π

0

m∏
k=1

(
eikx + e−ikx

2

)
dx =

1

2m

∑
ε1,...,εm∈{1,−1}

∫ 2π

0

ei(ε1+2ε2+···+mεm)x dx.

From Theorem 23, we deduce that each of the integrals in the sum is0 unlessε1+2ε2+· · ·+mεm =
0. Also, if an integral in the sum is not zero, then it is positive. Therefore,Im 6= 0 if and only if there
existε1, . . . , εm ∈ {1,−1} such thatε1+2ε2+· · ·+mεm = 0. Note that ifε1+2ε2+· · ·+mεm = 0,
then

0 ≡ ε1 + 2ε2 + · · ·+ mεm ≡ 1 + 2 + · · ·+ m ≡ m(m + 1)

2
(mod 2)

so that
m ≡ 0 or 3 (mod 4).
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Thus, Im = 0 for m ∈ {1, 2, 5, 6, 9, 10}. To see that the answer is the remainingm, that is
m ∈ {3, 4, 7, 8}, observe that

1 + 2− 3 = 0 and1− 2− 3 + 4 = 0

and if
ε1 + 2ε2 + · · ·+ mεm = 0,

then
ε1 + 2ε2 + · · ·+ mεm − (m + 1) + (m + 2) + (m + 3)− (m + 4) = 0.

Note that in generalIm 6= 0 if and only if m ≡ 0 or 3 (mod 4).

Example 2 (Putnam A-6, 1985):If p(x) = a0 + a1x + · · · + amxm is a polynomial with real
coefficientsai, then set

Γ(p(x)) = a2
0 + · · ·+ a2

m.

Let f(x) = 3x2 + 7x + 2. Find, with proof, a polynomialg(x) with real coefficients such that

(i) g(0) = 1, and

(ii) Γ(f(x)n) = Γ(g(x)n) for all positive integersn.

Solution: Observe that Theorem 23 implies

Γ(p(x)) = a2
0 + · · ·+ a2

m

=

∫ 1

0

(
a0 + a1e

i2πx + · · ·+ amei2π(mx)
) (

a0 + a1e
−i2πx + · · ·+ ame−i2π(mx)

)
dx

=

∫ 1

0

p(ei2πx)p(ei2πx) dx.

Thus,

Γ(f(x)n) = Γ((3x + 1)n(x + 2)n)

=

∫ 1

0

(3ei2πx + 1)n(ei2πx + 2)n(3e−i2πx + 1)n(e−i2πx + 2)n dx

=

∫ 1

0

(3ei2πx + 1)n(ei2πx + 2)n(e−i2πx)n(3e−i2πx + 1)n(e−i2πx + 2)n(ei2πx)n dx

=

∫ 1

0

g(ei2πx)ng(e−i2πx)n dx = Γ(g(x)n),

whereg(x) = (3x + 1)(2x + 1) = 6x2 + 5x + 1. Sinceg(0) = 1, this completes the solution.

Example 3: Let R be a rectangle which is partitioned as a disjoint union (excluding common
edges) of rectanglesR1, . . . , Rn each having sides parallel to the sides ofR. Prove that if eachRj

has at least one side of integer length forj = 1, 2, . . . , n, then so doesR.
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Solution: We do not use Theorem 23 directly here but rather the following which is of a similar
flavor:

Supposeα andu are real numbers. Thenα is an integer if and only if∣∣∣∣∫ u+α

u

ei2πx dx

∣∣∣∣ = 0.

Position the rectangles so that their sides are parallel to thex andy-axes and so that the lower
left corner ofR is (0, 0). Supposeαj andβj are the horizontal and vertical dimensions ofRj,
respectively, forj = 1, 2, . . . , n. Let (uj, vj) be the lower left corner ofRj. Then since eitherαj is
an integer orβj is an integer, we get from the above that∣∣∣∣∣

∫ vj+βj

vj

∫ uj+αj

uj

ei2π(x+y) dx dy

∣∣∣∣∣ =

∣∣∣∣∣
∫ uj+αj

uj

ei2πx dx

∣∣∣∣∣
∣∣∣∣∣
∫ vj+βj

vj

ei2πy dy

∣∣∣∣∣ = 0.

On the other hand, ifα andβ are the horizontal and vertical dimensions ofR, respectively, then∣∣∣∣∫ α

0

ei2πx dx

∣∣∣∣ ∣∣∣∣∫ β

0

ei2πy dy

∣∣∣∣ =

∣∣∣∣∫∫
R

ei2π(x+y) dx

∣∣∣∣
=

∣∣∣∣∣
n∑

j=1

∫∫
Rj

ei2π(x+y) dx

∣∣∣∣∣ =

∣∣∣∣∣
n∑

j=1

∫ vj+βj

vj

∫ uj+αj

uj

ei2π(x+y) dx dy

∣∣∣∣∣ = 0.

Hence, either
∣∣∫ α

0
ei2πx dx

∣∣ = 0 or
∣∣∣∫ β

0
ei2πy dy

∣∣∣ = 0, which implies that eitherα or β is an integer,

completing the proof.

We turn now to the main topic of this section. Forα real, let{α} denote the fractional part
of α. Note that{α} ∈ [0, 1) for all α. Thus, for example,{2.341} = 0.341, {22/7} = 1/7, and
{−22/7} = 6/7. Let {α1, α2, . . . } be a sequence of real numbers. We say that the sequence is
uniformly distributed modulo one if for everya andb with 0 ≤ a ≤ b ≤ 1,

lim
n→∞

|{r ≤ n : {αr} ∈ [a, b]}|
n

= b− a.

The following result is due to Weyl.

Theorem 24. If α is a real irrational number, then the sequence{rα}∞r=1 is uniformly distributed
modulo one.

Before proving Weyl’s Theorem, we discuss some preliminaries. First, we observe that de-
termining whether a sequence is uniformly distributed “may” not even be intuitively clear. For
example, supposeα ∈ R is irrational. Does it follow that{αr}∞r=1 is uniformly distributed modulo
one? One can see that this is not the case by consideringα =

√
2 since

|{r ≤ n : {
√

2
r
} ∈ [0, 1/3]}| ≥ n− 1

2
.
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Is this an unfair example sinceα =
√

2 has the property that some power ofα is an integer? To
partially answer this question, we show that forα = (1 +

√
5)/2, the sequence{αr}∞r=1 is not

uniformly distributed modulo one. Define

ur =

(
1 +

√
5

2

)r

+

(
1−

√
5

2

)r

for r ∈ Z+ ∪ {0}.

Note thatu0 = 2, u1 = 1, and forr ≥ 2,

ur =

(
1 +

√
5

2

)r

+

(
1−

√
5

2

)r

=

(
1 +

√
5

2

)r−2(
1 +

√
5

2

)2

+

(
1−

√
5

2

)r−2(
1−

√
5

2

)2

=

(
1 +

√
5

2

)r−2(
3 +

√
5

2

)
+

(
1−

√
5

2

)r−2(
3−

√
5

2

)

=

(
1 +

√
5

2

)r−2(
1 +

1 +
√

5

2

)
+

(
1−

√
5

2

)r−2(
1 +

1−
√

5

2

)
= ur−2 + ur−1.

Therefore,ur ∈ Z+ for all r ≥ 0. Note that(1−
√

5)/2 ∈ (−1, 0) so that
(
(1−

√
5)/2

)r
tends to

zero asr tends to infinity. Therefore,

lim
r→∞


(

1 +
√

5

2

)2r+1
 = 0

and

lim
r→∞


(

1 +
√

5

2

)2r
 = 1.

This easily implies that

lim
n→∞

|{r ≤ n : {αr} ∈ [1/4, 3/4]}|
n

= 0

so that{αr}∞r=1 is not uniformly distributed modulo one.
We note that it can be shown that, for almost all real numbersα, the sequence{αr}∞r=1 is

uniformly distributed modulo 1. On the other hand, no explicit example of such anα is known.
Our proof of Weyl’s Theorem will depend on the use of Cesàro sumability. We say that a series∑∞

j=0 aj has Ces̀aro sumS if

lim
n→∞

∑n
r=0

∑r
j=0 aj

n + 1
= S.

We first make an important connection between Cesàro sums and our usual notion of sums. The
next result implies that if a series converges toS, then its Ces̀aro sum is alsoS; on the other hand,
its Ces̀aro sum may exist even if the series diverges.

37



Theorem 25. Let {aj}∞j=0 be a sequence of complex numbers, and setsr =
∑r

j=0 aj for r ∈
Z+ ∪ {0}. Then

(i) if limr→∞ sr = S, thenlimr→∞

∑n
r=0 sr

n + 1
= S, and

(ii) if aj = (−1)j(j+1)/2, thenlimr→∞ sr does not exist andlimr→∞

∑n
r=0 sr

n + 1
= 0.

Proof. (i) Supposelimr→∞ sr = S. Let ε > 0. Then there is anR such that ifr ≥ R, then
|sr − S| < ε/2. Let A =

∑R
r=0 |sr − S|. Let N ≥ max{R, 2A/ε}. Then forn ≥ N ,∣∣∣∣∑n

r=0 sr

n + 1
− S

∣∣∣∣ =
1

n + 1

∣∣∣∣∣
n∑

r=0

(sr − S)

∣∣∣∣∣
=

1

n + 1

∣∣∣∣∣
R∑

r=0

(sr − S)

∣∣∣∣∣+ 1

n + 1

∣∣∣∣∣
n∑

r=R+1

(sr − S)

∣∣∣∣∣
≤ 1

n + 1

(
A + (n + 1)

ε

2

)
≤ 1

n + 1

(
n

ε

2
+ (n + 1)

ε

2

)
<

ε

2
+

ε

2
= ε.

Thus,

lim
r→∞

∑n
r=0 sr

n + 1
= S.

(ii) Here,{aj}∞j=0 = {1,−1,−1, 1, 1,−1,−1, 1, . . . } so thats0 = 1, s1 = 0, s2 = −1, s3 = 0,
s4 = 1, . . . . Hence, for everyr ≥ 0,

|
n∑

r=0

sr| ≤ 1.

Thus,

lim
r→∞

∑n
r=0 sr

n + 1
= 0.

Clearly,limr→∞ sr does not exist.

Before continuing, we consider some examples. First, we show that the Cesàro sum of1 + 1
2
+

1
3

+ · · · is infinite. Letsr =
∑r

j=0(1/(j + 1)). Note that

sr ≥
∫ r+2

1

1

t
dt = log(r + 2).

Thus,
n∑

r=0

r∑
j=0

aj =
n∑

r=0

sr ≥
n∑

r=0

log(r + 2)

≥
∫ n+2

1

log t dt = t log t
∣∣n+2

1
= (n + 2) log(n + 2).
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Hence, ∑n
r=0

∑r
j=0 aj

n + 1
≥ (n + 2) log(n + 2)

n + 1
.

Since this last expression tends to infinity withn, we deduce that the Cesàro sum of1+ 1
2
+ 1

3
+ · · ·

is infinite.
As another example, we show that it is possible to have a series

∑∞
j=0 aj with all of its partial

sumssr =
∑r

j=0 aj bounded and with no Cesàro sum. We take

aj =


1 if j = 22k wherek ∈ Z+ ∪ {0}
−1 if j = 22k−1 wherek ∈ Z+

0 otherwise

.

Then we get thata0, a1, a2, . . . is 0, 1,−1, 0, 1, 0, 0, 0,−1, . . . , ands0, s1, s2, . . . is 0, 1, 0, 0, 1,
1, 1, 1, 0, . . . . In general,

sj =

{
1 if j ∈ [22k, 22k+1) ∩ Z wherek ∈ Z+ ∪ {0}
0 otherwise

.

Note that for any positive integerm, 1 + 2 + 22 + · · ·+ 2m < 2m+1 so that

22k−1∑
j=0

sj =
k−1∑
j=0

22j ≤

(
2k−4∑
j=0

2j

)
+ 22k−2

≤ 22k−3 + 22k−2 =
3

8
(22k).

Also,
22k+1−1∑

j=0

sj =
k∑

j=0

22j ≥ 22k =
1

2
(22k+1).

Thus, infinitely often
(∑n

j=0 aj

)
/(n + 1) ≤ 3/8 and infinitely often

(∑n
j=0 aj

)
/(n + 1) ≥ 1/2.

This easily implies that the Cesàro sum cannot exist.
To prove Weyl’s Theorem (Theorem 24), we will use a little material from Fourier Analysis

which we introduce here. The basic idea is to write a functionf(x), which maps the real numbers
to the complex numbers, in the form

f(x) =
∞∑

r=−∞

f̂(r)eirx. (11)

Here, we wish to find numberŝf(r) for which the above holds. Sinceeirx = cos(rx) + i sin(rx),
the series on the right in (11) is often referred to as a trignometric series. It is not always possible
to obtain a trignometric series representation forf(x), but let’s suppose for the moment thatf(x)
can be expressed in the form (11). We temporarily ignore rigor. Using Theorem 23, observe that
for n ≥ |r|,

f̂(r) =
1

2π

n∑
j=−n

∫ 2π

0

f̂(j)ei(j−r)x dx =
1

2π

∫ 2π

0

(
n∑

j=−n

f̂(j)eijx

)
e−irx dx.
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Lettingn tend to infinity, we deduce that

f̂(r) =
1

2π

∫ 2π

0

f(x)e−irx dx. (12)

Thus, using (12), it is seemingly easy to write a function in the form (11). However, we still need
to discuss when the series in (11) converges. We will require certian conditions onf(x). They are:

(i) f(x) is continuous over the reals.

(ii) f(x + 2π) = f(x) for all realx.

The latter condition shouldn’t be surprising since the values off̂(r) determinef(x) by (11) and
they only depend on the values off(x) for x ∈ [0, 2π] by (12). Before continuing, it is worth
noting that (i) and (ii) are not sufficient to imply the convergence of the series in (11). On the other
hand, we will want to considerf(x) in this generality. To deal with this difficulty, we prove a
result of Fej́er that withf(x) satisfying (i) and (ii), the series in (11) has Cesàro sumf(x) (so that
convergence of the series will not be necessary).

Definef̂(r) by (12), and set

σn(f, x) =
1

n + 1

n∑
j=0

(
j∑

r=−j

f̂(r)eirx

)

=
1

n + 1

(
(n + 1)f̂(0) + nf̂(1)eix + nf̂(−1)e−ix + · · ·

)
=

n∑
r=−n

n + 1− |r|
n + 1

f̂(r)eirx.

We will now prove

Theorem 26. If f(x) satisfies (i) and (ii), thenσn(f, x) converges tof uniformly onR.

We begin with a relationship betweenσn(f, x) and

Kn(x) =
n∑

r=−n

n + 1− |r|
n + 1

eirx.

Observe that

σn(f, x) =
n∑

r=−n

n + 1− |r|
n + 1

f̂(r)eirx

=
n∑

r=−n

n + 1− |r|
n + 1

1

2π

(∫ 2π

0

f(t)e−irt dt

)
eirx

=
1

2π

∫ 2π

0

f(t)
n∑

r=−n

n + 1− |r|
n + 1

eir(x−t) dt

=
1

2π

∫ 2π

0

f(t)Kn(x− t) dt.

40



Note that in addition to (ii), we have thatKn(x + 2π) = Kn(x) for all realx. Lettingy = x − t
gives

σn(f, x) =
−1

2π

∫ x−2π

x

f(x− y)Kn(y) dy

=
1

2π

∫ x

x−2π

f(x− y)Kn(y) dy =
1

2π

∫ 2π

0

f(x− y)Kn(y) dy.

We now proceed with two lemmas.

Lemma 1. Letx ∈ [0, 2π). ThenKn(0) = n + 1, and ifx 6= 0, then

Kn(x) =
1

n + 1

(
sin((n + 1)x/2)

sin(x/2)

)2

.

Proof. Clearly,

Kn(0) =
n∑

r=−n

n + 1− |r|
n + 1

=
1

n + 1

(
n + 1 + 2

n∑
r=1

r

)
= n + 1.

Now, supposex ∈ (0, 2π). Then

Kn(x) =
n∑

r=−n

n + 1− |r|
n + 1

eirx

=
1

n + 1

(
(n + 1)e−inx

n∑
r=−n

ei(r+n)x −
n∑

r=1

(
reirx + re−irx

))
.

Note that
n∑

r=−n

ei(r+n)x =
2n∑

r=0

eirx =
ei(2n+1)x − 1

eix − 1
.

Also,
n∑

r=1

eirx =
ei(n+1)x − 1

eix − 1
− 1

so that by taking derivatives, we obtain

i

n∑
r=1

reirx =
(eix − 1)i(n + 1)ei(n+1)x − (ei(n+1)x − 1)ieix

(eix − 1)2
.

Thus,
n∑

r=1

reirx =
nei(n+2)x − (n + 1)ei(n+1)x + eix

(eix − 1)2

and
n∑

r=1

re−irx =
ne−i(n+2)x − (n + 1)e−i(n+1)x + e−ix

(e−ix − 1)2
.
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Hence,

Kn(x) =
1

(n + 1)(eix − 1)2

(
(n + 1)e−inx(eix − 1)(ei(2n+1)x − 1)

−
(
nei(n+2)x − (n + 1)ei(n+1)x + eix

)
−
(
ne−inx − (n + 1)e−i(n−1)x + eix

))
=

1

(n + 1)(eix − 1)2

(
ei(n+2)x + e−inx − 2eix

)
=

eix

(n + 1)(eix − 1)2

(
ei(n+1)x − 2 + e−i(n+1)x

)
=

eix

(n + 1)(eix − 1)2

(
ei(n+1)x/2 − e−i(n+1)x/2

)2
=

1

n + 1
(eix/2 − e−ix/2)−2

(
ei(n+1)x/2 − e−i(n+1)x/2

)2
=

1

n + 1

(
eix/2 − e−ix/2

2i

)−2(
ei(n+1)x/2 − e−i(n+1)x/2

2i

)2

=
1

n + 1

(
sin((n + 1)x/2)

sin(x/2)

)2

.

This completes the proof.

Lemma 2. Kn(x) has the following properties:

(a) Kn(x) ≥ 0 for all real numbersx.

(b) For everyδ > 0 andε > 0, there is anN = N(δ, ε) such that ifn ≥ N andx ∈ (δ, 2π − δ),
then|Kn(x)| < ε.

(c)
1

2π

∫ 2π

0
Kn(x) dx = 1.

Comment: (b) is simply asserting that for allδ > 0, Kn(x) approaches 0 uniformly on(δ, 2π− δ).

Proof. SinceKn(x+2π) = Kn(x), (a) follows from Lemma 1. For (b), note that forx ∈ (δ, 2π−δ)
and forn sufficiently large (independent ofx), Lemma 1 implies

Kn(x) ≤ 1

(n + 1) sin2(x/2)
≤ 1

(n + 1) sin2(δ/2)
< ε.

Finally, we deduce (c) from

1

2π

∫ 2π

0

Kn(x) dx =
1

2π

∫ 2π

0

n∑
r=−n

n + 1− |r|
n + 1

eirx dx

=
n∑

r=−n

n + 1− |r|
n + 1

1

2π

∫ 2π

0

eirx dx =
1

2π

∫ 2π

0

dx = 1,

completing the proof.
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We now give the basic idea behind the proof of Theorem 26. Note that Lemma 2 implies that
for δ > 0 fixed and small and forn large,

1

2π

∫ 2π−δ

δ

Kn(y) dy ≈ 0 and
1

2π

∫ 2π

0

Kn(y) dy = 1

so that
1

2π

∫ δ

−δ

Kn(y) dy ≈ 1.

Also,
1

2π

∫ 2π−δ

δ

f(x− y)Kn(y) dy ≈ 0

so that

σn(f, x) =
1

2π

∫ 2π

0

f(x− y)Kn(y) dy ≈ 1

2π

∫ δ

−δ

f(x− y)Kn(y) dy.

Sincef(x) is continuous,f(x− y) ≈ f(x) for y ∈ [−δ, δ]. Thus,

σn(f, x) ≈ 1

2π

∫ δ

−δ

f(x)Kn(y) dy = f(x)

(
1

2π

∫ δ

−δ

Kn(y) dy

)
≈ f(x).

We now make the above ideas rigorous.

Proof of Theorem 26.We use thatf(x) is bounded and uniformly continuous on the compact in-
terval[0, 4π]. Thus, there is anM such that|f(x)| ≤ M for all x ∈ [0, 4π]; and for allε > 0, there
is aδ > 0 such that ifx andy are in[0, 4π] with |x− y| < δ, then|f(x)− f(y)| < ε. By property
(ii), |f(x)| ≤ M for all x ∈ R and for allε > 0, there is aδ > 0 such that|f(x)− f(y)| < ε for all
x andy in R with |x− y| < δ.

Let ε > 0. Let δ ∈ (0, π) such that|f(x)− f(y)| < ε/2 for all x andy in R with |x− y| < δ.
By Lemma 2 (b), there is anN = N(δ, ε) such that ifn ≥ N andx ∈ (δ, 2π − δ), then|Kn(x)| ≤
ε/(4M). By Lemma 2 (a),∫ δ

−δ

|Kn(y)| dy =

∫ δ

−δ

Kn(y) dy ≤
∫ 2π

0

|Kn(y)| dy.
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Thus, we get from Lemma 2 (c) that for alln ≥ N ,

|σn(f, x)− f(x)| =
∣∣∣∣ 1

2π

∫ 2π

0

f(x− y)Kn(y) dy −
(

1

2π

∫ 2π

0

Kn(y) dy

)
f(x)

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ 2π

0

(f(x− y)− f(x)) Kn(y) dy

∣∣∣∣
≤ 1

2π

∣∣∣∣∫ δ

−δ

(f(x− y)− f(x)) Kn(y) dy

∣∣∣∣+ 1

2π

∣∣∣∣∫ 2π−δ

δ

(f(x− y)− f(x)) Kn(y) dy

∣∣∣∣
≤ 1

2π

∫ δ

−δ

|f(x− y)− f(x)| |Kn(y)| dy +
1

2π

∫ 2π−δ

δ

(|f(x− y)|+ |f(x)|) |Kn(y)| dy

<
ε

2

1

2π

∫ δ

−δ

|Kn(y)| dy + (2M)
1

2π

∫ 2π−δ

δ

ε

4M
dy

<
ε

2
+

ε

2

(
1

2π

∫ 2π

0

dy

)
= ε.

The above inequality is independent ofx, establishing the Theorem.

Corollary 1. Letf(x) satisfy (i) and (ii), and letε > 0. Then there exists a trignometric polynomial

P (x) =
n∑

j=−n

aje
ijx

(with aj ∈ C for eachj) such that

sup
x∈R

|P (x)− f(x)| ≤ ε.

Proof. Sinceσn(f, x) is a trignometric polynomial, the Corollary follows from Theorem 26 by
takingP (x) = σn(f, x) with n sufficiently large.

We now prove Weyl’s Theorem (Theorem 24). It suffices to show that ifα ∈ R is irrational
and0 ≤ a ≤ b ≤ 1, then

lim
n→∞

|{r ≤ n : 2π{rα} ∈ [2πa, 2πb]}|
n

= b− a. (13)

Lemma 3. Let α ∈ R with α irrational. Supposef : R → C satisfies (i) and (ii) of the previous
section. Then

lim
n→∞

1

n

n∑
r=1

f(2πrα) =
1

2π

∫ 2π

0

f(x) dx.

Proof. Let

Gn(f) =
1

n

n∑
r=1

f(2πrα)− 1

2π

∫ 2π

0

f(x) dx.
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We want to show thatlimn→∞ Gn(f) = 0. First, we considerf(x) = eisx wheres is an integer. If
s = 0, thenf(x) ≡ 1 and

Gn(f) = Gn(1) =
1

n

n∑
r=1

1− 1

2π

∫ 2π

0

dx = 0.

Thus,limn→∞ Gn(f) = 0 in the casef(x) = eisx with s = 0. Now, supposes 6= 0. Then

|Gn(f)| =

∣∣∣∣∣ 1n
n∑

r=1

e2πirsα − 1

2π

∫ 2π

0

eisx dx

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

r=1

e2πirsα

∣∣∣∣∣
=

1

n

∣∣e2πisα
∣∣ ∣∣∣∣e2πinsα − 1

e2πisα − 1

∣∣∣∣
≤ 2

n|e2πisα − 1|
.

Thus, in this case,limn→∞ Gn(f) = 0.
Now, we consider the case whenf(x) =

∑m
s=−m ase

isx (i.e., f(x) is a trignometric polyno-
mial). Then

lim
n→∞

Gn(f) = lim
n→∞

(
1

n

n∑
r=1

m∑
s=−m

ase
2πirsα − 1

2π

∫ 2π

0

(
m∑

s=−m

ase
isx

)
dx

)

=
m∑

s=−m

as lim
n→∞

(
1

n

n∑
r=1

e2πirsα − 1

2π

∫ 2π

0

eisx dx

)

=
m∑

s=−m

as lim
n→∞

Gn

(
eisx
)

= 0.

Thus, the lemma holds for trignometric polynomials.
We now consider the general case whenf(x) satisfies (i) and (ii). Letε > 0. We show that if

n is sufficiently large, then|Gn(f)| < ε. By the Corollary to Theorem 26, there is a trignometric
polynomialP (x) such that

|f(x)− P (x)| < ε

3
for all realx.

Also, since the lemma has already been established for trignometric polynomials, there is anN
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such that ifn ≥ N , then|Gn(P )| < ε/3. Hence, for alln ≥ N ,

|Gn(f)| ≤ |Gn(P )|+ |Gn(f)−Gn(P )|

<
ε

3
+

∣∣∣∣∣ 1n
n∑

r=1

(f(2πrα)− P (2πrα))− 1

2π

∫ 2π

0

(f(x)− P (x)) dx

∣∣∣∣∣
≤ ε

3
+

1

n

n∑
r=1

|f(2πrα)− P (2πrα)|+ 1

2π

∫ 2π

0

|f(x)− P (x)| dx

<
ε

3
+

ε

3
+

1

2π

∫ 2π

0

ε

3
dx = ε,

completing the proof.

Proof of Theorem 24.Let ε > 0. We will apply Lemma 3 to two functionsf+(x) and f−(x)
satisfying (ii). Their precise definitions are not important; a rough graph suffices for the proof. But
since graphs are more difficult to print than precise definitions in TEX, we leave it to the reader to
graph

f+(x) =



0 if x ∈ [0, 2π(a− ε)) ∪ [2π(b + ε), 2π)
1

2πε
x− 1

ε
(a− ε) if x ∈ [2π(a− ε), 2πa)

1 if x ∈ [2πa, 2πb)

− 1

2πε
x +

1

ε
(b + ε) if x ∈ [2πb, 2π(b + ε))

and

f+(x) =



0 if x ∈ [0, 2πa) ∪ [2πb, 2π)
1

2πε
x− 1

ε
a if x ∈ [2πa, 2π(a + ε))

1 if x ∈ [2π(a + ε), 2π(b− ε))

− 1

2πε
x +

1

ε
b if x ∈ [2π(b− ε), 2πb)

.

Note thatf+(x) andf−(x) are defined for all real numbersx by the above and (ii). Thus,

n∑
r=1

f+(2πrα) ≥ |{r ≤ n : 2π{rα} ∈ [2πa, 2πb]}| ≥
n∑

r=1

f−(2πrα).

By Lemma 3, there is anN such that ifn ≥ N , then

1

n

n∑
r=1

f+(2πrα) ≤ 1

2π

∫ 2π

0

f+(x) dx + ε =
1

2π
(2π(b− a) + 2πε) + ε = (b− a) + 2ε

and

1

n

n∑
r=1

f−(2πrα) ≥ 1

2π

∫ 2π

0

f−(x) dx− ε =
1

2π
(2π(b− a)− 2πε)− ε = (b− a)− 2ε.
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Hence, for alln ≥ N , ∣∣∣∣ |{r ≤ n : 2π{rα} ∈ [2πa, 2πb]}|
n

− (b− a)

∣∣∣∣ < 2ε,

from which Theorem 24 follows.

The following are two problems related to this subject. The details of their solutions are omitted
here.

(1) Let d ∈ {0, 1, 2, . . . , 9}. What is the proportion of times that2n begins with the digitd asn
runs through the positive integers? More specifically, compute

lim
n→∞

|{n ≤ x : 2n begins with the digitd}|
x

.

(By the way, of the first 1000 values of2n beginning withn = 0, exactly 301 begin with the digit
1, andlog10 2 = 0.3010 . . . .)

(2) (Monthly Problem, 1986) Supposex ∈ R with x > 1. Let an = [xn] wheren is a positive
integer. LetS = 0.a1a2a3 . . . . (For example, ifx = π, thenS = 0.393197 . . . since[π] = 3,
[π2] = 9, [π3] = 31, and[π4] = 97.) Prove thatS is irrational.

Homework:

1. Letk andn be positive integers withn > 2k. Prove that

n−1∑
j=0

cos2k

(
2πj

n

)
=

(
2k
k

)
22k

n.

(Hint: Use the binomial theorem.)

2. Let{α1, α2, . . . } be a sequence of real numbers. Prove that the sequence is uniformly dis-
tributed modulo one if and only if for everya andb with 0 ≤ a ≤ b ≤ 1,

lim
n→∞

|{r ≤ n : {αr} ∈ (a, b)}|
n

= b− a.

3. Let
∑∞

j=0 aj be a divergent series withaj > 0 for eachj ≥ 0. Prove that the Cesàro sum of
the series is infinite.

4. Calculate the Cesàro sum of each of the following series.

(a) 1− 1 + 1− 1 + 1− 1 + · · · .

(b) 1− 1

2
+

1

4
− 1

8
+ · · · .

5. Prove the following:
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Theorem 27. Let{αk} be a sequence of real numbers satisfying

lim
n→∞

1

n

n∑
k=1

e2πimαk = 0

for every non-zero integerm. Then{αk} is uniformly distributed modulo 1.

(Hint: Look at the proof of Theorem 24 withαk replacingkα and decide what changes need
to be made. You do not need to rewrite the proofs if you point out clearly where the changes
need to be made and what the changes are.)

6. Prove that the sequence{
√

n}∞n=1 is uniformly distributed modulo 1.

7. Prove that the sequence{log n}∞n=1 is not uniformly distributed modulo 1.

8. Show that there exists a sequence{aj}∞j=0 such that the partial sumssr =
∑r

j=0 aj satisfy
both

lim inf
n→∞

∑n
r=0 sr

n + 1
= −∞

and

lim sup
n→∞

∑n
r=0 sr

n + 1
= +∞.
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