3 The Irrationality of $\log 2$

Next, we show that $\log 2$ and $\zeta(3)$ are irrational. The main purpose of proving that $\log 2$ is irrational here is that the proof given is similar to the proof we will give for the irrationality of $\zeta(3)$. In particular, it will be convenient for both arguments to have the following lemma.
Lemma 1. Let $\epsilon>0$. Then there is an $N=N(\epsilon)$ such that if $n \geq N$, then

$$
d_{n}=\operatorname{lcm}(1,2,3, \ldots, n)<e^{(1+\epsilon) n} .
$$

Proof. Observe that if p^{r} divides a number in $\{1,2, \ldots, n\}$, then $p^{r} \leq n$ so that $r \leq \log n / \log p$. On the other hand, $p^{[\log n / \log p]}$ does divide one such number (namely itself). Thus,

$$
d_{n}=\prod_{p \leq n} p^{[\log n / \log p]} .
$$

Explain how the rest follows from the Prime Number Theorem.
Theorem 9. The number $\log 2$ is irrational.
Proof. Assume $\log 2=a / b$ for some integers a and b with $b>0$. We will obtain a contradiction by showing there are integers c and d for which $0<|c+d \log 2|<1 / b$. We use that, from Lemma $1, d_{n}<e^{3 n / 2}$ for n sufficiently large.

Observe that one of $x^{n}+1$ and $x^{n}-1$ is divisible by $x+1$ in $\mathbb{Z}[x]$. Thus,

$$
\frac{x^{n}}{1+x}=f(x) \pm \frac{1}{1+x},
$$

for some $f(x) \in \mathbb{Z}[x]$. Upon integration, one obtains

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{n}}{1+x} d x=\frac{u_{n}+v_{n} \log 2}{d_{n}} \tag{5}
\end{equation*}
$$

for some integers u_{n} and v_{n}. Define

$$
P_{n}(x)=\frac{1}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n}(1-x)^{n}\right)
$$

(the $n^{\text {th }}$ Legendre polynomial). Note that $P_{n}(x) \in \mathbb{Z}[x]$. Define

$$
I_{n}=\int_{0}^{1} \frac{x^{n}(1-x)^{n}}{(1+x)^{n+1}} d x
$$

By repeated integration by parts,

$$
I_{n}=\int_{0}^{1} \frac{P_{n}(x)}{1+x} d x
$$

It follows from (5) that there are integers u_{n}^{\prime} and v_{n}^{\prime} such that

$$
I_{n}=\frac{u_{n}^{\prime}+v_{n}^{\prime} \log 2}{d_{n}} .
$$

One checks that the maximum of $x(1-x) /(1+x)$ on $[0,1]$ is $(\sqrt{2}-1)^{2}$. It follows that

$$
0<\left|u_{n}^{\prime}+v_{n}^{\prime} \log 2\right|=\left|I_{n} d_{n}\right|<(\sqrt{2}-1)^{2 n} d_{n}<(0.172)^{n}(4.49)^{n}<(0.8)^{n} .
$$

Taking n so that $(0.8)^{n}<1 / b, c=u_{n}^{\prime}$, and $d=v_{n}^{\prime}$, we obtain the contradiction we sought.

