3 The Irrationality of $\log 2$

Next, we show that $\log 2$ and $\zeta(3)$ are irrational. The main purpose of proving that $\log 2$ is irrational here is that the proof given is similar to the proof we will give for the irrationality of $\zeta(3)$. In particular, it will be convenient for both arguments to have the following lemma.

Lemma 1. Let $\epsilon > 0$. Then there is an $N = N(\epsilon)$ such that if $n \ge N$, then

 $d_n = \operatorname{lcm}(1, 2, 3, \dots, n) < e^{(1+\epsilon)n}.$

Proof. Observe that if p^r divides a number in $\{1, 2, ..., n\}$, then $p^r \le n$ so that $r \le \log n / \log p$. On the other hand, $p^{\lfloor \log n / \log p \rfloor}$ does divide one such number (namely itself). Thus,

$$d_n = \prod_{p \le n} p^{\left[\log n / \log p\right]}.$$

Explain how the rest follows from the Prime Number Theorem.

Theorem 9. The number $\log 2$ is irrational.

Proof. Assume $\log 2 = a/b$ for some integers a and b with b > 0. We will obtain a contradiction by showing there are integers c and d for which $0 < |c + d \log 2| < 1/b$. We use that, from Lemma $1, d_n < e^{3n/2}$ for n sufficiently large.

Observe that one of $x^n + 1$ and $x^n - 1$ is divisible by x + 1 in $\mathbb{Z}[x]$. Thus,

$$\frac{x^n}{1+x} = f(x) \pm \frac{1}{1+x},$$

for some $f(x) \in \mathbb{Z}[x]$. Upon integration, one obtains

$$\int_{0}^{1} \frac{x^{n}}{1+x} \, dx = \frac{u_{n} + v_{n} \log 2}{d_{n}} \tag{5}$$

for some integers u_n and v_n . Define

$$P_n(x) = \frac{1}{n!} \frac{d^n}{dx^n} \left(x^n (1-x)^n \right)$$

(the n^{th} Legendre polynomial). Note that $P_n(x) \in \mathbb{Z}[x]$. Define

$$I_n = \int_0^1 \frac{x^n (1-x)^n}{(1+x)^{n+1}} \, dx.$$

By repeated integration by parts,

$$I_n = \int_0^1 \frac{P_n(x)}{1+x} \, dx.$$

It follows from (5) that there are integers u'_n and v'_n such that

$$I_n = \frac{u_n' + v_n' \log 2}{d_n}.$$

One checks that the maximum of x(1-x)/(1+x) on [0,1] is $(\sqrt{2}-1)^2$. It follows that

$$0 < |u'_n + v'_n \log 2| = |I_n d_n| < (\sqrt{2} - 1)^{2n} d_n < (0.172)^n (4.49)^n < (0.8)^n.$$

Taking n so that $(0.8)^n < 1/b$, $c = u'_n$, and $d = v'_n$, we obtain the contradiction we sought.