2 The Irrationality of π and Various Trignometric Values

Lemma 1. Let $f(x) \in \mathbb{Z}[x]$. Then for any non-negative integer n and any integer k, n! divides $f^{(n)}(k).$

Proof. Write

$$f(x) = a_t x^t + a_{t-1} x^{t-1} + \dots + a_1 x + a_0.$$

Then

$$f^{(n)}(k) = \sum_{m=0}^{t} a_m m(m-1) \cdots (m-n+1) k^{m-n} = \sum_{m=0}^{t} a_m n! \binom{m}{n} k^{m-n},$$

the result follows.

from which the result follows.

Theorem 7. The number π is irrational.

Proof. It suffices to prove that π^2 is irrational. Let n be a positive integer which we will choose shortly, and let

$$f(x) = \frac{x^n (1-x)^n}{n!}$$

We make a couple observations. First,

$$0 < f(x) < \frac{1}{n!}$$
 for every $x \in (0, 1)$. (2)

Secondly, by expanding f(x) as a polynomial in x and then as a polynomial in 1 - x (for the latter, replace x with 1 - (1 - x)), we deduce with the help of Lemma 1 that

$$f^{(j)}(0) \in \mathbb{Z}$$
 and $f^{(j)}(1) \in \mathbb{Z}$ for every $j \in \mathbb{Z}^+ \cup \{0\}$.

Assume now that $\pi^2 = a/b$ for some integers a and b with b > 0. Let

$$F(x) = b^n \left(\pi^{2n} f(x) - \pi^{2n-2} f^{(2)}(x) + \pi^{2n-4} f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x) \right).$$

Then

$$F(0) \in \mathbb{Z}$$
 and $F(1) \in \mathbb{Z}$.

Also,

$$F^{(2)}(x) + \pi^2 F(x) = b^n \pi^{2n+2} f(x) = a^n \pi^2 f(x)$$

Thus,

$$\frac{d}{dx}\left(F'(x)\sin(\pi x) - \pi F(x)\cos(\pi x)\right) = \left(F^{(2)}(x) + \pi^2 F(x)\right)\sin(\pi x) = a^n \pi^2 f(x)\sin(\pi x).$$

Hence,

$$\pi a^n \int_0^1 f(x) \sin(\pi x) dx = \frac{1}{\pi} \left(F'(x) \sin(\pi x) - \pi F(x) \cos(\pi x) \right)_0^1 = F(1) + F(0)$$

Hence, the expression on the left above is an integer. On the other hand, we get from (2) that

$$0 < \pi a^n \int_0^1 f(x) \sin(\pi x) dx < \frac{\pi a^n}{n!}$$

We obtain a contradiction by choosing n sufficiently large so that $\pi a^n/n! < 1$. Therefore, π is irrational. The next result is more general than the last one but also a little more difficult to prove. The basic idea behind the proof is, however, the same. Theorem 7 follows from Theorem 8 by taking $\alpha = \pi$ in Theorem 8.

Theorem 8. For any rational number $\alpha \neq 0$, $\cos \alpha$ is irrational.

Lemma 2. Let r be any number. Suppose f(x) is a polynomial in $(r - x)^2$, that is f(x) can be written in the form

$$f(x) = a_{2n}(r-x)^{2n} + a_{2n-2}(r-x)^{2n-2} + \dots + a_2(r-x)^2 + a_0.$$

Then for any positive odd integer k, $f^{(k)}(r) = 0$.

Proof. Observe that the result is true for each term in the expression for f(x); hence, the lemma follows.

Proof of Theorem 8. Since $\cos(\alpha) = \cos(-\alpha)$, it suffices to consider $\alpha > 0$. Write $\alpha = a/b$ where a and b are positive integers. Let n be a positive integer to be specified later, and define

$$f(x) = \frac{x^{n-1}(a-bx)^{2n}(2a-bx)^{n-1}}{(n-1)!} = \frac{(\alpha-x)^{2n}(\alpha^2-(\alpha-x)^2)^{n-1}b^{3n-1}}{(n-1)!}$$

Then

$$0 < f(x) < \frac{\alpha^{2n} (\alpha^2)^{n-1} b^{3n-1}}{(n-1)!} = \frac{\alpha^{4n-2} b^{3n-1}}{(n-1)!} \quad \text{ for } 0 < x < \alpha.$$

Define

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - f^{(6)}(x) + \dots - f^{(4n-2)}(x).$$

Then

$$F^{(2)}(x) + F(x) = f(x)$$

so that

$$\frac{d}{dx}(F'(x)\sin x - F(x)\cos x) = F^{(2)}(x)\sin x + F(x)\sin x = f(x)\sin x.$$

Hence,

$$\int_0^\alpha f(x)\sin x \, dx = F'(\alpha)\sin\alpha - F(\alpha)\cos\alpha + F(0). \tag{3}$$

Since f(x) is a polynomial in $(\alpha - x)^2$, we get from Lemma 2 and the definition of F(x) that $F'(\alpha) = 0$. Since f(x) is divisible by x^{n-1} , we deduce from Lemma 1 that F(0) is an integer. Similarly, viewing f(x) as a polynomial in $\alpha - x$, we can get that $F(\alpha)$ is an integer; to clarify any concerns about the denominator of α somehow coming into play, we note that Lemma 1 applies more directly with

$$f(\alpha - x) = \frac{x^{2n} (\alpha^2 - x^2)^{n-1} b^{3n-1}}{(n-1)!} = \frac{x^{2n} (a^2 - b^2 x^2)^{n-1} b^{n+1}}{(n-1)!}$$

Assume $\cos \alpha = c/d$ for some integers c and d with d > 0. Then the above implies that d times the left-hand side of (3) is an integer. On the other hand,

$$\left| d \int_0^\alpha f(x) \sin x \, dx \right| < d\alpha \frac{\alpha^{4n-2}b^{3n-1}}{(n-1)!} = d\alpha^3 b^2 \frac{(\alpha^4 b^3)^{n-1}}{(n-1)!}.$$
(4)

The latter expression is < 1 for *n* sufficiently large. Thus far the proof has been quite similar to the proof of the Theorem 7; however, we're not done. The integral above can be negative (unlike the integral dealt with in the proof of Theorem 7). We get from (4) that

$$d\int_0^\alpha f(x)\sin x\,dx = 0$$

provided n is sufficiently large. We will obtain a contradiction by examining (3) somewhat closer. Recall that we used (3) to obtain that the left-hand side above is an integer; we will show that it is not divisible by n if we choose n appropriately. This then will contradict the fact that it is 0.

Recall in (3) that $F'(\alpha) = 0$. Observe that $f^{(k)}(0) = 0$ if $0 \le k < n - 1$ and, from Lemma 1, $f^{(k)}(0)$ is divisible by n if k > n - 1. Also,

$$f^{(n-1)}(0) = a^{2n} (2a)^{n-1}.$$

We choose n = p where p is a sufficiently large prime so that the integral in (3) is 0 as above and so that $p > \max\{2a, d\}$. Then we obtain that $f^{(k)}(0)$ is divisible by p if and only if $k \neq p-1$. Hence, F(0) is not divisible by p. On the other hand, $f^{(k)}(\alpha) = 0$ if $0 \le k < 2p - 1$, and it follows from Lemma 1 that $f^{(k)}(\alpha)$ is divisible by p for all non-negative integers k. Thus, $F(\alpha)$ is an integer divisible by p. After multiplying through by d in (3) and recalling that we chose p > d, we see that the left-hand side of (4) is an integer which is not divisible by p, and the proof is complete. \Box

It is worth noting that some of the difficulties could have been avoided if we were working with $\cosh(\alpha)$ instead of $\cos(\alpha)$. Replacing the roles of the trignometric functions above with the hyperbolic functions, we would obtain the analog to (4) with the integrand being $f(x)\sinh(x)$. Since the integrand would then be positive, the difficulty at the end of the proof would have been avoided. This would then lead easily to a proof that if α is rational, then e^{α} for $\alpha \neq 0$ and $\log \alpha$ for $\alpha \neq 1$ are irrational. Since we will shortly be proving these numbers transcendental, we do not labor on this point.

Corollary 1. If α is a non-zero rational number, then the numbers $\cos(\alpha)$, $\sin(\alpha)$, $\tan(\alpha)$, $\sec(\alpha)$, $\csc(\alpha)$, and $\cot(\alpha)$ are all irrational. Furthermore, the squares of these numbers are irrational.

Proof. It suffices to prove the second half of the corollary. This follows from expressing each of the values of the squares of the trignometric functions in terms of $\cos(\alpha)$. Or first observe that

$$\cos^2(\alpha) = (1 + \cos(2\alpha))/2$$

to establish the result for $\cos^2(\alpha)$, and then use that

$$\sin^2(\alpha) = 1 - \cos^2(\alpha)$$

and

$$\tan^2(\alpha) = \sec^2(\alpha) - 1 = \frac{1}{\cos^2(\alpha)} - 1$$

to obtain the result for $\sin^2(\alpha)$ and $\tan^2(\alpha)$. The others follow by considering reciprocals.

Homework:

1. Prove that if α is a non-zero rational number, then $\cosh(\alpha)$ is irrational. (You can probably find this in a book, but you should try simply modifying the argument we gave for $\cos(\alpha)$ being irrational. Recall that the second half of that argument should not be necessary for this problem.)