
11 Some Applications

We have seen a few examples of how transcendence results can be used to obtain other results of a
number theoretic nature, mostly in the form of homework problems. This section further elaborates
on some such uses of transcendence results.

Theorem 29. LetP denote a fixed non-empty finite set of primes. Consider the setS of positive
integersn which only have prime divisors from the setP. Suppose the elements ofS are s1 =
1, s2, s3, . . . written in increasing order. Then

si+1 − si >
si

(log si)c1

for i > 2 (sosi > 2) and some constantc1 depending onP.

Proof. Fix i > 1. We suppose as we may thatsi+1 ≤ 2si. Writing

P = {p1, p2, . . . , pr},

we obtain

si =
r∏

i=1

pei
i and si+1 =

r∏
i=1

pfi

i

for some non-negative integerse1, . . . , er andf1, . . . , fr. Hence,

si+1

si

=
r∏

i=1

pfi−ei

i .

Applying logarithms, we obtain

log

(
si+1

si

)
=

r∑
i=1

(fi − ei) log pi.

Let A denote the maximum element ofP, and set

B = max{e1, . . . , er, f1, . . . , fr} � log si.

Applying Theorem 22, we deduce that for some constantc2 = c2(P),

r∑
i=1

(fi − ei) log pi >
1

(log si)c2
.

We use that
exp(x) > 1 + x for 0 < x < 1.

Hence, exponentiating, we deduce

si+1

si

> 1 +
1

(log si)c2
,

from which the theorem follows (takingc1 = c2).
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There are a few different nice results concerning the equation

f(x) = bym, (18)

wheref(x) ∈ Z[x] andb, m, x, andy are inZ. Here,f andb are considered to be fixed and, de-
pending on the result,m may be fixed as well. Two such results which follow from transcendence
methods are as follows.

Theorem 30 (Schinzel & Tijdeman). Let f(x) ∈ Z[x], and suppose thatf(x) has at least two
distinct roots. Letb ∈ Z with b 6= 0. Then there is a constantc3 (depending onb andf ) such that
if m, x, andy are inZ with m ≥ 0, |y| > 1, and (18) holding, then

m ≤ c3.

Theorem 31 (Baker). Letm andb be integers withm ≥ 3. Suppose that

f(x) = (x− α1)(x− α2) · · · (x− αn)

whereα1 6= α2 and each ofα1 andα2 are not in the set{α3, α4, . . . , αn}. There is a constantc4

(depending onm, b, andf ) such that if (18) holds, then

max{|x|, |y|} ≤ c4.

As a partial demonstration of such results, we establish the special case of Theorem 30 in which
f(x) has at least two simple rational roots. This special case was first established by Tijdeman.
For this special case, we will make use of an improvement of Theorem 22 in the case that theβj

are rational integers.

Theorem 22′ (Baker). Letα1, . . . , αr be non-zero algebraic numbers with degrees at mostd and
with heightsA1, A2, . . . , Ar, respecitively. Letb1, . . . , br be rational integers with absolute value
≤ B whereB ≥ 2. Suppose that

Λ = b1 log α1 + · · ·+ br log αr 6= 0.

Let

Ω =
r∏

j=1

log max{Aj, 3} and Ω′ =
r−1∏
j=1

log max{Aj, 3}.

Then there are absolute positive constantsC1 andC2 such that

|Λ| > exp
(
− (C1rd)C2rΩ log Ω′ log B

)
.

Proof of Theorem 30, Special Case.Suppose thatf(x) has at least two simple rational roots. Ifa
is the leading coefficient off(x) andn is the degree off(x), then there is a monic polynomial
g(x) ∈ Z[x] for which g(ax) = an−1f(x). Note thatg(x) has at least two simple roots that are
integers. We considerg(x), and setb′ = an−1b. If (18) has a solution in integers withm = m′,
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x = x′, andy = y′, theng(x) = b′ym has a solution withm = m′, x = ax′, andy = y′. Thus, it
suffices to considerf(x) monic with two simple integral roots.

Write
f(x) = (x− α)(x− β)h(x)

whereα andβ are integers and whereh(α) andh(β) are non-zero. Suppose that (18) holds with
m = m′, x = x′, andy = y′, wherem′ ≥ 0 and |y′| > 1. Observe that ifp is a prime divisor
of x′ − α that also divides(x′ − β)h(x′), thenp divides(α − β)h(α). Similarly, if p is a prime
divisor ofx′−β that also divides(x′−α)h(x′), thenp divides(α−β)h(β). Since (18) holds with
m = m′, x = x′, andy = y′, it follows that each primep that does not divide

D = b(α− β)h(α)h(β)

satisfiesprm||(x′ − α) andpsm||(x′ − β) for somenonnegativeintegersr ands. In other words,
there are integersu andv such that

x′ − α = um
∏
p|D

pep and x′ − β = vm
∏
p|D

pfp

for some choice of nonnegative integersep andfp. Furthermore, we may suppose that0 ≤ ep < m
and0 ≤ fp < m for eachp. We also may suppose that|u| ≥ |v| and do so.

If |u| = |v| = 1, then
±

∏
p|D

pep ±
∏
p|D

pfp = α− β.

Sinceα 6= β, we obtain from Theorem 29 that there are finitely many choices ofep andfp and,
hence, finitely many choices for suchx′ as in (18). It follows from the condition|y′| > 1 thatm is
bounded.

Now, suppose that|u| = |v| = 1 does not hold. Note that the conditionsb 6= 0 and|y′| > 1
imply that x′ 6= α andx′ 6= β. This implies thatu andv are non-zero. Then, since|u| ≥ |v|,
we deduce|u| > 1. We considerlog(|(x′ − β)/(x′ − α)|). Sinceα 6= β, we obtain the non-zero
expression

Λ = m log(|v|/|u|) +
∑
p|D

(fp − ep) log p.

We apply Theorem 22′ with A1 = · · · = Ar−1 = D, Ar = |u| andB = m. Thus, there is a positive
constantc5 (depending onD) such that

|Λ| > exp
(
− c5 log |u| log m

)
.

We use that
∣∣ log |1 + x|

∣∣ < 2|x| for |x| < 1/2. Hence, form large, there is a positive constantc6

such that

|Λ| =
∣∣∣∣ log

∣∣∣∣x′ − β

x′ − α

∣∣∣∣∣∣∣∣ =

∣∣∣∣ log

∣∣∣∣1 +
α− β

x′ − α

∣∣∣∣∣∣∣∣ < 2

∣∣∣∣ α− β

x′ − α

∣∣∣∣ <
c6

|u|m
.

Comparing the upper and lower bounds for|Λ|, we see thatm is bounded.

The next result, due to Tijdeman, comes close to resolving a conjecture of Catalan that32 and
23 are the only consecutive powers (with exponents> 1) of natural numbers. It shows that there
are only finitely many such consecutive powers.
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Theorem 32. There is an absolute constantc7 such that ifxm − yn = 1 wherem, n, x, andy are
integers> 1, thenm < c7, n < c7, x < c7, andy < c7.

Sketch of Proof.We may suppose that the exponentsm andn are primes, sayp andq. By rela-
belling, we seek to show that the solutions to

xp − yq = ε, (19)

wherep andq are primes withp ≥ q > 1 andε ∈ {1,−1}, are bounded. It is not difficult to see
further that any solution requiresp 6= q (since(xp− yp)/(x−y) must exceed1). Observe that (19)
andp > q implies

x < y and gcd(x, y) = 1.

Using results associated with a fixed value of one of the variables implying finitely many solutions
in the other variables (results we do not establish here), we may further suppose that

x > c8, y > c8, p > c8, and q > c8

for an arbitrarily fixed constantc8 (which we take sufficiently large).
From (19), we obtain

xp = yq + ε = (y + ε)(yq−1 − εyq−2 + · · ·+ εq−1). (20)

Setting
d = gcd(y + ε, yq−1 − εyq−2 + · · ·+ εq−1).

Theny ≡ −ε (mod d) andyq−1 − εyq−2 + · · · + εq−1 ≡ 0 (mod d) imply d|q. Hence,d = 1 or
d = q. A similar argument gives that ifq dividesy + ε, thenq dividesyq−1 − εyq−2 + · · · + εq−1

(so thatd = q). In fact, more can be deduced ifq dividesy + ε. In this case, writey = −ε + qt
wheret is an integer. Then

yj ≡ (−ε)j + j(−ε)j−1qt (mod q2).

Using that(−ε)q−1 = 1, we deduce

q−1∑
j=0

(−ε)q−1−jyj ≡
q−1∑
j=0

(−ε)q−1−j
(
(−ε)j + j(−ε)j−1qt

)
≡ q + (−ε)q−2qt

q−1∑
j=0

j ≡ q (mod q2).

Thus, ifq dividesy + ε, thenq exactly dividesyq−1 − εyq−2 + · · ·+ εq−1. By considering the two
casesq - (y + ε) andq|(y + ε), we deduce from (20) that

y + ε = qδ1up whereδ1 ∈ {−1, 0}.

Similarly,
x− ε = pδ2vq whereδ2 ∈ {−1, 0}.

It follows thatu > 1 andv > 1. Using thatqδ1up = y + ε > 2, we obtain

qδ1up − 1 >
qδ1up

2
≥ up

2q
.
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Therefore,

2pvpq ≥ (vq + 1)p + 1 ≥ xp + 1 ≥ yq ≥ (qδ1up − 1)q >

(
up

2q

)q

=
upq

(2q)q
.

Now, p > q > c8 implies
u < 21/q(2q)1/pv < 2v.

Similarly,

2qupq ≥ (up + 1)q + 1 ≥ yq + 1 ≥ xp ≥ (pδ2vq − 1)p >

(
vq

2p

)p

=
vpq

(2p)p
,

which implies
v < 21/p(2p)1/qu < (4p)1/qu.

The above implies thatr ands are within a small factor of one another.
From (19), we obtain that

(pδ2vq + ε)p − (qδ1up − ε)q = ε.

We can rewrite this as
(pδ2vq + ε)p

(qδ1up − ε)q
= 1 +

ε

(qδ1up − ε)q
. (21)

The idea next is to showq is small compared top by taking logarithms and applying Theorem 22′.
Note thatx = pδ2vq +ε > c8 andy = qδ1up−ε > c8, we deduce thatpδ2vq andqδ1up are both large
(both> c8 − 1). Since| log(1 + x)| < 2|x| for 0 < |x| < 1/2, we obtain the following estimates:∣∣∣∣ log

(
1 +

ε

pδ2vq

)∣∣∣∣ ≤ 2

pδ2vq
≤ 2p

vq
, (22)

∣∣∣∣ log

(
1− ε

qδ1up

)∣∣∣∣ ≤ 2

qδ1up
≤ 2q

up
≤ 2q

uq
≤ 2q(

v/(4p)1/q
)q ≤

8pq

vq
, (23)

∣∣∣∣ log

(
1 +

ε

(qδ1up − ε)q

)∣∣∣∣ ≤ 2

(qδ1up − ε)q
≤ 2

(qδ1up/2)q
≤ 2

qδ1up/2
≤ 4q

up
≤ 4q

uq
≤ 16pq

vq
. (24)

We set
Λ = δ2p log p− δ1q log q + pq log(v/u).

To apply Theorem 22′, we justify first thatΛ 6= 0. Equivalently, we showlog
(
pδ2pvpq/qδ1qupq

)
6=

0. This in turn is equivalent to showing

(x− ε)p − (y + ε)q 6= 0.

If ε = 1, then

(x− ε)p − (y + ε)q < xp − (y + 1)q < xp − yq − qyq−1 = 1− qyq−1 < 0;
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and ifε = −1, then

(x− ε)p − (y + ε)q > (x + 1)p − yq < xp − yq + pxp−1 = 1 + pxp−1 > 0.

Thus,Λ 6= 0.
From (21), we deduce that

Λ + p log

(
1 +

ε

pδ2vq

)
− q log

(
1− ε

qδ1up

)
= log

(
1 +

ε

(qδ1up − ε)q

)
.

From (22), (23), and (24), we deduce

|Λ| ≤ 26p2

vq
.

We apply Theorem 22′ with α1 = p, α2 = q, andα3 = v/u. Note thatlog(pq) ≤ 2 log p. We
deduce

|Λ| > exp
(
− c9(log p)(log q)(log v)(log log p)(log p)) > exp

(
− c9(log p)4(log v))

for some constantc9 > 0. Combining these estimates for|Λ|, we obtain

q log v − 2 log p + O(1) < (log p)4(log v)

which easily implies
q � (log p)4. (25)

We apply Theorem 22′ now to estimate

Λ′ = p log
(
pδ2vq + ε

)
− δ1q log q − pq log u.

We check that
Λ′ = log

(
(pδ2vq + ε)p/(qδ1qupq)

)
= log

(
xp/(y + ε)q

)
6= 0

by considering the casesε = 1 andε = −1. Forε = 1, xp/(y + ε)q 6= 1 since

xp − (y + 1)q < xp − yq − qyq−1 < 0.

For ε = −1, we use that(y − 1)q < (y − 1)yq−1 so thatxp/(y + ε)q 6= 1 since

xp − (y − 1)q > xp − yq + yq−1 > 0.

Next, observe that from (21) we have

Λ′ − q log

(
1− ε

qδ1up

)
= log

(
1 +

ε

(qδ1up − ε)q

)
.

We combine (23) and (24) to obtain

|Λ′| ≤ 6q

up
.

Sinceu > 1 andp > q > c8, we deduce

− log |Λ′| ≥ p log u− log(6q) ≥ −c10p log u (26)
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for somec10 > 0.
On the other hand, we can write

Λ′ = p log

(
pδ2vq + ε

uq

)
− δ1q log q.

We apply Theorem 22′ with α1 = q andα2 = (pδ2vq + ε)/uq. As δ2 ∈ {−1, 0}, we deduce from
u < 2v that the height ofα2 is bounded by

max{vq + p, puq} ≤ 2qpvq.

SetH = 2qpvq and note thatv > 1 implies

log H � log p + q log v � q(log p)(log v).

We deduce from Theorem 22′ that

|Λ′| > exp
(
− c11(log q)(log H)(log log q)(log p)) > exp

(
− c12q(log p)4(log v))

for some positive constantsc11 andc12. Fromv < (4p)1/qu, we have

log v < log u +
log(4p)

q
.

Using (25), (26), andp > q > c8, we obtain

p log u < c13(log p)8(log u)

for somec13 > 0. This inequality impliesp is bounded. Asp > q, we also have thatq is bounded.
Takingf(x) = xp − ε, b = 1, andm = q, we deduce from Theorem 31 that the values ofx andy
are also bounded. The theorem follows.
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