11 Some Applications

We have seen a few examples of how transcendence results can be used to obtain other results of a
number theoretic nature, mostly in the form of homework problems. This section further elaborates
on some such uses of transcendence results.

Theorem 29. Let P denote a fixed non-empty finite set of primes. Consider th& sépositive
integersn which only have prime divisors from the et Suppose the elements®fare s; =
1, s9, 83,... Written in increasing order. Then

S5
(log s;)e

fori > 2 (sos; > 2) and some constamt depending orP.

Si+1 — Si >

Proof. Fix i > 1. We suppose as we may that,; < 2s;. Writing

P = {p17p27 s apr}v

we obtain
T T
5 = pr and s = sz
i=1 =1

for some non-negative integets ..., e, andfi, ..., f.. Hence,

.,

Si+l _ H plie

- FA
Si i=1

Applying logarithms, we obtain

log (Sjl) — i(fi — ¢;) log p;.

¢ i=1

Let A denote the maximum elementBf and set
B =max{ey,..., e, f1,..., fr} <logs;.
Applying Theorem 22, we deduce that for some constant ¢y (P),

. 1
i — €; 1 g > .
;(f ei)logp (log 5,
We use that
exp(z) >1+x for0<az<1.

Hence, exponentiating, we deduce

Si+1
1 -
s Z Lt (log s;)e2’
from which the theorem follows (taking = ¢,). ]
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There are a few different nice results concerning the equation

fx) =by™, (18)

wheref(z) € Z[z] andb, m, x, andy are inZ. Here, f andb are considered to be fixed and, de-
pending on the resultp may be fixed as well. Two such results which follow from transcendence
methods are as follows.

Theorem 30 (Schinzel & Tijdeman). Let f(z) € Z[z], and suppose thaf(z) has at least two
distinct roots. Leb € Z with b # 0. Then there is a constani (depending o and f) such that
if m, z, andy are inZ withm > 0, |y| > 1, and (18) holding, then

m < cs.
Theorem 31 (Baker). Letm andb be integers withn > 3. Suppose that

fl@) =z —a)(z —ag) - (r = an)

wherea; # a, and each ofy; anday, are not in the sefas, ay, ..., «, }. There is a constant,
(depending omn, b, and f) such that if (18) holds, then

max{|z|, |y[} < 4.

As a partial demonstration of such results, we establish the special case of Theorem 30 in which
f(z) has at least two simple rational roots. This special case was first established by Tijdeman.
For this special case, we will make use of an improvement of Theorem 22 in the case that the
are rational integers.

Theorem 22 (Baker). Letay,...,a, be non-zero algebraic numbers with degrees at ni@std
with heightsA,, A,, ..., A,, respecitively. Leb,,. .., b, be rational integers with absolute value
< B whereB > 2. Suppose that

A=bilogay + -+ b.loga, # 0.

Let .
0= Hlog max{A;, 3} and Q' = H log max{A4;, 3}.
j=1

j=1
Then there are absolute positive constaftsand C, such that

|A| > exp (— (Cird)“*"Qlog Q' log B).

Proof of Theorem 30, Special CasBuppose thaf(z) has at least two simple rational roots.alf
is the leading coefficient of (x) andn is the degree of (z), then there is a monic polynomial
g(z) € Zlz] for which g(az) = a"! f(z). Note thatyg(x) has at least two simple roots that are
integers. We considey(z), and set/ = a"'b. If (18) has a solution in integers with = m/,
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x =2/, andy = ¢/, theng(x) = b'y™ has a solution witm = m’/, x = az’, andy = ¢/. Thus, it
suffices to considef(x) monic with two simple integral roots.

Write

f(@) = (= a)(x = B)h(z)

wherea and are integers and wherg«) andh(/3) are non-zero. Suppose that (18) holds with
m = m/, x = 2/, andy = v/, wherem’ > 0 and|y’| > 1. Observe that ip is a prime divisor
of 2/ — « that also dividegz’ — 3)h(2’), thenp divides (a — 5)h(«). Similarly, if p is a prime
divisor of 2/ — 3 that also divide$x’ — o) h(z'), thenp divides(a — 3)h(3). Since (18) holds with
m=m',x = 2/, andy = ¢/, it follows that each prime that does not divide

D = b(a — B)h(a)h(B)

satisfiep™|| (2" — «) andp®™||(z" — ) for somenonnegativentegersr ands. In other words,
there are integers andv such that

x'—a:umnpe” and a:’—ﬁ:”umefP

p|D p|D

for some choice of nonnegative integeysand f,. Furthermore, we may suppose that e, < m
and0 < f, < m for eachp. We also may suppose thai > |v| and do so.

If [u| = |v| =1, then
j:Hper:pr” =a—pf.

p|D p|D

Sincea # 3, we obtain from Theorem 29 that there are finitely many choices ahd f,, and,
hence, finitely many choices for sueghas in (18). It follows from the conditiofy’| > 1 thatm is
bounded.

Now, suppose thgu| = |v| = 1 does not hold. Note that the conditiohsz 0 and|y’| > 1
imply thatz’ # « andz’ # (. This implies that: andv are non-zero. Then, sinde| > |v|,
we deducdu| > 1. We considetog(|(z' — 3)/(2’ — «)|). Sincea # 3, we obtain the non-zero
expression

A = mlog(|ol/|ul) + Y (f, — ep) logp.

p|D

We apply Theorem 2vith A; = --- = A,_; = D, A, = |u] andB = m. Thus, there is a positive
constant; (depending orD) such that

|A] > exp ( — ¢5log |u|logm).

We use thatlog |1 + z|| < 2|z| for |z| < 1/2. Hence, form large, there is a positive constant
such that

/ JE— — JE—
\A|:logx b :logl—l—a b <22 b %
T — T — « T — |u|™
Comparing the upper and lower bounds &}, we see thatn is bounded. O

The next result, due to Tijdeman, comes close to resolving a conjecture of Catalahahalt
23 are the only consecutive powers (with exponents) of natural numbers. It shows that there
are only finitely many such consecutive powers.
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Theorem 32. There is an absolute constaitsuch that ifz™ — y™ = 1 wherem, n, z, andy are
integers> 1, thenm < ¢7,n < ¢7, x < ¢7, andy < cs.

Sketch of ProofWe may suppose that the exponentsaandn are primes, say andgq. By rela-
belling, we seek to show that the solutions to

a’ —yl =e, (19)

wherep andq are primes wittp > ¢ > 1 ande € {1, —1}, are bounded. It is not difficult to see
further that any solution requires# ¢ (since(a? — y”)/(x —y) must exceed). Observe that (19)
andp > ¢ implies

r<y and ged(z,y)=1.
Using results associated with a fixed value of one of the variables implying finitely many solutions
in the other variables (results we do not establish here), we may further suppose that

x>cg, Yy>cg, p>cg, and g>cg

for an arbitrarily fixed constant (which we take sufficiently large).
From (19), we obtain

=yl te=(yt+e)y" —ey 4 e (20)

Setting

d=ged(y+e,yt !t —ey?t™ 4. £ 771,
Theny = —¢ (mod d) andy? ! —ey? 2+ ... + 971 =0 (mod d) imply d|q. Henced = 1 or
d = ¢. A similar argument gives that if dividesy + ¢, thenq dividesy?™! — ey?=2 + .. + g7}
(so thatd = ¢). In fact, more can be deducedgifdividesy + <. In this case, writg) = —¢ + gt
wheret is an integer. Then

y' = (—e)f +j(—e) gt (mod ¢).

Using that(—¢)?~! = 1, we deduce

S = Y (eI () (P at) =+ (Y g = (mod o)

Thus, ifq dividesy + ¢, thenq exactly divideg?~! — ey?=2 + - .- + £2-1. By considering the two
cases; 1 (y + ) andg|(y + <), we deduce from (20) that

y+e=q¢"w?  wheres, € {—1,0}.
Similarly,

T — ¢ = p’2! whered, € {—1,0}.
It follows thatu > 1 andv > 1. Using thaty®u? = y + ¢ > 2, we obtain

014,D P
u u
q > —.

P —1 >
7 2 =g
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Therefore,

PPl > (v 1P +1>aP 41> y? > (PuP — 1) > (u—p)q _ :
N - R 2q (29)¢
Now, p > g > cg implies
u < 2Y(2¢)YPy < 2v.
Similarly,
2UP > (uP + )T+ 1> y? 4+ 1> 2P > (pézvq —1)? > (U_q>p — v
- SUTETE w) @

which implies
v < 2YP(2p)V iy < (4p)Y1u.

The above implies thatands are within a small factor of one another.
From (19), we obtain that

(00" + e — (" — o) =
We can rewrite this as

(P01 +e)P €

(@ =)~ (e —e)
The idea next is to showis small compared tp by taking logarithms and applying Theoren .22

Note thatr = p2v?+¢ > cg andy = ¢**u? —e > cg, we deduce that’2v? andg® u? are both large
(both> ¢g — 1). Sincellog(1 + z)| < 2|z| for 0 < |z| < 1/2, we obtain the following estimates:

(21)

€ 2 2p
o (14 )| < 2o <2 @2)
2 2 2 2
log(l— 56 )‘S 3 S—qﬁ—qﬁ%ﬁﬁ, (23)
q 1P q 1P uP ud ('U/(4p> /q) v4
log 11— )< 2 < 2 < 2 <4_q<@<16pq. (24)
(qélup —_ g)q - (qélup _ g)q - (qalup/Q)q - q51up/2 —uwP T oud T e

We set
A = doplogp — d1qlog g + pqlog(v/u).

To apply Theorem 22we justify first thatA # 0. Equivalently, we shovog (p?PvP /¢ 19ur?)
0. This in turn is equivalent to showing

(x—e)’ = (y+e) #0.

If e =1, then

(z—ef —(y+e)f <a’—(y+ 1) <a’ —y' —qy’ ' =1—qy"" <0
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and ife = —1, then
(x—e) —(y+e)!>@+1)P -yl <af —yl+prPt =1+paP ' > 0.

Thus,A # 0.
From (21), we deduce that

€ £ £
A+ plog (1 + p‘52v‘1) —qlog (1 — q51up) = log (1 + m).

From (22), (23), and (24), we deduce

26p?

vl

Al <

We apply Theorem 22with a; = p, as = ¢, andas = v/u. Note thatlog(pg) < 2logp. We
deduce

|A] > exp (— ¢o(log p)(log g)(log v) (log log p) (log p)) > exp ( — co(log p)*(log v))
for some constant; > 0. Combining these estimates fi@¥|, we obtain
qlogv — 2logp + O(1) < (logp)*(log v)

which easily implies
g < (logp)*. (25)

We apply Theorem 2Zow to estimate
AN =plog (paqu + 5) — d1qlog g — pglogu.

We check that
A =log ((p"v" + )P /(¢ %uP?)) = log («7/(y +¢)?) #0
by considering the cases= 1 ande = —1. Fore = 1, 27 /(y + ¢)? # 1 since

P — (y+ 1)1 <P —y? —qu?t <.
Fore = —1, we use thaty — 1)? < (y — 1)y9~! so thatz?/(y + €)? # 1 since
2P —(y—1)7> 2P — 97+ > 0.

Next, observe that from (21) we have

, € _ €
A —qlog (1 — q51up> = log (1 + —(q51up — 5)(1)'
We combine (23) and (24) to obtain

6
INES-S
up
Sinceu > 1 andp > ¢ > cg, we deduce

—log |A'| > plogu — log(6q) > —cioplogu (26)
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for somec;y > 0.
On the other hand, we can write

P20 + ¢
A =plog <pT> — d1qlogg.

We apply Theorem 22wvith a; = g anda, = (p®2v? + ) /ul. Asd, € {—1,0}, we deduce from
u < 2v that the height ofv, is bounded by

max{v? + p, pu?} < 29pv?.
SetH = 2%pv? and note that > 1 implies
log H < logp + qlogv < ¢(logp)(logv).
We deduce from Theorem 2that
|A'] > exp ( — cn(log g)(log H)(loglog g)(log p)) > exp ( — c12¢(log p)*(log v))
for some positive constants; andcy,. Fromov < (4p)1/qu, we have

log(4p)

logv < logu +

Using (25), (26), ang > ¢ > cg, we obtain

plogu < ci3(log p)®(log u)

for somec;3 > 0. This inequality implieg is bounded. A% > ¢, we also have thatis bounded.
Taking f(x) = 2? — ¢, b = 1, andm = ¢, we deduce from Theorem 31 that the values ahdy
are also bounded. The theorem follows. O
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