10 A Theorem of Mahler

The next result is due to Mahler and generalizes an earlier result (Theorem 14) we established.
Theorem 28. Let

$$
f(z)=\sum_{j=0}^{\infty} z^{2^{j}}
$$

If α is an algebraic number with $0<|\alpha|<1$, then $f(\alpha)$ is transcendental.
Proof. Assume $f(\alpha)$ is algebraic. Let $K=\mathbb{Q}(\alpha, f(\alpha))$. Observe that every element of K is a root of a polynomial with integer coefficients of degree $\leq D$ where D is the product of the degrees of the minimal polynomials of α and the minimal polynomial of $f(\alpha)$ (the specific value of D, however, is not important). Let r be a positive integer to be specified later; we will want r large compared to D. We show that there are polynomials $P_{0}(z), \ldots, P_{r}(z)$ with degrees at most r and with rational integer coefficients for which

$$
E_{r}(z)=\sum_{j=0}^{r} P_{j}(z) f(z)^{j}=\sum_{j=0}^{\infty} B_{j} z^{j}
$$

is not identically 0 but $B_{j}=0$ for all $j \leq r^{2}$. Observe that obtaining $B_{j}=0$ for all $j \leq r^{2}$ corresponds to solving $r^{2}+1$ homogeneous equations in $(r+1)^{2}$ unknowns, the unknowns being the coefficients of $P_{0}(z), \ldots, P_{r}(z)$. A non-trivial solution to these $r^{2}+1$ homogeneous equations exists, and this solution will correspond to obtaining $P_{j}(x)$ with coefficients in \mathbb{Q}. We can multiply through by an appropriate positive integer to obtain solutions which are rational integers and, hence, $P_{j}(x)$ with rational integer coefficients. We recall from the proof of Theorem 14 that for any $s \geq 1$ and any $t \geq 1$, there are non-zero terms z^{m} in $f(z)^{s}$ such that (i) the coefficient of z^{m+j} in $f(z)^{s}$ is 0 for $0<|j| \leq t$ and (ii) for $0 \leq u<s$, the coefficient of z^{m+j} in $f(z)^{u}$ is 0 for $|j| \leq t$. This easily implies that since $P_{0}(z), \ldots, P_{r}(z)$ as constructed above are not all identically $0, E_{r}(z)$ is not identically 0 . This completes the argument for the existence of $P_{0}(z), \ldots, P_{r}(z)$ with the desired properties indicated above.

Note that $f(z)$ converges for $|z|<1$ and is, in fact, analytic in the disk $\{z:|z|<1\}$. Hence, the same holds true of $E_{r}(z)$, and we can conclude that for all but finitely many $j \geq 0$, $\left|B_{j}\right| \leq 2^{j}$. Therefore, if $B_{j} \neq 0$ and j is sufficiently large (possibly depending on r but not k), then $\log \left|B_{j}\right| \leq j$. It follows that if $B_{j} \neq 0$ and k is sufficiently large compared to r, then

$$
\begin{equation*}
\log \left|B_{j} \alpha^{2^{k}}\right| \leq-c_{1} 2^{k} j \tag{15}
\end{equation*}
$$

for some constant c_{1}, where c_{1} and other constants c_{j} to follow are positive and independent of r and k but possibly depend on α. Henceforth, we view k as being large compared to r so that, in particular, the above follows. There is an alternative way to bound $\left|B_{j}\right|$. From Lemma 1 for the proof of Theorem 14, we know that the coefficients of $f(z)^{j}$ are each non-negative and $\leq j^{2 j}$. Using our previous convention that if $g(z)=\sum_{j=0}^{r} b_{j} z^{j}$, then $|g|(z)=\sum_{j=0}^{r}\left|b_{j}\right| z^{j}$, we see that

$$
\left|B_{j}\right| \leq C(r)=r^{2 r} \sum_{i=0}^{r}\left|P_{i}\right|(1)
$$

Note that this bound on $\left|B_{j}\right|$ is independent of α and k, and (15) easily follows for $B_{j} \neq 0$.
Let $m=\min \left\{j: B_{j} \neq 0\right\}$. Then by the definition of $P_{j}(z), m>r^{2}$. Also, since the coefficients of $P_{j}(z)$ are integers, we get that B_{m} also satisfies $\left|B_{m}\right| \geq 1$. Thus, since $|\alpha|<1$ and k is large (depending on α and r)

$$
\begin{aligned}
\left|\sum_{j=m+1}^{\infty} B_{j} \alpha^{2^{k_{j}}}\right| & \leq r^{2 r}\left(\sum_{i=0}^{r}\left|P_{i}\right|(1)\right) \sum_{j=m+1}^{\infty}|\alpha|^{2^{k_{j}}} \\
& \leq 2 r^{2 r}\left(\sum_{i=0}^{r}\left|P_{i}\right|(1)\right)|\alpha|^{2^{k}(m+1)} \leq(1 / 2)|\alpha|^{2^{k} m} \leq(1 / 2)\left|B_{m} \alpha^{2^{k} m}\right| .
\end{aligned}
$$

This implies that

$$
E_{r}\left(\alpha^{2^{k}}\right) \neq 0
$$

since the term $B_{m}{2^{2^{k} m}}^{\text {in }} E_{r}\left(\alpha^{2^{k}}\right)$ is greater in absolute value than the contribution of the remaining terms. Note that similar to the above, we obtain

$$
\left|E_{r}\left(\alpha^{2^{k}}\right)\right|=\left|\sum_{j=m}^{\infty} B_{j} \alpha^{2^{k} j}\right| \leq r^{2 r}\left(\sum_{i=0}^{r}\left|P_{i}\right|(1)\right) \sum_{j=m}^{\infty}|\alpha|^{2^{k} j} \leq 2 r^{2 r}\left(\sum_{i=0}^{r}\left|P_{i}\right|(1)\right)|\alpha|^{2^{k} m} .
$$

Thus,

$$
\begin{equation*}
\log \left|E_{r}\left(\alpha^{2^{k}}\right)\right| \leq-c_{2} 2^{k} m<-c_{2} 2^{k} r^{2} \tag{16}
\end{equation*}
$$

Now, observe that for $|z|<1$ and any positive integer k,

$$
f\left(z^{2^{k}}\right)=f(z)-\sum_{i=0}^{k-1} z^{2^{i}}
$$

Therefore,

$$
\begin{equation*}
E_{r}\left(\alpha^{2^{k}}\right)=\sum_{j=0}^{r} P_{j}\left(\alpha^{2^{k}}\right)\left(f(\alpha)-\sum_{i=0}^{k-1} \alpha^{2^{i}}\right)^{j} . \tag{17}
\end{equation*}
$$

Observe that the right-hand side is a polynomial in α and $f(\alpha)$ of degree $\leq 2^{k+1} r$ in α and of degree $\leq r$ in $f(\alpha)$ and which consists of coefficients which are algebraic integers in K.

For $\beta \in K$, we define $d=\operatorname{den}(\beta)$ to be the least positive integer for which $d \beta$ is an algebraic integer, and we refer to d as the denominator of β. If $\beta_{1}, \ldots, \beta_{s}$ denote the conjugates of β, we define (and this varies from a similar definition used previously in these notes)

$$
\|\beta\|=\max \left\{\max _{1 \leq j \leq s}\left|\beta_{j}\right|, \operatorname{den}(\beta)\right\}
$$

We use the above information to bound $\log \left\|E_{r}\left(\alpha^{2^{k}}\right)\right\|$. By our comments concerning the righthand side of (17), we note that

$$
\operatorname{den}\left(E_{r}\left(\alpha^{2^{k}}\right)\right) \leq \operatorname{den}(\alpha)^{2^{k+1} r} \times \operatorname{den}(f(\alpha))^{r} .
$$

Thus,

$$
\log \operatorname{den}\left(E_{r}\left(\alpha^{2^{k}}\right)\right) \leq c_{3} 2^{k+1} r
$$

For any conjugate α^{\prime} of α and any conjugate β^{\prime} of $f(\alpha)$, we have

$$
\begin{aligned}
\left|\sum_{j=0}^{r} P_{j}\left(\left(\alpha^{\prime}\right)^{2^{k}}\right)\left(\beta^{\prime}-\sum_{i=0}^{k-1}\left(\alpha^{\prime}\right)^{2^{i}}\right)^{j}\right| & \leq \sum_{j=0}^{r}\left|P_{j}\right|\left(\left|\alpha^{\prime}\right|^{2^{k}}\right)\left(\left|\beta^{\prime}\right|+\sum_{i=0}^{k-1}\left|\alpha^{\prime}\right|^{2^{i}}\right)^{j} \\
& \leq c_{4}\left(\sum_{j=0}^{r}\left|P_{j}\right|(1)\right)(k+1)^{r}\left(\left|\alpha^{\prime}\right|+1\right)^{2^{k+1} r}\left(\left|\beta^{\prime}\right|+1\right)^{r}
\end{aligned}
$$

It follows that each conjugate of $E_{r}\left(\alpha^{2^{k}}\right)$ is such that the logarithm of its absolute value is \leq $c_{5} 2^{k+1} r$. We deduce that

$$
\begin{equation*}
\log \left\|E_{r}\left(\alpha^{2^{k}}\right)\right\| \leq c_{6} 2^{k+1} r . \tag{18}
\end{equation*}
$$

Suppose β is any algebraic number with minimal polynomial of degree s and with denominator d. Let $\beta_{1}, \ldots, \beta_{s}$ denote the conjugates of β. Then $d \beta_{j}$ is an algebraic integer for each j and $\prod_{j=1}^{s}\left(d \beta_{j}\right) \geq 1$. Hence,

$$
(2 s-1) \log ||\beta \|+\log | \beta| \geq \sum_{j=1}^{s} \log d+\sum_{j=1}^{s} \log \left|\beta_{j}\right| \geq 0
$$

which easily implies that

$$
\log |\beta| \geq-2 s \log | | \beta \| .
$$

We consider $\beta=E_{r}\left(\alpha^{2^{k}}\right)$. We take $r>4 D c_{6} / c_{2}$ (and k sufficiently large compared to r). Then (16) and (18) imply that

$$
\begin{aligned}
\log \left|E_{r}\left(\alpha^{2^{k}}\right)\right| & <-c_{2} 2^{k} r^{2}=c_{6} 2^{k+1} r\left(\frac{-c_{2} r}{2 c_{6}}\right) \\
& \leq \frac{-c_{2} r}{2 c_{6}} \log \left\|E_{r}\left(\alpha^{2^{k}}\right)\right\|<-2 D \log \left\|E_{r}\left(\alpha^{2^{k}}\right)\right\| .
\end{aligned}
$$

Since $E_{r}\left(\alpha^{2^{k}}\right)$ is in K and, therefore, has minimal polynomial of degree $\leq D$, we obtain a contradiction, completing the proof.

