
10 A Theorem of Mahler

The next result is due to Mahler and generalizes an earlier result (Theorem 14) we established.

Theorem 28. Let

f(z) =
∞∑

j=0

z2j

.

If α is an algebraic number with0 < |α| < 1, thenf(α) is transcendental.

Proof. Assumef(α) is algebraic. LetK = Q(α, f(α)). Observe that every element ofK is a
root of a polynomial with integer coefficients of degree≤ D whereD is the product of the degrees
of the minimal polynomials ofα and the minimal polynomial off(α) (the specific value ofD,
however, is not important). Letr be a positive integer to be specified later; we will wantr large
compared toD. We show that there are polynomialsP0(z), . . . , Pr(z) with degrees at mostr and
with rational integer coefficients for which

Er(z) =
r∑

j=0

Pj(z)f(z)j =
∞∑

j=0

Bjz
j

is not identically 0 butBj = 0 for all j ≤ r2. Observe that obtainingBj = 0 for all j ≤ r2

corresponds to solvingr2 + 1 homogeneous equations in(r + 1)2 unknowns, the unknowns being
the coefficients ofP0(z), . . . , Pr(z). A non-trivial solution to theser2 + 1 homogeneous equations
exists, and this solution will correspond to obtainingPj(x) with coefficients inQ. We can multiply
through by an appropriate positive integer to obtain solutions which are rational integers and,
hence,Pj(x) with rational integer coefficients. We recall from the proof of Theorem 14 that for
anys ≥ 1 and anyt ≥ 1, there are non-zero termszm in f(z)s such that (i) the coefficient ofzm+j

in f(z)s is 0 for0 < |j| ≤ t and (ii) for0 ≤ u < s, the coefficient ofzm+j in f(z)u is 0 for |j| ≤ t.
This easily implies that sinceP0(z), . . . , Pr(z) as constructed above are not all identically 0,Er(z)
is not identically 0. This completes the argument for the existence ofP0(z), . . . , Pr(z) with the
desired properties indicated above.

Note thatf(z) converges for|z| < 1 and is, in fact, analytic in the disk{z : |z| < 1}.
Hence, the same holds true ofEr(z), and we can conclude that for all but finitely manyj ≥ 0,
|Bj| ≤ 2j. Therefore, ifBj 6= 0 andj is sufficiently large (possibly depending onr but notk),
thenlog |Bj| ≤ j. It follows that if Bj 6= 0 andk is sufficiently large compared tor, then

log
∣∣∣Bjα

2kj
∣∣∣ ≤ −c12

kj (15)

for some constantc1, wherec1 and other constantscj to follow are positive and independent of
r andk but possibly depend onα. Henceforth, we viewk as being large compared tor so that,
in particular, the above follows. There is an alternative way to bound|Bj|. From Lemma 1 for
the proof of Theorem 14, we know that the coefficients off(z)j are each non-negative and≤ j2j.
Using our previous convention that ifg(z) =

∑r
j=0 bjz

j, then|g|(z) =
∑r

j=0 |bj|zj, we see that

|Bj| ≤ C(r) = r2r

r∑
i=0

|Pi|(1).
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Note that this bound on|Bj| is independent ofα andk, and (15) easily follows forBj 6= 0.
Let m = min{j : Bj 6= 0}. Then by the definition ofPj(z), m > r2. Also, since the

coefficients ofPj(z) are integers, we get thatBm also satisfies|Bm| ≥ 1. Thus, since|α| < 1 and
k is large (depending onα andr)∣∣∣∣ ∞∑

j=m+1

Bjα
2kj

∣∣∣∣ ≤ r2r

( r∑
i=0

|Pi|(1)

) ∞∑
j=m+1

|α|2kj

≤ 2r2r

( r∑
i=0

|Pi|(1)

)
|α|2k(m+1) ≤ (1/2)|α|2km ≤ (1/2)

∣∣Bmα2km
∣∣.

This implies that
Er

(
α2k) 6= 0

since the termBmα2km in Er

(
α2k)

is greater in absolute value than the contribution of the remain-
ing terms. Note that similar to the above, we obtain∣∣∣Er

(
α2k)∣∣∣ =

∣∣∣∣ ∞∑
j=m

Bjα
2kj

∣∣∣∣ ≤ r2r

( r∑
i=0

|Pi|(1)

) ∞∑
j=m

|α|2kj ≤ 2r2r

( r∑
i=0

|Pi|(1)
)
|α|2km.

Thus,
log
∣∣∣Er

(
α2k)∣∣∣ ≤ −c22

km < −c22
kr2. (16)

Now, observe that for|z| < 1 and any positive integerk,

f
(
z2k)

= f(z)−
k−1∑
i=0

z2i

.

Therefore,

Er

(
α2k)

=
r∑

j=0

Pj

(
α2k)(

f(α)−
k−1∑
i=0

α2i

)j

. (17)

Observe that the right-hand side is a polynomial inα andf(α) of degree≤ 2k+1r in α and of
degree≤ r in f(α) and which consists of coefficients which are algebraic integers inK.

For β ∈ K, we defined = den(β) to be the least positive integer for whichdβ is an algebraic
integer, and we refer tod as the denominator ofβ. If β1, . . . , βs denote the conjugates ofβ, we
define (and this varies from a similar definition used previously in these notes)

||β|| = max{max
1≤j≤s

|βj|, den(β)}.

We use the above information to boundlog ||Er

(
α2k)||. By our comments concerning the right-

hand side of (17), we note that

den
(
Er

(
α2k)) ≤ den(α)2k+1r × den(f(α))r.
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Thus,
log den

(
Er

(
α2k)) ≤ c32

k+1r.

For any conjugateα′ of α and any conjugateβ′ of f(α), we have∣∣∣∣∣∣
r∑

j=0

Pj

(
(α′)2k)(

β′ −
k−1∑
i=0

(α′)2i

)j
∣∣∣∣∣∣ ≤

r∑
j=0

|Pj|
(
|α′|2k)(|β′|+ k−1∑

i=0

|α′|2i

)j

≤ c4

( r∑
j=0

|Pj|(1)
)

(k + 1)r(|α′|+ 1)2k+1r(|β′|+ 1)r.

It follows that each conjugate ofEr

(
α2k)

is such that the logarithm of its absolute value is≤
c52

k+1r. We deduce that
log
∣∣∣∣∣∣Er

(
α2k)∣∣∣∣∣∣ ≤ c62

k+1r. (18)

Supposeβ is any algebraic number with minimal polynomial of degrees and with denominator
d. Let β1, . . . , βs denote the conjugates ofβ. Thendβj is an algebraic integer for eachj and∏s

j=1(dβj) ≥ 1. Hence,

(2s− 1) log ||β||+ log |β| ≥
s∑

j=1

log d +
s∑

j=1

log |βj| ≥ 0

which easily implies that
log |β| ≥ −2s log ||β||.

We considerβ = Er

(
α2k)

. We taker > 4Dc6/c2 (andk sufficiently large compared tor). Then
(16) and (18) imply that

log
∣∣∣Er

(
α2k)∣∣∣ < −c22

kr2 = c62
k+1r

(
−c2r

2c6

)
≤ −c2r

2c6

log
∣∣∣∣∣∣Er

(
α2k)∣∣∣∣∣∣ < −2D log

∣∣∣∣∣∣Er

(
α2k)∣∣∣∣∣∣ .

SinceEr

(
α2k)

is in K and, therefore, has minimal polynomial of degree≤ D, we obtain a contra-
diction, completing the proof.
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