10 A Theorem of Mahler

The next result is due to Mahler and generalizes an earlier result (Theorem 14) we established.

Theorem 28. Let

$$f(z) = \sum_{j=0}^{\infty} z^{2^j}.$$

If α is an algebraic number with $0 < |\alpha| < 1$, then $f(\alpha)$ is transcendental.

Proof. Assume $f(\alpha)$ is algebraic. Let $K = \mathbb{Q}(\alpha, f(\alpha))$. Observe that every element of K is a root of a polynomial with integer coefficients of degree $\leq D$ where D is the product of the degrees of the minimal polynomials of α and the minimal polynomial of $f(\alpha)$ (the specific value of D, however, is not important). Let r be a positive integer to be specified later; we will want r large compared to D. We show that there are polynomials $P_0(z), \ldots, P_r(z)$ with degrees at most r and with rational integer coefficients for which

$$E_r(z) = \sum_{j=0}^r P_j(z)f(z)^j = \sum_{j=0}^\infty B_j z^j$$

is not identically 0 but $B_j = 0$ for all $j \leq r^2$. Observe that obtaining $B_j = 0$ for all $j \leq r^2$ corresponds to solving $r^2 + 1$ homogeneous equations in $(r + 1)^2$ unknowns, the unknowns being the coefficients of $P_0(z), \ldots, P_r(z)$. A non-trivial solution to these $r^2 + 1$ homogeneous equations exists, and this solution will correspond to obtaining $P_j(x)$ with coefficients in \mathbb{Q} . We can multiply through by an appropriate positive integer to obtain solutions which are rational integers and, hence, $P_j(x)$ with rational integer coefficients. We recall from the proof of Theorem 14 that for any $s \geq 1$ and any $t \geq 1$, there are non-zero terms z^m in $f(z)^s$ such that (i) the coefficient of z^{m+j} in $f(z)^u$ is 0 for $|j| \leq t$. This easily implies that since $P_0(z), \ldots, P_r(z)$ as constructed above are not all identically 0, $E_r(z)$ is not identically 0. This completes the argument for the existence of $P_0(z), \ldots, P_r(z)$ with the desired properties indicated above.

Note that f(z) converges for |z| < 1 and is, in fact, analytic in the disk $\{z : |z| < 1\}$. Hence, the same holds true of $E_r(z)$, and we can conclude that for all but finitely many $j \ge 0$, $|B_j| \le 2^j$. Therefore, if $B_j \ne 0$ and j is sufficiently large (possibly depending on r but not k), then $\log |B_j| \le j$. It follows that if $B_j \ne 0$ and k is sufficiently large compared to r, then

$$\log\left|B_{j}\alpha^{2^{k}j}\right| \le -c_{1}2^{k}j \tag{15}$$

for some constant c_1 , where c_1 and other constants c_j to follow are positive and independent of r and k but possibly depend on α . Henceforth, we view k as being large compared to r so that, in particular, the above follows. There is an alternative way to bound $|B_j|$. From Lemma 1 for the proof of Theorem 14, we know that the coefficients of $f(z)^j$ are each non-negative and $\leq j^{2j}$. Using our previous convention that if $g(z) = \sum_{j=0}^r b_j z^j$, then $|g|(z) = \sum_{j=0}^r |b_j| z^j$, we see that

$$|B_j| \le C(r) = r^{2r} \sum_{i=0}^r |P_i|(1).$$

Note that this bound on $|B_j|$ is independent of α and k, and (15) easily follows for $B_j \neq 0$.

Let $m = \min\{j : B_j \neq 0\}$. Then by the definition of $P_j(z)$, $m > r^2$. Also, since the coefficients of $P_j(z)$ are integers, we get that B_m also satisfies $|B_m| \ge 1$. Thus, since $|\alpha| < 1$ and k is large (depending on α and r)

$$\left|\sum_{j=m+1}^{\infty} B_{j} \alpha^{2^{k}j}\right| \leq r^{2r} \left(\sum_{i=0}^{r} |P_{i}|(1)\right) \sum_{j=m+1}^{\infty} |\alpha|^{2^{k}j}$$
$$\leq 2r^{2r} \left(\sum_{i=0}^{r} |P_{i}|(1)\right) |\alpha|^{2^{k}(m+1)} \leq (1/2) |\alpha|^{2^{k}m} \leq (1/2) \left|B_{m} \alpha^{2^{k}m}\right|.$$

This implies that

 $E_r(\alpha^{2^k}) \neq 0$

since the term $B_m \alpha^{2^k m}$ in $E_r(\alpha^{2^k})$ is greater in absolute value than the contribution of the remaining terms. Note that similar to the above, we obtain

$$\left| E_r(\alpha^{2^k}) \right| = \left| \sum_{j=m}^{\infty} B_j \alpha^{2^k j} \right| \le r^{2r} \left(\sum_{i=0}^r |P_i|(1) \right) \sum_{j=m}^{\infty} |\alpha|^{2^k j} \le 2r^{2r} \left(\sum_{i=0}^r |P_i|(1) \right) |\alpha|^{2^k m}.$$

Thus,

$$\log \left| E_r(\alpha^{2^k}) \right| \le -c_2 2^k m < -c_2 2^k r^2.$$
(16)

Now, observe that for |z| < 1 and any positive integer k,

$$f(z^{2^k}) = f(z) - \sum_{i=0}^{k-1} z^{2^i}$$

Therefore,

$$E_r(\alpha^{2^k}) = \sum_{j=0}^r P_j(\alpha^{2^k}) \left(f(\alpha) - \sum_{i=0}^{k-1} \alpha^{2^i} \right)^j.$$
 (17)

Observe that the right-hand side is a polynomial in α and $f(\alpha)$ of degree $\leq 2^{k+1}r$ in α and of degree $\leq r$ in $f(\alpha)$ and which consists of coefficients which are algebraic integers in K.

For $\beta \in K$, we define $d = \text{den}(\beta)$ to be the least positive integer for which $d\beta$ is an algebraic integer, and we refer to d as the denominator of β . If β_1, \ldots, β_s denote the conjugates of β , we define (and this varies from a similar definition used previously in these notes)

$$||\beta|| = \max\{\max_{1 \le j \le s} |\beta_j|, \operatorname{den}(\beta)\}.$$

We use the above information to bound $\log ||E_r(\alpha^{2^k})||$. By our comments concerning the righthand side of (17), we note that

$$\operatorname{den}\left(E_r(\alpha^{2^k})\right) \leq \operatorname{den}(\alpha)^{2^{k+1}r} \times \operatorname{den}(f(\alpha))^r.$$

Thus,

$$\log \operatorname{den}\left(E_r(\alpha^{2^k})\right) \le c_3 2^{k+1} r$$

For any conjugate α' of α and any conjugate β' of $f(\alpha)$, we have

$$\left|\sum_{j=0}^{r} P_{j}((\alpha')^{2^{k}}) \left(\beta' - \sum_{i=0}^{k-1} (\alpha')^{2^{i}}\right)^{j}\right| \leq \sum_{j=0}^{r} |P_{j}| (|\alpha'|^{2^{k}}) \left(|\beta'| + \sum_{i=0}^{k-1} |\alpha'|^{2^{i}}\right)^{j}$$
$$\leq c_{4} \left(\sum_{j=0}^{r} |P_{j}|(1)\right) (k+1)^{r} (|\alpha'|+1)^{2^{k+1}r} (|\beta'|+1)^{r}.$$

It follows that each conjugate of $E_r(\alpha^{2^k})$ is such that the logarithm of its absolute value is $\leq c_5 2^{k+1}r$. We deduce that

$$\log \left| \left| E_r(\alpha^{2^k}) \right| \right| \le c_6 2^{k+1} r.$$
(18)

Suppose β is any algebraic number with minimal polynomial of degree s and with denominator d. Let β_1, \ldots, β_s denote the conjugates of β . Then $d\beta_j$ is an algebraic integer for each j and $\prod_{j=1}^{s} (d\beta_j) \ge 1$. Hence,

$$(2s-1)\log ||\beta|| + \log |\beta| \ge \sum_{j=1}^{s} \log d + \sum_{j=1}^{s} \log |\beta_j| \ge 0$$

which easily implies that

$$\log|\beta| \ge -2s \log ||\beta||.$$

We consider $\beta = E_r(\alpha^{2^k})$. We take $r > 4Dc_6/c_2$ (and k sufficiently large compared to r). Then (16) and (18) imply that

$$\log \left| E_r(\alpha^{2^k}) \right| < -c_2 2^k r^2 = c_6 2^{k+1} r \left(\frac{-c_2 r}{2c_6} \right)$$
$$\leq \frac{-c_2 r}{2c_6} \log \left| \left| E_r(\alpha^{2^k}) \right| \right| < -2D \log \left| \left| E_r(\alpha^{2^k}) \right| \right|.$$

Since $E_r(\alpha^{2^k})$ is in K and, therefore, has minimal polynomial of degree $\leq D$, we obtain a contradiction, completing the proof.