1 Introduction

Definition 1. A rational number is a number which can be expressed in the form \(a/b\) where \(a\) and \(b\) are integers with \(b > 0\).

Theorem 1. A real number \(\alpha\) is a rational number if and only if it can be expressed as a repeating decimal, that is if and only if \(\alpha = m.d_1d_2\ldots d_k\overline{d_{k+1}d_{k+2}\ldots d_{k+r}}\), where \(m = [\alpha]\) if \(\alpha \geq 0\) and \(m = -\lfloor|\alpha|\rfloor\) if \(\alpha < 0\), where \(k\) and \(r\) are non-negative integers with \(r \geq 1\), and where the \(d_j\) are digits.

Proof. If
\[
\alpha = m.d_1d_2\ldots d_k\overline{d_{k+1}d_{k+2}\ldots d_{k+r}},
\]
then \((10^{k+r} - 10^k)\alpha \in \mathbb{Z}\) and it easily follows that \(\alpha\) is rational.

If \(\alpha = a/b\) with \(a\) and \(b\) integers and \(b > 0\), then \(\alpha = m.d_1d_2\ldots\) for some digits \(d_j\). If \(\{x\}\) denotes the fractional part of \(x\), then
\[
\{10^j|\alpha|\} = 0.d_{j+1}d_{j+2}\ldots
\]
On the other hand,
\[
\{10^j|\alpha|\} = \{10^j a/b\} = u/b\quad \text{for some } u \in \{0, 1, \ldots, b - 1\}.
\]
Hence, by the pigeon-hole principle, there exist non-negative integers \(k\) and \(r\) with \(r \geq 1\) and
\[
\{10^k|\alpha|\} = \{10^{k+r}|\alpha|\}.
\]
From (1), we deduce that
\[
0.d_{k+1}d_{k+2}\ldots = 0.d_{k+r+1}d_{k+r+2}\ldots
\]
so that
\[
\alpha = m.d_1d_2\ldots d_k\overline{d_{k+1}d_{k+2}\ldots d_{k+r}},
\]
and the result follows.

Definition 2. A number is irrational if it is not rational.

Theorem 2. A real number \(\alpha\) which can be expressed as a non-repeating decimal is irrational.

Proof 1. From the argument above, if \(\alpha = m.d_1d_2\ldots\) and \(\alpha = a/b\) is rational, then the digits \(d_j\) repeat. This implies the desired result.

Proof 2. This proof is based on showing that the decimal representation of a number is essentially unique. Assume \(\alpha\) can be expressed as a non-repeating decimal and is rational. By Theorem 1, there are digits \(d_j\) and \(d_j'\) such that
\[
\alpha = m.d_1d_2\ldots d_k\overline{d_{k+1}d_{k+2}\ldots d_{k+r}}\quad \text{and} \quad \alpha = m.d_1'd_2'd_3'\ldots,
\]
where the latter represents a non-repeating decimal. Then there is a minimum positive integer u such that $d_u \neq d'_u$. Observe that there must be a $v > u$ such that $|d_v - d'_v| \neq 9$; otherwise, we would have that $d'_v = 9 - d_v$ for every $v > u$, contradicting that the d'_v do not repeat. Hence,

$$0 = |\alpha - \alpha| = |m.d_1 d_2 \ldots d_k d_{k+1} d_{k+2} \ldots d_{k+r} - m.d'_1 d'_2 d'_3 \ldots| \geq \frac{|d_u - d'_u|}{10^u} - \sum_{j=u+1}^{\infty} \frac{|d_j - d'_j|}{10^j} > \frac{1}{10^u} - \sum_{j=u+1}^{\infty} \frac{9}{10^j}.$$

The last expression is easily evaluated to be 0 (the series is a geometric series). Hence, we obtain a contradiction, which shows that α must be irrational.

We will begin the course by briefly discussing the irrationality of certain numbers, namely $\sqrt{2}$, $\log_{10} 2$, e, π, $\log 2$ (natural logarithm of 2), and $\zeta(3)$ (to be defined). It is nevertheless convenient to define now the main topic of this course.

Definition 3. An algebraic number is a number which is a root of $f(x) \in \mathbb{Z}[x]$ for some $f(x) \neq 0$. A transcendental number is a number which is not algebraic.

It should be noted that rational numbers correspond to roots of linear polynomials in $\mathbb{Z}[x]$.

Examples of transcendental numbers include e, π, and e^π. The number $\sqrt{2}$ is an easy example of a number which is irrational but not transcendental.

There are many open problems concerning the subject. We do not know if the numbers $e + \pi$, $e\pi$, or π^e are transcendental. We know that $\log 2$ and $\log 3$ are transcendental, but we do not know if $(\log 2)(\log 3)$ is. Euler’s constant is

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right);$$

we do not even know if it is irrational. The Riemann zeta function is defined as $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$ (for $\Re(s) > 1$). It is known that $\zeta(2n)$ is transcendental whenever n is a positive integer, but the status of $\zeta(2n+1)$ is not very well understood. In 1978, Apery gave the first proof that $\zeta(3)$ is irrational, and very recently it was established that $\zeta(2n+1)$ is irrational for infinitely many positive integers n.

We now turn to some irrationality examples.

Theorem 3. If the real number α is a root of

$$f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x],$$

then α is either an integer or an irrational number.

Proof. Prove directly or by using the rational root test. Suppose $\alpha = a/b$ with $b > 0$ and $(a, b) = 1$, and show that $b = 1$ (that is that b has no prime divisors).

2
Corollary 1. If \(n \) and \(k \) are positive integers and \(n \) is not an \(k \)th power, then \(\sqrt[k]{n} \) is irrational.

Proof. Clear.

Theorem 4. There are real irrational numbers \(\alpha \) and \(\beta \) for which \(\alpha^\beta \) is rational.

Proof. Either \(\sqrt{2}^{\sqrt{2}} \) or \((\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} \) is an example. (Also, after the next theorem, the example \(\sqrt[10]{2\log_{10} 2} \) leads to a simple argument here.)

Theorem 5. The number \(\log_{10} 2 \) is irrational.

Proof. Trivial (use the Fundamental Theorem of Arithmetic).

Theorem 6. The number \(e \) is irrational.

Proof. Almost trivial.

Homework:

1. Justify the last sentence in the proof of Theorem 1. (Note that 0.1 = 0.0\(\overline{5}\).)

2. Let \(a \) and \(b \) be positive integers, and write \(a/b = m.d_1d_2 \ldots d_kd_{k+1}d_{k+2} \ldots d_{k+r} \), where \(m \) is a positive integer, the \(d_j \) are digits, and \(r \) is chosen as small as possible. Prove that \(r \) divides \(\phi(b) \) where \(\phi \) is Euler’s \(\phi \) function.

3. From (1), it follows that \(r \leq b - 1 \) and that if \(r = b - 1 \), then \(b \) is a prime (note: the converse of this isn’t true). Suppose \(r = b - 1 \).

 (i) Prove that each of the digits 0, 1, \ldots, 9 occurs among the digits \(d_{k+1}, d_{k+2}, \ldots, d_{k+r} \) either \(\lfloor (b - 1)/10 \rfloor \) or \(\lceil (b - 1)/10 \rceil + 1 \) times. (For example, \(r = 46 \) for 1/47 and each of the digits 0, 3, 6, 9 occurs 4 times in the “periodic part” of 1/47 and each of the other digits occurs 5 times in the periodic part of 1/47; and \(r = 60 \) for 1/61, and it follows from this problem that each digit occurs exactly 6 times in the periodic part of 1/61.)

 (ii) Prove that 0 occurs \(\lfloor (b - 1)/10 \rfloor \) times among the digits \(d_{k+1}, d_{k+2}, \ldots, d_{k+r} \).

4. Using an argument similar to the proof of Theorem 6 (\(e \) is irrational), prove that \(e^2 \) is irrational.