
Some Answers & Some Solutions to Old Math 574 Final Exams

Part I, Fall, 1999

1. an = 2n + 1 for n ≥ 0

2. 97

3. We prove an ≤ 2 for all n ≥ 1 by induction. Observe that a1 =
√

2 ≤ 2. Suppose k is a positive integer for
which ak ≤ 2 (this is our induction hypothesis). Then ak+1 =

√
2

ak ≤
√

2
2

= 2. Hence, an ≤ 2 for all n ≥ 1
by induction.

4. OKLMFBDECAIHGPJN (one of many correct answers)

5. Fix one of the six points, and call it A. Five of the 15 line segments have A as an endpoint. Each is colored
red or blue. By the pigeonhole principle, three (or more) of these five line segments must be colored the
same color, say blue (if three are colored red, do a similar argument to what follows but with the words
“blue” and “red” interchanged). Suppose the other endpoints of three edges colored blue are B, C, and D
(so each of AB, AC, and AD is blue). If any one of the edges of 4BCD is colored blue, then there would
be a monochromatic blue triangle using that edge and two of AB, AC, and AD. On the other hand, if each
edge of 4BCD is colored red, then there is a monochromatic red triangle, namely 4BCD. Thus, in any
case, there must be a monochromatic triangle.

6. n2n−1

7. 231

8. You should explain why An satisfies the recursion An = 3An−1 + 4An−2. The answer is
(
4n+1 + (−1)n

)
/5.

Part II, Fall, 1999

1. (a) Second
(b) Remove 2 coins from the stack of size 11.

2. Assume log10 24 is rational. Then log10 24 = a/b where a and b are positive integers. We deduce that
24 = 10a/b. Hence, 24b =

(
10a/b

)b = 10a. Since 10a ends in a 0 and 24b does not (it’s not divisible by 5),
we get a contradiction. Therefore, log10 24 is irrational.

3. −32 (plug in x = 1)

4. (a) 6
(b) 720

5. The letter “A” should be placed in the
square with the circled “G”.



Part I, Spring, 1999

1. Assume log2 3 is rational. Then there are positive integers a and b such that log2 3 = a/b. We deduce that
3 = 2a/b. Hence, 3b =

(
2a/b

)b = 2a. Since 3b is odd and 2a is even, we have a contradiction. Therefore,
log2 3 is irrational.

2. We use induction to show that the sum of the first n odd numbers is n2. More precisely, we want to show

1 + 3 + 5 + · · ·+ (2n− 1) = n2 (∗)

for all positive integers n. When n = 1, (∗) is true as 1 = 12. Suppose (∗) holds for n = k where k is some
positive integer. Then

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = k2 + 2k + 1 = (k + 1)2.

Note that 2n − 1 = 2k + 1 when n = k + 1. We deduce that (∗) holds for n = k + 1. Hence, (∗) holds for
every positive integer n by induction.

3. We prove that
f3n is even and f3n−1 and f3n−2 are odd (∗)

for every integer n ≥ 1 by induction on n. Since f3 = 2, f2 = 1, and f1 = 1, (∗) holds for n = 1. Suppose (∗)
holds for n = k. Then f3k+1 = f3k +f3k−1 is an even number plus and an odd number, so f3k+1 is odd. Now,
f3k+2 = f3k+1 +f3k is an odd number plus and an even number, so f3k+2 is odd. Also, f3k+3 = f3k+2 +f3k+1

is an odd number plus and an odd number, so f3k+3 is even. Note that for n = k + 1, we have 3n = 3k + 3,
3n − 1 = 3k + 2, and 3n − 2 = 3k + 1. Thus, (∗) holds for n = k + 1. Therefore, (∗) holds for every n ≥ 1
by induction on n.

4. 3

5. 2n

6. 146

7 & 8. See Problems 6 & 7 from Part I, Fall, 1999.

Part II, Spring, 1999

1. (a) First
(b) 4

2. Let “O” stand for “an odd number” and “E” stand for “an even number”. A lattice point (x, y, z) in space
has 8 possible forms: (E,E,E), (E,E,O), (E,O,E), (E,O,O), (O,E,E), (O,E,O), (O,O,E), and (O,O,O).
By the pigeonhole principle, if there are 9 points in space, two of them must have the same form. Let (a, b, c)
and (d, e, f) be 2 such lattice points. Since the sum of two even numbers is even and the sum of two odd
numbers is even, each of a+d, b+e, and c+f is even. Hence, (a+d)/2, (b+e)/2, and (c+f)/2 are integers.
Since these are the coordinates of the midpoint of (a, b, c) and (d, e, f), we deduce that this midpoint is a
lattice point.

3. The first graph is not complete, is not connected, and is planar (so the first three answers are “No”, “No”,
and “Yes”). The second graph is not complete, is connected, and is not planar (so the next three answers
are “No”, “Yes”, and “No”). The diameter of the second graph is 2.



4. We show that there is a connection between this problem and a problem about graphs that we have already
done. Represent the six people by vertices A,B,C, D, E, and F . Consider the complete graph on these six
vertices. Also, consider all the handshakes that took place. If two people have shook hands, color the edge
between the two people (the two corresponding vertices) red. If two people have not shook hands, then
color the edge between them blue. Since each edge of the complete graph on 6 vertices is colored either red
or blue, we deduce that there must be a monochromatic triangle (see Problem 5 from Part I, Fall, 1999).
Hence, there must either be three people any two of which shook hands with each other or three people any
two of which did not shake hands with each other.

5. The letter “A” should be placed in the square with
the circled “G”.

6. Every time a handshake occurs, two people shake a
hand. Therefore, if we add up the number of hands
each person shakes, then we get twice the number of
handshakes that have taken place. Hence, if we take
the number of hands each person shakes and total
all these numbers, we end up with an even number.
Since the sum of an odd number of odd numbers is odd, we must have an even number of odd numbers if
the total of the numbers is even. We deduce that there must be an even number of people who have shaken
an odd number of hands at the party.

7. See Problem 8 from Part I, Fall, 1999.


