Axioms for a Finite Projective Plane of Order n

Axiom P1. There exist at least 4 distinct points no 3 of which are collinear.

Axiom P2. There exists at least 1 line with exactly $n + 1$ points on it.

Axiom P3. Given any 2 distinct points, there exists exactly one line passing through the 2 points.

Axiom P4. Given any two distinct lines, there exists at least one point where the lines intersect.

Theorem. There is no projective plane of order $n = 1$.

Proof. Assume there is a projective plane of order 1. Let ℓ be a line with exactly 2 points on it; such a line exists by Axiom P2. Call the points A and B. We consider two cases depending on whether A and B are 2 of the 4 points we know exist from Axiom P1. First, suppose that they are. Then there are 2 other points P and Q not on ℓ such that no 3 of A, B, P, and Q are collinear. By Axiom P3, there exists a line ℓ' passing through P and Q. Since A, B, P, and Q are not collinear, $\ell \neq \ell'$. By Axiom P4, there is a point R on both ℓ and ℓ'. Since no 3 of A, B, P, and Q are collinear, we easily deduce that R is not A or B. But then A, B, and R are 3 points on ℓ, contrary to the fact that ℓ has only 2 points on it.

Now, suppose A and B are not 2 of the 4 points we know exist from Axiom P1. Then from Axiom P1, there exist 3 points, say P, Q, and R, not on ℓ which are noncollinear. Hence, by Axiom P3, there are 3 distinct lines ℓ_1, ℓ_2, and ℓ_3 passing through P and Q, P and R, and Q and R, respectively. Since P, Q, and R are not on ℓ, none of these lines can be ℓ. By Axiom P4, each of these lines intersects ℓ. Axiom P3 implies that these intersection points must be unique. Hence, we get a contradiction again to the fact that ℓ has only 2 points on it. \qed

Theorem (Dual of Axiom P1). There exist at least 4 distinct lines, no 3 of which are concurrent.

Proof. By Axiom P1, there exist 4 distinct points no 3 of which are collinear. Call them A, B, C, and D. By Axiom P3, there exist lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4 passing through A and B, B and C, C and D, and A and D, respectively. Since no 3 of A, B, C, and D are collinear, each of ℓ_1, ℓ_2, ℓ_3, and ℓ_4 passes through exactly 2 of the points A, B, C, and D and the lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4 are distinct. We will complete the proof by showing that no 3 of these 4 lines are concurrent.

Assume 3 (or more) of the lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4 intersect at a common point P. Then the above implies that $P \neq A$, $P \neq B$, $P \neq C$, and $P \neq D$. Observe that given any 3 of the 4 lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4, from among those 3 lines, there must be at least 2 which have one of A, B, C, or D in common. Thus, by considering the 3 (or more) lines among ℓ_1, ℓ_2, ℓ_3, and ℓ_4 which intersect at P, we can find at least 2 lines which intersect at P and at some other point $(A, B, C, or D)$. This contradicts Axiom P3, so our assumption that ℓ_1, ℓ_2, ℓ_3, and ℓ_4 intersect at a common point P must be incorrect. Therefore, no 3 of the 4 lines ℓ_1, ℓ_2, ℓ_3, and ℓ_4 are concurrent. \qed