MATH 532/7361, LECTURE NOTES 10

Notes on Translations and Rotations

x
We associate with each point (z,y) the column | y | which we will sometimes write as

1
(z,y,1)T. A translation of the Euclidean plane is a function f which maps each point (z, %) to
(x+a,y+0b) for some real numbers a and b. To make matters more precise, we shall refer to f as a
translation by (a, b). We may view such a translation as mapping (z,y, 1) into (z + a,y + b, 1).

T+ a 1 0 a T
y+b |l =10 10 vy,
1 0 01 1

we may therefore think of f as simply being multiplication by the matrix above. We shall refer to
the above matrix as 7{,). If P represents the point (a, b), we will sometimes write 7». Thus,

1 0 «a
Tp=10 1 b
0 01

represents a translation of the Euclidean plane by P. If P = (0,0), observe that 7> maps each
point to itself. In this case, we will call 7p the identity transformation.

Now, consider a point A = (z1,y;) and a real number ¢. A rotation of the Euclidean plane
about A by an angle ¢ is a function f which maps each point B = (z,y) to C = (2/,y') where
C' is the same distance as B from A and where the angle measured counterclockwise from the
vector AB to the vector A—C>’ is ¢. It will be convenient to also find a matrix representation of such
a rotation. Suppose for the moment that A = (0, 0). We can write B in polar coordinates as (r, 6).
Then C' has the polar coordinate representation (r, 6 + ¢). Hence,

2’ =rcos(0 + ¢) = rcos(f) cos(¢p) — rsin(f) sin(¢p) = x cos(¢) — ysin(¢)
and
y' = rsin(f + ¢) = r cos(0) sin(¢) + rsin(6) cos(¢) = xsin(d) + y cos(¢).

In matrix notation, we may combine these as

()= (&) ) (),

In general, with A = (z1,y;), we may obtain (z’,y’) by translating the Euclidean plane first
by (—x1, —y1), and then performing the above rotation about the origin, and then translating the
Euclidean plane by (21, y;). Thus,

()= () Gy ()
_ ( cos(9) — ysin(6) +a1(1 — cos(@)) + 1, sin(cb)) |
rsin(@) +y cos(¢) — @1 sin(9) + y1 (1 — cos(9))



We may rewrite this as

x! cos(¢) —sin(¢) (1 — cos(¢)) + y1 sin(g) x
y | = | sin(¢) cos(¢) —wzisin(¢) +yi(1 —cos(@)) | |y
1 0 0 1 1

Thus, a rotation f can also be viewed in terms of matrix multiplication. We call the above 3 x 3
matrix %4 4. With the above information, we may now view a combination of translations and
rotations in terms of matrix multiplication. For example, if we wish to translate the Euclidean
plane by A = (2,3) and then rotate about the point B = (1,1) by 7/6 and then translate by
C' = (=5,7), each point (x, y) in the Euclidean plane will be moved to (z’,y") where

/

xXr T
Y | =TcRx68Ta |y
1 1

This is a good place to do some examples and to make up some related homework. Our main goal
here is to establish and apply the following result.

Theorem: Let o and [ be real numbers (not necessarily distinct), and let A and B be points (not
necessarily distinct). If o + (3 is not an integer multiple of 2w, then there is point C such that
RgpRaa = Rotpc. If o + B is an integer multiple of 27, then R g R, 4 is a translation.

Before demonstrating the theorem it would be a good idea to discuss the analogous result for a
composition of 2 translations, the first by (a, b) and the second by (¢, d). Geometrically, it should
be clear that the result of such a composition is a translation by (a + ¢,b + d). Alternatively, one
can show by taking the product of matrices that 7(45)7T(c,q) = T(at-c,p+d)-

To see why the theorem holds, write A = (x, ;) and B = (22, y2). Then

cos(B) —sin(f)  xo(1 — cos(f)) + yo sin(5)
RgpRoa = | sin(fB) cos(B) —zosin(f) + y2(1 — cos(B))

0 0 1
cos(a) —sin(a) (1 — cos(a)) + y; sin(«)
x | sin(a) cos(a) —xysin(a)+ y(1 — cos(a))
0 0 1

cos(a+ ) —sin(a+p) u
= | sin(a+3) cos(a+p3) v,
0 0 1

where

u = 1 cos()(1 — cos(a)) + yy sin(a) cos(5) + x1 sin(a) sin(3)
~ g sin(B)(1 - cos(a)) + 3(1 — cos(8)) + yasin(9)
z1(1 — cos(a + 3)) + y1 sin(a + )
+ (w2 = 21)(1 = cos(B)) + (y2 — y1) sin(f)

(
)



and

v = x1sin(F)(1 — cos(a)) + y1 sin(«) sin(f8) — x; cos(a) sin(/3)
+ 41 cos(B)(1 — cos(a)) — xosin(F) + ya(1 — cos(B))
= —zysin(a+ 8) + y1(1 — cos(a + ()
— (22 — @1) sin(3) + (y2 — 1) (1 — cos(0)).

Observe that if a + 3 is an integer multiple of 27, then the above matrix represents a translation
by (u,v) so that the second part of the theorem follows. Suppose now that « + 3 is not an integer
multiple of 2. We will have that there is a C' such that B3 g R, 4 is a rotation at C' by the angle
a + [ if we can find a pair (x3, y3) such that

25(1 — cos(a+ B)) + yasin(a + 8) = (w2 — 21)(1 — cos(B)) + (92 — y1) sin(3)
and
—assin(a + 8) + ya(l - cos(a + 3)) = (22 — 21) sin(B) + (g2 — y1)(1 — cos(B)).

We have two equations in the 2 unknowns x3 and y3. There is a solution provided that

1 —cos(a+ )  sin(a+f)
det < —sin(a+ ) 1—cos(a+ ﬁ)) 7 0.

Observe that one does not need to use anything fancy here; simply solve for x5 and y3 above and
the equivalent of the determinant being non-zero above follows. We get that C' exists provided that

2 —2cos(a+ ) #0.

Since we are now only considering o + (3 which are not integer multiples of 27, the theorem is
established.



