EXAMPLES ON TRANSLATIONS AND ROTATIONS

(Lecture Notes for Math 532, taught by Michael Filaseta)

1. Let $\triangle ABC$ be given, and let M_B denote the midpoint of side \overline{AC} and let M_C denote the midpoint of side \overline{AB} . Show that $\overleftarrow{M_BM_C}$ is parallel to \overrightarrow{BC} and that the length of $\overline{M_BM_C}$ is one-half of the length of \overline{BC} .

Solution. A picture would help here. From the theorem, $f = R_{\pi,M_B}R_{\pi,M_C}$ is a translation. One checks that f(B) = C. Hence, f is a translation which moves B to C. Also, $f(M_C) = M'_C$ where M'_C is the result of rotating M_C about M_B by π . This means that $\overline{M_C M_B}$ and $\overline{M_B M'_C}$ have the same length and the three points M_C , M_B , and M'_C are collinear. We get that $\overline{M_C M'_C} = \overrightarrow{BC}$, and the result follows.

2. Let *A*, *B*, *C*, and *D* be the vertices of an arbitrary quadrilateral. Show that the midpoints of the sides of the quadrilateral form a parallelogram.

Solution. Let M_1 be the midpoint of \overline{AB} , M_2 the midpoint of \overline{BC} , M_3 the midpoint of \overline{CD} , and M_4 the midpoint of \overline{DA} . Then from example (1), $\overline{M_1M_4}$ and $\overline{M_2M_3}$ each have the same direction as \overline{BD} and half its length. The desired conclusion follows.

Comment: Instead, one can let $f = R_{\pi,M_4}R_{\pi,M_1}$ and $g = R_{\pi,M_2}R_{\pi,M_3}$. Then f is a translation taking B to D and g is a translation taking D to B. One then essentially repeats the argument in example (1).

3. In (2), consider instead midpoints of a 2n-gon.

Solution. The problem is a bit vague, but one can conclude the following using the argument in (2). Let M_1, M_2, \ldots, M_{2n} denote the midpoints along the edges moving counterclockwise beginning with some edge. Then the segments $\overline{M_1M_2}, \overline{M_3M_4}, \ldots, \overline{M_{2n-1}M_{2n}}$ can be translated (without rotating them) to form an *n*-gon. Similarly, the segments $\overline{M_{2n}M_1}, \overline{M_2M_3}, \ldots, \overline{M_{2n-2}M_{2n-1}}$ can be translated to form an *n*-gon.

4. Let ΔABC be given. Draw an equilateral triangle exterior to ΔABC with one edge \overline{AB} , an equilateral triangle exterior to ΔABC with one edge \overline{BC} , and an equilateral triangle exterior to ΔABC with one edge \overline{AC} . Show that the centers of these 3 equilateral triangles form the vertices of an equilateral triangle.

Solution. The argument is essentially the same as in the next problem. This is worth going over separately, but we do not do so here. \blacksquare

5. Generalize (4) as follows. Let ΔABC and real numbers α , β , and γ be given. Let A', B', and C' be points exterior to ΔABC such that $\angle BA'C = \alpha$, $\angle AB'C = \beta$, and $\angle AC'B = \gamma$. Also, suppose that the lengths of the sides $\overline{BA'}$ and $\overline{A'C}$ are the same, the lengths of the sides $\overline{AB'}$ and $\overline{B'C}$ are the same, and the lengths of the sides $\overline{AC'}$ and $\overline{C'B}$ are the same. Show that if $\alpha + \beta + \gamma = 2\pi$, then the interior angles of $\Delta A'B'C'$ are $\frac{1}{2}\alpha$, $\frac{1}{2}\beta$, and $\frac{1}{2}\gamma$.

Solution. Let $f = R_{\alpha,A'}R_{\beta,B'}R_{\gamma,C'}$. Then f is a translation since $\alpha + \beta + \gamma = 2\pi$. Since f(B) = B, we get that f is the identity translation. Hence, f(C') = C'. Let $C'' = R_{\beta,B'}(C')$. Then $\angle C'B'C'' = \beta$ and the lengths of $\overline{B'C'}$ and $\overline{B'C''}$ are the same. Also,

 $C' = f(C') = R_{\alpha,A'}R_{\beta,B'}R_{\gamma,C'}(C') = R_{\alpha,A'}R_{\beta,B'}(C') = R_{\alpha,A'}(C'').$

This means that $\angle C'A'C'' = \alpha$ and the lengths of $\overline{A'C'}$ and $\overline{A'C''}$ are the same. One easily gets that the triangles $\Delta A'B'C'$ and $\Delta A'B'C''$ are congruent from which it follows that $\angle C'A'B' = \alpha/2$ and $\angle C'B'A' = \beta/2$. It follows that $\angle A'C'B' = \pi - (\alpha/2) - (\beta/2) = \gamma/2$, giving the desired result.

Observe that the following is a consequence of the problem. Suppose that ΔABC is given and D, E, and F are points exterior to ΔABC such that ΔDBC , ΔAEC , and ΔABF are similar so that $\angle D$, $\angle E$, and $\angle F$ are the three angles associated with these similar triangles. Let A', B', and C' be the centers of the circumscribed circles for ΔDBC , ΔAEC , and ΔABF , respectively. Then $\Delta A'B'C'$ is similar to ΔDBC (and, hence, the other two exterior triangles as well).

6. Let n be an odd positive integer, and let P₁,..., P_n be n (not necessarily distinct) points. Let A = A₀ be an arbitrary point. For j ∈ {1,...,n}, define A_j as the point you get by rotating A_{j-1} about P_j by π. For j ∈ {n + 1,...,2n}, define A_j as the point you get by rotating A_{j-1} about P_{j-n} by π. Prove that A_{2n} = A.

Solution. Write n = 2k + 1 where k is some nonnegative integer. Let f denote the composition of the first n rotations about P_1, \ldots, P_n each by π . Then we want to show that f(f(A)) = A. Note that every two rotations by π are equivalent to a translation and the composition of translations is a translation. Hence, we can view f as $T_{(a,b)}R_{\pi,P_1}$ for some (a,b) (where a = b = 0 if k = 0). By a homework problem, we can rewrite this as

$$\left(R_{\pi,(a/2,b/2)}\left(R_{\pi,(0,0)}R_{\pi/2,P_1}\right)\right)R_{\pi/2,P_1}$$

Taking the product of the matrices as indicated by the parentheses above, we get from the theorem that f is equivalent to a rotation about some point by π . It is clear then that f(f(A)) = A, completing the argument.

Comment: The situation when *n* is even is that *A* is translated since the compositions of the rotations is a translation. It is possible that the translation is the identity translation in which case $A_{2n} = A$.

7. Let n be an odd positive integer. Suppose that we are given the n midpoints of the sides of an n-gon. Show how one can construct an n-gon with these given midpoints along its edges.

Solution. Let M_1, \ldots, M_n be the midpoints. Consider the composition f of the rotations about M_1, \ldots, M_n each by π . By the solution to (6), we get that f is equivalent to a rotation about some point, say A, by π . We can construct A as follows. Take any point B and apply f to it. Note that this is done by successively taking the rotations about M_j by π with straightedge and compass for $j = 1, 2, \ldots, n$. We get some point C = f(B). Since B is obtained from C by a rotation about A by π , we deduce that A must be the midpoint of \overline{BC} . Since f is equivalent to a rotation about A, we have that f(A) = A. Set $A_0 = A$ and rotate it about M_1 to obtain a new point. Call the new point A_1 and rotate it about M_2 to obtain another point A_2 . Continue rotating A_j about M_{j+1} to obtain A_{j+1} for $j \in \{1, 2, \ldots, n-1\}$. Since f(A) = A, we get that $A_n = A_0$, and the points A_1, \ldots, A_n are the vertices of an n-gon as desired.

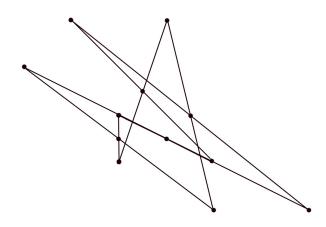
Comments: (i) There are many such n-gons since the order of the M_j one chooses to do the above construction will affect the outcome.

(ii) There is another approach to the problem which may be worth discussing. For example, suppose n = 5 (though any odd n works here). Call the given midpoints M_1, \ldots, M_5 . Let A_0, \ldots, A_4 be the points we are trying to construct with M_j along edge $\overline{A_{j-1}A_j}$ for $j \in \{1, \ldots, 5\}$ where $A_5 = A_0$. Then the vertices A_0, A_1, A_2 , and A_3 are the vertices of a quadrilateral and three of its midpoints M_1, M_2 , and M_3 are known. Using the information from example (2), it is not difficult to construct the midpoint M' of $\overline{A_0A_3}$. Now, we know the midpoints of the sides of triangle $\Delta A_0 A_3 A_4$. Using the information from example (1), we can construct the vertices A_0, A_3 , and A_4 . One can modify this argument to obtain the other vertices or use the approach in the solution above.

Let P₁, P₂, P₃, and P₄ be 4 (not necessarily distinct) points. Let A be an arbitrary point. Beginning with A₀ = A, for j ∈ {1, 2, 3, 4}, define A_j as the point you get by rotating A_{j-1} about P_j by π. Set Q₁ = P₃, Q₂ = P₄, Q₃ = P₁, and Q₄ = P₂. Beginning with B₀ = A, for j ∈ {1, 2, 3, 4}, define B_j as the point you get by rotating B_{j-1} about Q_j by π. Prove that A₄ = B₄. (See Figure 1.)

Solution. A rotation about P_1 by π followed by a rotation about P_2 by π is a translation, say T_R . Similarly, a rotation about P_3 by π followed by a rotation about P_4 by π is a translation, say T_S . The problem amounts to establishing that $T_S T_R = T_R T_S$. This is easy to establish (but note that in general the product of two matrices does not commute).

 Let A, B, C, and D be the vertices of a convex quadrilateral labelled counterclockwise. Consider 4 squares exterior to the quadrilateral, one square with an edge AB,



one square with an edge \overline{BC} , one square with an edge \overline{CD} , and one square with an edge \overline{DA} . Let M_1 be the center of the square with edge \overline{AB} , let M_2 be the center of the square with edge \overline{BC} , let M_3 be the center of the square with edge \overline{CD} , and let M_4 be the center of the square with edge \overline{DA} . Show that the length of $\overline{M_1M_3}$ is the same as the length of $\overline{M_2M_4}$ and that $\overline{M_1M_3}$ and $\overline{M_2M_4}$ are perpendicular.

Solution. Let

$$g = R_{\pi/2,M_1} R_{\pi/2,M_2}, \quad h = R_{\pi/2,M_3} R_{\pi/2,M_4}, \quad \text{and} \quad f = gh.$$

Then f(A) = A, and we get that f is the identity translation. Also, there are points P_1 and P_2 such that g is a rotation about P_1 by π and h is a rotation about P_2 by π . It is easy to see (draw a picture) that since a rotation about P_1 by π followed by a rotation about P_2 by π is the identity, we must have $P_1 = P_2$. Next, we observe that P_1 is the only point such that $g(P_1) = P_1$. It follows that $\Delta M_2 P_1 M_1$ is a isosceles right triangle labelled counterclockwise (since P_1 so located is mapped to itself by g). Similarly, $\Delta M_4 P_2 M_3$ is a isosceles right triangle labelled counterclockwise (since P_1 so located is mapped to itself by g). Similarly, $\Delta M_4 P_2 M_3$ is a isosceles right triangle labelled counterclockwise. Since $P_1 = P_2$, we get that $\Delta P_1 M_2 M_4$ is obtained from $\Delta P_1 M_1 M_3$ by a rotation about P_1 by $\pi/2$. This implies that the length of $\overline{M_1 M_3}$ and $\overline{M_2 M_4}$ and Q_2 the point of intersection of $\overline{M_2 M_4}$ and $\overline{M_1 P_1}$ (convince yourself these exist). Then $\angle M_1 Q_2 Q_1 = \angle P_1 Q_2 M_2$ and $\angle Q_2 M_1 Q_1 = \angle P_1 M_2 Q_2$, and it follows that $\angle M_1 Q_1 Q_2 = \angle M_2 P_1 Q_2 = \pi/2$. Thus, the lines $\overline{M_1 M_3}$ and $\overline{M_2 M_4}$ are perpendicular.

Comment: It can be shown that if the original quadrilateral is a parallelogram, then M_1 , M_2 , M_3 , and M_4 form the vertices of a square.

10. Let $\triangle ABC$ be a given triangle with the angles $\angle ABC$, $\angle BCA$, and $\angle CAB$ all acute. Let \overline{AP} be an altitude drawn from A so that P is on \overline{BC} . Similarly, let \overline{BQ} be the altitude drawn from B and \overline{CR} the altitude drawn from C. Show that $\triangle PQR$ is a triangle with minimum perimeter that can be inscribed in $\triangle ABC$ (that is show that if $\triangle UVW$ is a triangle with U on \overline{BC} , V on \overline{AC} , and W on \overline{AB} , then its perimeter is at least that of $\triangle PQR$).

Solution. First, we will show that $\angle PRB = \angle QRA$, $\angle RPB = \angle QPC$, and $\angle PQC = \angle RQA$. We establish one of these and the other two can be done in the same way. Let *D* be the intersection of the altitudes. Since $\angle DRA = \angle DQA = \pi/2$, the points *A*, *Q*, *D*, and *R* all lie on a circle. Hence,

$$\angle DRQ = \angle DAQ = \frac{\pi}{2} - \angle ACP.$$

Since $\angle DRB = \angle DPB = \pi/2$, the points *B*, *P*, *D*, and *R* all lie on a circle. Hence,

$$\angle DRP = \angle DBP = \frac{\pi}{2} - \angle BCQ = \frac{\pi}{2} - \angle ACP = \angle DRQ.$$

Since $\angle ARC = \angle BRC$, we get that $\angle PRB = \angle QRA$. As mentioned, in a similar fashion, one obtains $\angle RPB = \angle QPC$ and $\angle PQC = \angle RQA$.

If you haven't already started drawing pictures, get out those crayons. To match some of the discussion here, you should label your points along the triangle as A, B, and C in a counterclockwise direction. We begin with triangle ΔABC and reflect it about side \overline{BC} to get a new tringle $\Delta A_1 BC$. The 2 triangles are distinct, congruent, and share the edge \overline{BC} . Next, we reflect $\Delta A_1 B C$ about side $\overline{A_1 C}$ to get a new tringle $\Delta A_1 B_1 C$. Then we reflect $\Delta A_1 B_1 C$ about side $\overline{A_1 B_1}$ to get a new tringle $\Delta A_1 B_1 C_1$. Next, we reflect $\Delta A_1 B_1 C_1$ about side $\overline{B_1 C_1}$ to get a new tringle $\Delta A_2 B_1 C_1$. Finally, we reflect $\Delta A_2 B_1 C_1$ about side $\overline{A_2 C_1}$ to get a new tringle $\Delta A_2 B_2 C_1$. If your crayoning technique is mastered, this is what should happen. Let $\alpha = \angle BAC$ and $\beta = \angle ABC$. Every point along segment \overline{AB} is first rotated about B by $2\pi - 2\beta$, then about A_1 by $2\pi - 2\alpha$, then about B_1 by 2β , and finally about A_2 by 2α . We can conclude that the segment \overline{AB} has been translated to $\overline{A_2B_2}$. This means that \overrightarrow{AB} is parallel to $\overrightarrow{A_2B_2}$. If we draw in ΔPQR and its reflections, the information from the first paragraph implies that the points R, P, Q_1 (the first reflection of Q), R_2 (the next reflection of R - there was already an R_1 from the first reflection), P_2 (the next reflection of P), Q_3 (the next reflection of Q), and R_4 (the last reflection of R) are all collinear. Also, the segment $\overline{RR_4}$ has length twice the perimeter of ΔPQR . If one similar reflects ΔUVW , one finds that W is translated to some W_4 . Here, $\overline{WW_4}$ and $\overline{RR_4}$ have the same length (since R and W went through the same translation), and the length of $\overline{WW_4}$ is \leq twice the perimeter of ΔUVW . The desired conclusion follows.

