
EXAMPLES ON TRANSLATIONS AND ROTATIONS

(Lecture Notes for Math 532, taught by Michael Filaseta)

1. Let ∆ABC be given, and letMB denote the midpoint of sideAC and letMC

denote the midpoint of sideAB. Show that
←−−−→
MBMC is parallel to

←→
BC and that the

length ofMBMC is one-half of the length ofBC.

Solution. A picture would help here. From the theorem,f = Rπ,MB
Rπ,MC

is a
translation. One checks thatf(B) = C. Hence,f is a translation which moves
B to C. Also, f(MC) = M ′

C whereM ′
C is the result of rotatingMC aboutMB

by π. This means thatMCMB andMBM ′
C have the same length and the three

pointsMC , MB , andM ′
C are collinear. We get that

−−−−−→
MCM ′

C =
−−→
BC, and the result

follows. �

2. Let A, B, C, andD be the vertices of an arbitrary quadrilateral. Show that the
midpoints of the sides of the quadrilateral form a parallelogram.

Solution. Let M1 be the midpoint ofAB, M2 the midpoint ofBC, M3 the mid-
point of CD, andM4 the midpoint ofDA. Then from example (1),

−−−−→
M1M4 and−−−−→

M2M3 each have the same direction as
−−→
BD and half its length. The desired con-

clusion follows.

Comment: Instead, one can letf = Rπ,M4Rπ,M1 andg = Rπ,M2Rπ,M3 . Then
f is a translation takingB to D andg is a translation takingD to B. One then
essentially repeats the argument in example (1).�

3. In (2), consider instead midpoints of a2n−gon.

Solution. The problem is a bit vague, but one can conclude the following us-
ing the argument in (2). LetM1,M2, . . . , M2n denote the midpoints along the
edges moving counterclockwise beginning with some edge. Then the segments
M1M2,M3M4, . . . ,M2n−1M2n can be translated (without rotating them) to form
an n−gon. Similarly, the segmentsM2nM1,M2M3, . . . ,M2n−2M2n−1 can be
translated to form ann−gon.�

4. Let ∆ABC be given. Draw an equilateral triangle exterior to∆ABC with one
edgeAB, an equilateral triangle exterior to∆ABC with one edgeBC, and an
equilateral triangle exterior to∆ABC with one edgeAC. Show that the centers of
these 3 equilateral triangles form the vertices of an equilateral triangle.

Solution. The argument is essentially the same as in the next problem. This is
worth going over separately, but we do not do so here.�
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5. Generalize (4) as follows. Let∆ABC and real numbersα, β, andγ be given. Let
A′, B′, andC ′ be points exterior to∆ABC such that∠BA′C = α, ∠AB′C = β,
and∠AC ′B = γ. Also, suppose that the lengths of the sidesBA′ andA′C are the
same, the lengths of the sidesAB′ andB′C are the same, and the lengths of the
sidesAC ′ andC ′B are the same. Show that ifα + β + γ = 2π, then the interior
angles of∆A′B′C ′ are 1

2α, 1
2β, and1

2γ.

Solution. Let f = Rα,A′Rβ,B′Rγ,C′ . Thenf is a translation sinceα+β+γ = 2π.
Sincef(B) = B, we get thatf is the identity translation. Hence,f(C ′) = C ′. Let
C ′′ = Rβ,B′(C ′). Then∠C ′B′C ′′ = β and the lengths ofB′C ′ andB′C ′′ are the
same. Also,

C ′ = f(C ′) = Rα,A′Rβ,B′Rγ,C′(C ′) = Rα,A′Rβ,B′(C ′) = Rα,A′(C ′′).

This means that∠C ′A′C ′′ = α and the lengths ofA′C ′ andA′C ′′ are the same.
One easily gets that the triangles∆A′B′C ′ and ∆A′B′C ′′ are congruent from
which it follows that∠C ′A′B′ = α/2 and ∠C ′B′A′ = β/2. It follows that
∠A′C ′B′ = π − (α/2)− (β/2) = γ/2, giving the desired result.�

Observe that the following is a consequence of the problem. Suppose that∆ABC
is given andD, E, andF are points exterior to∆ABC such that∆DBC, ∆AEC,
and∆ABF are similar so that∠D, ∠E, and∠F are the three angles associated
with these similar triangles. LetA′, B′, andC ′ be the centers of the circumscribed
circles for∆DBC, ∆AEC, and∆ABF , respectively. Then∆A′B′C ′ is similar
to ∆DBC (and, hence, the other two exterior triangles as well).

6. Letn be an odd positive integer, and letP1, . . . , Pn ben (not necessarily distinct)
points. LetA = A0 be an arbitrary point. Forj ∈ {1, . . . , n}, defineAj as the
point you get by rotatingAj−1 aboutPj by π. Forj ∈ {n + 1, . . . , 2n}, defineAj

as the point you get by rotatingAj−1 aboutPj−n by π. Prove thatA2n = A.

Solution. Write n = 2k + 1 wherek is some nonnegative integer. Letf denote
the composition of the firstn rotations aboutP1, . . . , Pn each byπ. Then we want
to show thatf(f(A)) = A. Note that every two rotations byπ are equivalent to a
translation and the composition of translations is a translation. Hence, we can view
f asT(a,b)Rπ,P1 for some(a, b) (wherea = b = 0 if k = 0). By a homework
problem, we can rewrite this as

(
Rπ,(a/2,b/2)

(
Rπ,(0,0)Rπ/2,P1

))
Rπ/2,P1 .

Taking the product of the matrices as indicated by the parentheses above, we get
from the theorem thatf is equivalent to a rotation about some point byπ. It is clear
then thatf(f(A)) = A, completing the argument.�

Comment: The situation whenn is even is thatA is translated since the composi-
tions of the rotations is a translation. It is possible that the translation is the identity
translation in which caseA2n = A.
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7. Let n be an odd positive integer. Suppose that we are given then midpoints of
the sides of ann−gon. Show how one can construct ann−gon with these given
midpoints along its edges.

Solution. Let M1, . . . , Mn be the midpoints. Consider the compositionf of the ro-
tations aboutM1, . . . , Mn each byπ. By the solution to (6), we get thatf is equiv-
alent to a rotation about some point, say A, byπ. We can constructA as follows.
Take any pointB and applyf to it. Note that this is done by successively taking
the rotations aboutMj by π with straightedge and compass forj = 1, 2, . . . , n. We
get some pointC = f(B). SinceB is obtained fromC by a rotation aboutA by π,
we deduce thatA must be the midpoint ofBC. Sincef is equivalent to a rotation
aboutA, we have thatf(A) = A. SetA0 = A and rotate it aboutM1 to obtain
a new point. Call the new pointA1 and rotate it aboutM2 to obtain another point
A2. Continue rotatingAj aboutMj+1 to obtainAj+1 for j ∈ {1, 2, . . . , n − 1}.
Sincef(A) = A, we get thatAn = A0, and the pointsA1, . . . , An are the vertices
of ann−gon as desired.�

Comments: (i) There are many suchn−gons since the order of theMj one chooses
to do the above construction will affect the outcome.

(ii) There is another approach to the problem which may be worth discussing. For
example, supposen = 5 (though any oddn works here). Call the given midpoints
M1, . . . , M5. Let A0, . . . , A4 be the points we are trying to construct withMj

along edgeAj−1Aj for j ∈ {1, . . . , 5} whereA5 = A0. Then the verticesA0, A1,
A2, andA3 are the vertices of a quadrilateral and three of its midpointsM1, M2,
andM3 are known. Using the information from example (2), it is not difficult to
construct the midpointM ′ of A0A3. Now, we know the midpoints of the sides of
triangle∆A0A3A4. Using the information from example (1), we can construct the
verticesA0, A3, andA4. One can modify this argument to obtain the other vertices
or use the approach in the solution above.

8. LetP1, P2, P3, andP4 be 4 (not necessarily distinct) points. LetA be an arbitrary
point. Beginning withA0 = A, for j ∈ {1, 2, 3, 4}, defineAj as the point you get
by rotatingAj−1 aboutPj by π. SetQ1 = P3, Q2 = P4, Q3 = P1, andQ4 = P2.
Beginning withB0 = A, for j ∈ {1, 2, 3, 4}, defineBj as the point you get by
rotatingBj−1 aboutQj by π. Prove thatA4 = B4. (See Figure 1.)

Solution. A rotation aboutP1 by π followed by a rotation aboutP2 by π is a
translation, sayTR. Similarly, a rotation aboutP3 by π followed by a rotation
aboutP4 by π is a translation, sayTS . The problem amounts to establishing that
TSTR = TRTS . This is easy to establish (but note that in general the product of
two matrices does not commute).�

9. LetA, B, C, andD be the vertices of a convex quadrilateral labelled counterclock-
wise. Consider 4 squares exterior to the quadrilateral, one square with an edgeAB,
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one square with an edgeBC, one square with an edgeCD, and one square with an
edgeDA. Let M1 be the center of the square with edgeAB, let M2 be the center
of the square with edgeBC, let M3 be the center of the square with edgeCD, and
let M4 be the center of the square with edgeDA. Show that the length ofM1M3

is the same as the length ofM2M4 and that
←−−→
M1M3 and

←−−→
M2M4 are perpendicular.

Solution. Let

g = Rπ/2,M1Rπ/2,M2 , h = Rπ/2,M3Rπ/2,M4 , and f = gh.

Thenf(A) = A, and we get thatf is the identity translation. Also, there are points
P1 andP2 such thatg is a rotation aboutP1 by π andh is a rotation aboutP2 by
π. It is easy to see (draw a picture) that since a rotation aboutP1 by π followed by
a rotation aboutP2 by π is the identity, we must haveP1 = P2. Next, we observe
that P1 is the only point such thatg(P1) = P1. It follows that∆M2P1M1 is a
isosceles right triangle labelled counterclockwise (sinceP1 so located is mapped
to itself byg). Similarly, ∆M4P2M3 is a isosceles right triangle labelled counter-
clockwise. SinceP1 = P2, we get that∆P1M2M4 is obtained from∆P1M1M3

by a rotation aboutP1 by π/2. This implies that the length ofM1M3 is the same

as the length ofM2M4. Let Q1 be the point of intersection of
←−−→
M1M3 and

←−−→
M2M4

andQ2 the point of intersection of
←−−→
M2M4 and

←−−→
M1P1 (convince yourself these ex-

ist). Then∠M1Q2Q1 = ∠P1Q2M2 and∠Q2M1Q1 = ∠P1M2Q2, and it follows
that ∠M1Q1Q2 = ∠M2P1Q2 = π/2. Thus, the lines

←−−→
M1M3 and

←−−→
M2M4 are

perpendicular.�

Comment: It can be shown that if the original quadrilateral is a parallelogram, then
M1, M2, M3, andM4 form the vertices of a square.
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10. Let∆ABC be a given triangle with the angles∠ABC, ∠BCA, and∠CAB all
acute. LetAP be an altitude drawn fromA so thatP is on BC. Similarly, let
BQ be the altitude drawn fromB andCR the altitude drawn fromC. Show that
∆PQR is a triangle with minimum perimeter that can be inscribed in∆ABC (that
is show that if∆UV W is a triangle withU onBC, V onAC, andW onAB, then
its perimeter is at least that of∆PQR).

Solution. First, we will show that∠PRB = ∠QRA, ∠RPB = ∠QPC, and
∠PQC = ∠RQA. We establish one of these and the other two can be done in the
same way. LetD be the intersection of the altitudes. Since∠DRA = ∠DQA =
π/2, the pointsA, Q, D, andR all lie on a circle. Hence,

∠DRQ = ∠DAQ =
π

2
− ∠ACP.

Since∠DRB = ∠DPB = π/2, the pointsB, P , D, andR all lie on a circle.
Hence,

∠DRP = ∠DBP =
π

2
− ∠BCQ =

π

2
− ∠ACP = ∠DRQ.

Since∠ARC = ∠BRC, we get that∠PRB = ∠QRA. As mentioned, in a
similar fashion, one obtains∠RPB = ∠QPC and∠PQC = ∠RQA.
If you haven’t already started drawing pictures, get out those crayons. To match
some of the discussion here, you should label your points along the triangle asA,
B, andC in a counterclockwise direction. We begin with triangle∆ABC and
reflect it about sideBC to get a new tringle∆A1BC. The 2 triangles are distinct,
congruent, and share the edgeBC. Next, we reflect∆A1BC about sideA1C to
get a new tringle∆A1B1C. Then we reflect∆A1B1C about sideA1B1 to get a
new tringle∆A1B1C1. Next, we reflect∆A1B1C1 about sideB1C1 to get a new
tringle ∆A2B1C1. Finally, we reflect∆A2B1C1 about sideA2C1 to get a new
tringle ∆A2B2C1. If your crayoning technique is mastered, this is what should
happen. Letα = ∠BAC andβ = ∠ABC. Every point along segmentAB is first
rotated aboutB by 2π − 2β, then aboutA1 by 2π − 2α, then aboutB1 by 2β, and
finally aboutA2 by 2α. We can conclude that the segmentAB has been translated
to A2B2. This means that

←→
AB is parallel to

←−−→
A2B2. If we draw in∆PQR and its

reflections, the information from the first paragraph implies that the pointsR, P ,
Q1 (the first reflection ofQ), R2 (the next reflection ofR - there was already anR1

from the first reflection),P2 (the next reflection ofP ), Q3 (the next reflection of
Q), andR4 (the last reflection ofR) are all collinear. Also, the segmentRR4 has
length twice the perimeter of∆PQR. If one similar reflects∆UV W , one finds
thatW is translated to someW4. Here,WW4 andRR4 have the same length (since
R andW went through the same translation), and the length ofWW4 is ≤ twice
the perimeter of∆UV W . The desired conclusion follows.�
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