1. **Homework:** Problem Sheet on Vector Notation
 Quiz: 03/27/02, Wednesday

2. **Theorem 1.** Let \(A \) and \(B \) be distinct points. Then \(C \) is on \(\overrightarrow{AB} \) if and only if there is a real number \(t \) such that \(C = (1 - t)A + tB \).

 Basic Ideas of Proof:
 - \(\overrightarrow{AC} = t \overrightarrow{AB} \)
 - \(C - A = t(B - A) \)

3. **Comment:** In Theorem 1,
 \[
 \frac{t}{1 - t} = \pm \frac{\text{length of } \overrightarrow{AC}}{\text{length of } \overrightarrow{CB}}
 \]
 where a plus sign occurs on the right if and only if \(C \) is between \(A \) and \(B \) and one denominator is 0 if and only if the other denominator is 0.

 Basic Idea of Proof: Consider three cases depending on the position of \(C \) relative to \(A \) and \(B \).

4. **Theorem 2.** If \(A, B \) and \(C \) are collinear, then there exist real numbers \(x, y, \) and \(z \) not all 0 such that
 \[x + y + z = 0 \quad \text{and} \quad xA + yB + zC = \overrightarrow{0}. \]

 Basic Ideas of Proof:
 - If \(A = B \), take \(x = 1, y = -1, \) and \(z = 0. \)
 - Otherwise, use Theorem 1 and take \(x = 1 - t, y = t, \) and \(z = -1. \)

5. **Theorem 3.** If \(A, B \) and \(C \) are points and there exist real numbers \(x, y, \) and \(z \) not all 0 such that
 \[x + y + z = 0 \quad \text{and} \quad xA + yB + zC = \overrightarrow{0}, \]
 then \(A, B \) and \(C \) are collinear.

 Basic Ideas of Proof:
 - Relabel so \(x \neq 0. \)
 - Deduce \(A = (-y/x)B + (-z/x)C \) and \(1 = -y/x - z/x. \)
 - Take \(t = -z/x \) so that \(1 - t = -y/x. \)
 - Use Theorem 1.

6. **Theorem 4.** If \(A, B \) and \(C \) are not collinear and there exist real numbers \(x, y, \) and \(z \) such that
 \[x + y + z = 0 \quad \text{and} \quad xA + yB + zC = \overrightarrow{0}, \]
 then \(x = y = z = 0. \)

 Basic Idea of Proof: This is a rewording of Theorem 3.