
A THEOREM CONCERNING AFFINE PLANES

Theorem: In an affine plane of order n, each point has exactly n + 1 lines passing through it.

Lemma. If ` is a line with exactly n points on it (in a finite affine plane of order n) and A is a point
not on `, then there are exactly n + 1 lines passing through A.

Proof. Consider an ` with exactly n points on it and a point A not on `. Let P1, . . . , Pn be the
points on `. By Axiom A3, for each j ∈ {1, 2, . . . , n}, there exists a line `j passing through A and
Pj . Also, by Axiom A3, these lines are distinct (otherwise, there would be 2 distinct lines passing
through 2 distinct Pj’s, namely the line ` and a line passing through A). By Axiom A4, there is a
line `n+1 parallel to ` passing through A. Since each of `1, . . . , `n intersects `, each of these n lines
is different from the line `n+1. Thus, we have n + 1 distinct lines passing through A. To show that
there are exactly n + 1 lines passing through A, we still need to show that there are no more lines
passing through A. Let `′ be an arbitrary line passing through A. By Axiom A3, there is exactly
one line passing through a point Pj on ` and the point A, namely `j . Thus, if `′ passes through
some Pj , then `′ = `j . On the other hand, if `′ does not pass through some Pj , then `′ is parallel
to `. By Axiom A4, `n+1 is the unique line passing through A and parallel to `, so in this case
`′ = `n+1. Therefore, there are exactly n + 1 lines passing through A. �

Lemma. If ` is a line (in a finite affine plane of order n) and A is a point not on ` with exactly
n + 1 lines passing through it, then ` has exactly n points on it .

Proof. By Axiom A4, exactly n of the lines passing through A intersect `. By Axiom A3, each of
these lines intersects ` in exactly one point (otherwise, there would be 2 distinct lines, namely `
and a line through A, passing through 2 distinct points on `). Also, by Axiom A3, these points of
intersection are distinct (otherwise, there would be 2 distinct lines passing through a point on ` and
the point A). Thus, ` has n distinct points on it. Furthermore, there cannot be another point, say
Q, on `; otherwise, by Axiom A3, there would be another line passing through A and intersecting
` (namely at Q). Therefore, ` has exactly n distinct points on it. �

Proof of Theorem. Let P be an arbitrary point. To prove the theorem, we now consider a line `
with n points on it (which exists by Axiom A2). If P is not on `, then Lemma 1 implies that there
are exactly n + 1 lines passing through P . So suppose P is on `. Let A, B, C, and D be the points
which exist by Axiom A1 so that no 3 of these are collinear. Hence, at most 2 of these 4 points are
on `. By relabelling if necessary, we may suppose that A and B are not on `. Since A, C, and D
are not collinear, we deduce from Axiom A3 that there is a line `1 passing through A and C and
a different line `2 passing through A and D. Since A, B, and C are not collinear and since A, B,
and D are not collinear, the lines `1 and `2 do not pass through B. Also, by Axiom A3, there can
be at most one line passing through A and P ; thus, at least one of `1 and `2, call it `′, does not pass
through P .

Recall that B is a point not on ` and ` has exactly n points on it, so by Lemma 1, we know
that there are exactly n + 1 lines passing through B. Since B is not one `′, we deduce now from
Lemma 2 that there are exactly n points on `′. Since P is not on `′, we deduce from another
application of Lemma 1 that P must have exactly n + 1 lines passing through it. This establishes
the theorem. �


