A THEOREM CONCERNING AFFINE PLANES

Theorem: In an affine plane of order n, each point has exactly n + 1 lines passing through it.

Lemma. If{ is a line with exactly n points on it (in a finite affine plane of order n) and A is a point
not on {, then there are exactly n + 1 lines passing through A.

Proof. Consider an ¢ with exactly n points on it and a point A not on ¢. Let Py, ..., P, be the
points on ¢. By Axiom A3, for each j € {1,2,...,n}, there exists a line ¢; passing through A and
P;. Also, by Axiom A3, these lines are distinct (otherwise, there would be 2 distinct lines passing
through 2 distinct P;’s, namely the line ¢ and a line passing through A). By Axiom A4, there is a
line /,,,, parallel to ¢ passing through A. Since each of /1, ..., ¢, intersects ¢, each of these n lines
is different from the line /,, . Thus, we have n + 1 distinct lines passing through A. To show that
there are exactly n + 1 lines passing through A, we still need to show that there are no more lines
passing through A. Let ¢’ be an arbitrary line passing through A. By Axiom A3, there is exactly
one line passing through a point P; on ¢ and the point A, namely ¢;. Thus, if ¢’ passes through
some P;, then ¢ = ;. On the other hand, if /' does not pass through some P;, then ¢ is parallel
to (. By Axiom A4, ¢, is the unique line passing through A and parallel to ¢, so in this case
¢' = {,, ;1. Therefore, there are exactly n + 1 lines passing through A. B

Lemma. If / is a line (in a finite affine plane of order n) and A is a point not on { with exactly
n + 1 lines passing through it, then { has exactly n points on it .

Proof. By Axiom A4, exactly n of the lines passing through A intersect /. By Axiom A3, each of
these lines intersects ¢ in exactly one point (otherwise, there would be 2 distinct lines, namely ¢
and a line through A, passing through 2 distinct points on £). Also, by Axiom A3, these points of
intersection are distinct (otherwise, there would be 2 distinct lines passing through a point on ¢ and
the point A). Thus, ¢ has n distinct points on it. Furthermore, there cannot be another point, say
@, on /; otherwise, by Axiom A3, there would be another line passing through A and intersecting
¢ (namely at (). Therefore, ¢ has exactly n distinct points on it. ll

Proof of Theorem. Let P be an arbitrary point. To prove the theorem, we now consider a line ¢
with n points on it (which exists by Axiom A2). If P is not on ¢, then Lemma 1 implies that there
are exactly n + 1 lines passing through P. So suppose P ison {. Let A, B, C, and D be the points
which exist by Axiom A1 so that no 3 of these are collinear. Hence, at most 2 of these 4 points are
on /. By relabelling if necessary, we may suppose that A and B are not on /. Since A, C', and D
are not collinear, we deduce from Axiom A3 that there is a line ¢; passing through A and C' and
a different line /5 passing through A and D. Since A, B, and C' are not collinear and since A, B,
and D are not collinear, the lines ¢; and {5 do not pass through B. Also, by Axiom A3, there can
be at most one line passing through A and P; thus, at least one of /; and /5, call it ¢/, does not pass
through P.

Recall that B is a point not on ¢ and ¢ has exactly n points on it, so by Lemma 1, we know
that there are exactly n + 1 lines passing through B. Since B is not one ¢', we deduce now from
Lemma 2 that there are exactly n points on ¢. Since P is not on ¢, we deduce from another
application of Lemma 1 that P must have exactly n + 1 lines passing through it. This establishes
the theorem. W



