1. Calculate an equation for the tangent plane to the surface
\[2(x - 2)^2 + (y - 1)^2 + (z - 3)^2 = 10 \]
at the point \((3, 3, 5)\).

Equation of tangent plane \(P\):

2. Let \(f(x, y) = x^2 - y^2 + 1\), and let \(P\) be the point \((0, 1)\). There are infinitely many different values for the directional derivative of \(f(x, y)\) at the point \(P\) (since there are infinitely many directions that can be used to compute the directional derivative). Which of these is minimal? In other words, what is the least value of the directional derivative of \(f(x, y)\) at the point \(P\)?

Least value of directional derivative at \(P\):