1. Let \(A = (2, 1, -3) \), and let \(P \) be the plane given by \(x + y - z = 0 \). Calculate the point \(B \) on the plane \(P \) that is nearest to \(A \). Simplify your answer.

Point \(B \): \((0, -1, -1)\)

Solution 1: First, we find parametric equations for a line \(\ell \) perpendicular to the plane \(P \) that passes through \(A \). Since a normal to the plane is \(\langle 1, 1, -1 \rangle \), this vector is parallel to (in the direction of) \(\ell \). Since \(\ell \) goes through \(A \), parametric equations for \(\ell \) are given by \(x = 2 + t \), \(y = 1 + t \) and \(z = -3 - t \). The point \(B \) is the point \((2 + t, 1 + t, -3 - t)\) on \(\ell \) which is also on \(P \). Since \(P \) is given by \(x + y - z = 0 \), we want

\[
(2 + t) + (1 + t) - (-3 - t) = 0 \quad \text{or, equivalently,} \quad 6 + 3t = 0.
\]

This implies \(t = -2 \), so the point \(B \) is \((2 - 2, 1 - 2, -3 - (-2)) = (0, -1, -1)\). ■

Solution 2: The point \(Q = (0, 0, 0) \) is on the plane \(P \) (any point \(Q \) on \(P \) can be used here). We compute the projection of the vector \(\overrightarrow{QA} = \langle 2, 1, -3 \rangle \) onto the normal \(\overrightarrow{n} = \langle 1, 1, -1 \rangle \) to plane \(P \). This is given by

\[
\text{proj}_{\overrightarrow{n}} \overrightarrow{QA} = \frac{\overrightarrow{n} \cdot \overrightarrow{QA}}{\|\overrightarrow{n}\|^2} \overrightarrow{n} = \frac{6}{\sqrt{3}} \langle 1, 1, -1 \rangle = 2 \langle 1, 1, -1 \rangle = \langle 2, 2, -2 \rangle.
\]

We want then a point \(B \) such that \(\overrightarrow{BA} = \langle 2, 2, -2 \rangle \). Since \(A = (2, 1, -3) \), we deduce \(B = (2 - 2, 1 - 2, -3 - (-2)) = (0, -1, -1) \). ■

2. The two planes given by \(x - 2y + z = 4 \) and \(2x + y - 2z = 5 \) intersect in a line \(\ell \). Find the parametric equations for the line \(\ell' \) which is parallel to \(\ell \) and passes through the point \((1, 1, 0)\).

Line:

\[
\begin{align*}
x &= 1 + 3t \\
y &= 1 + 4t \\
z &= 5t
\end{align*}
\]

Solution: The normals to the planes, given by \(\overrightarrow{n}_1 = \langle 1, -2, 1 \rangle \) and \(\overrightarrow{n}_2 = \langle 2, 1, -2 \rangle \), are both perpendicular to a vector parallel to \(\ell \) and, hence, parallel to \(\ell' \). So a vector perpendicular to both \(\overrightarrow{n}_1 \) and \(\overrightarrow{n}_2 \) will be parallel to \(\ell' \). We can find such a vector by computing

\[
\overrightarrow{n}_1 \times \overrightarrow{n}_2 = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 1 \\
2 & 1 & -2
\end{vmatrix} = \langle 3, 4, 5 \rangle.
\]

Since \((1, 1, 0)\) is on \(\ell' \), parametric equations for \(\ell' \) are given by \(x = 1 + 3t \), \(y = 1 + 4t \) and \(z = 5t \). ■