What decimal is associated with this figure? (The 100 small squares represent 1 unit.)
Which of the following is a proper fraction?

A. $\frac{-2}{3}$

B. $\frac{19}{18}$

C. $\frac{\sqrt{2}}{100}$

D. 1
Which equation in rationals is illustrated to the right?

A: \[\frac{1}{3} + \frac{3}{5} = \frac{14}{15} \]

B: \[\frac{3}{10} + \frac{8}{10} = \frac{11}{10} \]

C: \[\frac{2}{3} + \frac{1}{4} = \frac{11}{12} \]

D: \[\frac{3}{4} + \frac{1}{6} = \frac{11}{12} \]
What fraction of the three pizzas is missing?

A. 2/5
B. 1/3
C. 7/15
D. 3/8
What’s the value of $C \cdot D$?
Which of the following is not always true?
(Here, \(a\), \(b\), \(c\) and \(d\) are positive integers.)

A. \[
\frac{a}{b} \times \frac{c}{d} = \frac{a}{b} \div \frac{c}{d}
\]

B. \[
\frac{a}{b} \times \frac{c}{d} = \frac{a \cdot c}{b \cdot d}
\]

C. \[
\frac{a}{b} \div \frac{c}{d} = \frac{a \div c}{b \div d}
\]

D. \[
\frac{a}{b} + \frac{c}{d} = \frac{a + c}{b + d}
\]
What number is the greatest common divisor of the three numbers 15, 130 and 10000?

A. 1
B. 5
C. 15
D. 390000
Which of the following is true?

A. The decimal expansion of an irrational number cannot have a pattern.

B. Most real numbers are irrational.

C. The number \(\pi \) equals \(\frac{22}{7} \).

D. It is possible to make a list that includes all irrational numbers.
Which one of the fractions below can be written as a terminating decimal?

A \[\frac{32}{576} \]
B \[\frac{135}{576} \]
C \[\frac{25}{576} \]
D \[\frac{24}{576} \]
Which of the following numbers is the largest?

A. $\sqrt[6]{2}$

B. $\sqrt[20]{10}$

C. $\sqrt[15]{5}$

D. $\sqrt[10]{3}$