1. Return quizzes (33 total, 62.1% ave., 0 perfects, 6 scores of 9.5; 6 A’s, 2 B’s, 8 C’s, 4 D’s, 13 F’s)

2. Go over homework questions.

3. Homework: pages 138–139, numbers 1, 3, 5, 6, 7, 11, 29, 30, 31, 33
 page 146, numbers 1, 5, 7(b), 8(b)
 Quiz: Thursday (09/20)
 Test: Tuesday (10/02) ← as voted on in class

4. **Definitions:**
 \(r \) is rational \iff \exists \text{ integers } a \text{ and } b \text{ such that } r = a/b \text{ and } b \neq 0
 \(r \in \mathbb{R} \) is irrational \iff r is not rational

5. **Example:** Explain why the sum of two rational numbers is rational.

6. **Definitions and Notations:** For \(n \) and \(d \) integers with \(d \neq 0 \), we write \(d \mid n \) (read “d divides n”) if \(\exists k \in \mathbb{Z} \) such that \(n = kd \). The following all have the same meaning:
 \(d \) divides \(n \)
 \(d \) is a factor of \(n \)
 \(d \) is a divisor of \(n \)
 \(n \) is divisible by \(d \)
 \(n \) is a multiple of \(d \)

7. **Examples:**
 (1) Each of the following are true:

 \[
 2 \mid 22 \quad 3 \mid 21 \quad 7 \mid 21 \quad 6 \mid (-36) \quad (-6) \mid 36 \quad (-6) \mid (-36) \quad 1 \mid 17 \quad 23 \mid 0 \quad 3 \mid (-3) \quad 6 \mid 3 \quad 6 \mid 7
 \]

 (2) What are the divisors of 18?

 (3) What are the prime divisors of 18?

 (4) If \(p \) is a prime, then what are its divisors?

 (5) page 138, numbers 4, 12

8. **Theorem 3.3.3** [Unique Factorization Theorem or The Fundamental Theorem of Arithmetic]: Every positive integer > 1 can be written uniquely in the form
 \[
 p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},
 \]
 where \(p_1, p_2, \ldots, p_k \) are primes and \(e_1, e_2, \ldots, e_k \) are positive integers, except for the order in which the prime powers appear.

9. **Examples:**
 (1) Completely factor 120?

 (2) Completely factor 221?

10. **Comment:** If a positive integer \(n \) is composite, then \(n \) has a divisor > 1 and \(\leq \sqrt{n} \). Furthermore, one can find such a divisor that is prime.

11. **Theorem 3.4.1** If \(n \) and \(d \) are integers with \(d > 0 \), then there exist unique integers \(q \) (called the “quotient”) and \(r \) (called the “remainder”) satisfying

 \[
 n = dq + r \quad \text{and} \quad 0 \leq r < d.
 \]

Note: The notation \(n \mod d \) is used to denote the remainder \(r \).