1. Let \(p \equiv 1 \pmod{4} \) be a prime number. Define \(R \) to be the set of integers in \(\{1, 2, \ldots, p - 1\} \) which are quadratic residues modulo \(p \), and \(N \) to be the set of integers in \(\{1, 2, \ldots, p - 1\} \) which are quadratic nonresidues modulo \(p \). (For example, if \(p = 5 \), then \(R = \{1, 4\} \), and \(N = \{2, 3\} \).) Prove that
\[
\sum_{n \in R} n = \sum_{n \in N} n.
\]
(In other words, show that the sum of the elements of the set \(R \) equals the sum of the elements of the set \(N \).)

2. Let \(a \geq 2 \) and \(b \geq 2 \) be relatively prime integers. Let \(S \) be the set of positive integers which can be represented in the form \(ak + bl \) with \(k \) and \(l \) nonnegative integers. (For example, it is not difficult to show that if \(a = 2 \) and \(b = 3 \), then \(S = \{2, 3, 4, 5, \ldots\} \).) Prove that the largest positive integer which is not in \(S \) is \(ab - a - b \). (Hint: If \(n \) is an integer, then at least one of the numbers \(n, n - a, \ldots, n - (b - 1)a \) is divisible by \(b \).)

3. Let \(n \) be a positive integer.
 (a) Find the order of 2 modulo \(2^{2n} + 1 \).
 (b) Let \(p \) be a prime divisor of \(2^{2n} + 1 \). Prove that \(p \equiv 1 \pmod{2^{n+1}} \).
 (c) Let \(k \) be a positive integer. Using (b), prove that there exist infinitely many primes which are congruent to 1 modulo \(2^{k+1} \).

4. Let \(p \) be a prime number.
 (a) Suppose that \(p \) is odd and is not of the form \(8k + 5 \) with \(k \) an integer. Prove that the congruence \(a^4 \equiv 4 \pmod{p} \) has an integer solution.
 (b) Suppose that \(p \) is of the form \(8k + 5 \) with \(k \) an integer. Prove that the congruence \(a^4 \equiv -4 \pmod{p} \) has an integer solution.
 (c) Prove that for any prime \(p \) the congruence \(a^8 \equiv 16 \pmod{p} \) has an integer solution.

5. Let \((x_n, y_n) \) denote the \(n \)th positive integral pair \((x, y) \) satisfying \(x^2 - 2y^2 = 1 \) (ordered so that \(x_1 < x_2 < \cdots \)). Thus, for example, \((x_1, y_1) = (3, 2) \) and \((x_2, y_2) = (17, 12) \). Let \(p \) be a prime. Prove that
\[
x_p \equiv x_1 \pmod{p} \quad \text{and} \quad y_p \equiv y_1 \pmod{p} \quad \iff \quad p \equiv \pm 1 \pmod{8}.
\]
(Comment: This is meant to test your knowledge of both Math 780 and Math 784.)

6. Prove the following theorem from class, giving as many details as you can.

Theorem Let \(\alpha \) be an algebraic number with minimal polynomial \(f(x) = x^n + \sum_{j=0}^{n-1} q_j x^j \in \mathbb{Q}[x] \). Every element of \(\mathbb{Q}(\alpha) \) can be expressed uniquely in the form \(g(\alpha) \) where \(g(x) \in \mathbb{Q}[x] \) with \(g(x) \equiv 0 \) or \(\deg g(x) \leq n - 1 \).
7. Let R be the ring of algebraic integers in $\mathbb{Q}(\sqrt{-47})$. Let I be the ideal in R generated by $(3 + \sqrt{-47})/2$ and 2. Thus,

$$I = \left(\frac{3 + \sqrt{-47}}{2}, 2\right).$$

(a) Is I principal? (In other words, does there exist an $\alpha \in R$ such that $I = (\alpha)$?)

(b) Let

$$J = \left(\frac{3 - \sqrt{-47}}{2}, 2\right).$$

The product of the ideals I and J is a principal ideal (β) for some $\beta \in R$. Find such a β.

(c) Compute the norm of the ideal I (in the ring R).

8. The following concerns the Diophantine equation $x^2 + 13 = y^3$. The class number (the size of the class group) associated with the field $\mathbb{Q}(\sqrt{-13})$ is 2. In particular, the ring of integers R in $\mathbb{Q}(\sqrt{-13})$ is not a PID.

(a) Suppose A is an ideal in R and A^3 is principal. Justify that A is necessarily a principal ideal in R. (Use that the class number is 2. You do not have to prove that the class number is 2.)

(b) Suppose x_0 and y_0 are rational integers for which $x_0^2 + 13 = y_0^3$. Justify that $\gcd(y_0, 26) = 1$.

(c) With the notation in part (b), justify that the ideals $(x_0 + \sqrt{-13})$ and $(x_0 - \sqrt{-13})$ are relatively prime.

(d) Explain why there is a principal ideal $(a + b\sqrt{-13})$ in R such that $(x_0 + \sqrt{-13}) = (a + b\sqrt{-13})^3$.

(e) Solve the Diophantine equation $x^2 + 13 = y^3$ (i.e., find with proof all integer pairs (x_0, y_0) such that $x_0^2 + 13 = y_0^3$).