PAImetto Number Theory Series
University of South Carolina, December 3-4, 2016

Schedule of Activities
(All talks are in LeConte 412. Coffee and refreshments are in the Wyman Williams Room, next to 412.)

Saturday, December 3, 2016

9:00 COFFEE AND OTHER REFRESHMENTS

9:30 Lea Beneish (Emory University), Moonshine modules and a question of Griess

9:55 Wilson Harvey (University of South Carolina), Covering Thin Subsets of the Integers

10:20 Ali Uncu (University of Florida), Weighted Partition Results Inspired by Nathan Fine’s False Theta Identities

10:40 COFFEE BREAK

11:00 Alexandra Florea (Stanford University), The 4th moment of quadratic Dirichlet L-functions in function fields

LUNCH (a list of restaurants in the area will be made available)

1:40 Elena Fuchs (UC Davis), Thin groups and expander graphs in number theory

2:40 COFFEE BREAK

3:00 Jackson Morrow (Emory University), Selmer groups of elliptic curves over K with K-rational torsion points

3:25 Kate Thompson (DePaul University), Almost Universal Quadratic Forms

3:50 Luis Finotti (University of Tennessee), Weierstrass Coefficients of the Canonical Lifting

4:10 COFFEE BREAK

4:30 Efrat Bank (University of Michigan), Primes in short intervals on curves over finite fields

8:00 Social Gathering (details will be given at meeting)

The organizers thank the National Science Foundation, the National Security Agency and the Mathematics Department at the University of South Carolina for their support.
Sunday, December 4, 2016

8:30 COFFEE AND OTHER REFRESHMENTS

9:00 Nigel Boston (University of Wisconsin-Madison), *Non-abelian Cohen-Lenstra heuristics*

10:05 Bobby Grizzard (University of Wisconsin-Madison), *Slicing the stars*

10:30 COFFEE BREAK

10:45 Arul Shankar (University of Toronto), *Polynomials with square-free discriminant*

11:55 Stevo Bozinovski (South Carolina State University), *A property of Riemann zeta function in the context of Analytic Number Theory*

12:20 Jesse Kass (University of South Carolina), *A classical proof that the algebraic homotopy class of a rational function is the residue pairing*

12:40 END OF CONFERENCE