VITA FOR MICHAEL FILASETA

Address: Department of Mathematics University of South Carolina Columbia, SC 29208 Email: filaseta@math.sc.edu URL: http://www.math.sc.edu/~filaseta/

Education:

- Ph.D. University of Illinois at Champaign-Urbana (1984)
- B.A. University of Arizona (1980)

Professional Experience:

Carolina Trustee Professor Emeritus (2020-present) Carolina Trustees Professor (2017-2020) Full Professor, University of South Carolina (1995-2017) Assistant Chair, Mathematics Department, University of South Carolina (2012-2017) Associate Professor, University of South Carolina (1989-1995) Assistant Professor, University of South Carolina (1984-1989)

Grants:

Duration	Agency	Туре	Title
2015-2016	NSA	PI	Polynomial Research in Number Theory
2014-2015	NSA	PI	Number Theoretic Problems on Polynomials
2012-2014	NSA	PI	Polynomial Problems in Analytic Number Theory
2004-2007	NSA	PI	Fac lac plyns & Galois grps of Laguerre plyns (with Douglas Meade)
2002-2006	NSF	PI	On the factorization of lacunary polynomials (with Douglas Meade)
2000-2003	NSF	Co-PI	SCREMS Proposal
1998-2000	NSA	PI	Problems on the irreducibility of polynomials
1997-1999	NSA	PI	Finite differences & irreduc. techniques in Analytic Number Theory
1994-1997	NSF	PI	Finite diff. techniques & irreducibility thms in Analytic Num. Theory
1994-1996	NSF	Co-PI	Computational equip. for Algebra, Combin., and Number Theory
1992-1994	NSA	PI	Problems related to finite differences, fract. parts, and irreducibility
1989-1991	NSF	PI	Gaps between k-free numbers, finite differences, & exponential sums

Other Awards and Honors:

Faculty Fellow of the South Carolina Honors College (2014-2017)
Mungo Graduate Teaching Award, 2010
UofSC Promising Investigator Research Award, 2010
Mortar Board Excellence in Teaching Award, 1994
The Distinguished Award of the Hardy-Ramanujan Society (with Ognian Trifonov), 1991
UofSC Research and Productive Scholarship Grant (Univ. of S. Carolina, 1985-1986)
University Fellowship (University of Illinois, 1980-1982)

Year	Name	Dissertation Title
2024	Robert Groth	Generalized Sierpiński numbers and new irreducibility criteria on Legendre polynomials
2023	Thomas Luckner	Widely digitally delicate Brier primes and irreducibility results for some classes of polynomials
2021	Joseph Foster	Polynomials, primes and the PTE problem
2021	Jacob Juillerat	Widely digitally stable numbers and irreducibility criteria for polyno- mials with prime values
2020	Jeremiah Southwick	Two inquiries related to the digits of prime numbers
2017	Wilson Harvey	Covering subsets of the integers and a result on digits of Fibonacci numbers
2014	Scott Dunn	Explorations in elementary and analytic number theory
2013	Joshua Harrington	Selected research in covering systems of the integers and the factor- ization of polynomials
2012	Samuel Gross	Irreducibility criteria for polynomials with non-negative integer coef- ficients, and the prime factorization of $f(n)$ for $f(x)$ in $\mathbb{Z}[x]$
2012	Andrew Vincent	Classifying polynomials with reducible nonreciprocal parts and the factorization of values of polynomials
2010	Pradipto Banerjee	On a conjecture of Pál Turán and investigations into Galois groups of generalized Laguerre polynomials
2009	Dan Baczkowski	Diophantine equations involving factorials and lattice points close to smooth curves
2007	Mark Kozek	Applications of covering systems of integers and Goldbach's conjec- ture for monic polynomials
2006	Carrie Finch	Topics from the irreducibility of polynomials and coverings of the in- tegers
2004	Travis Kidd	On the irreducibility of the Laguerre polynomials $L_m^{(m)}(x)$
2001	Martha Allen	Generalizations of the irreducibility theorems of I. Schur
2001	Angel Kumchev	Diophantine problems involving prime numbers
2000	Richard L. Williams	The irreducibility of a certain class of Laguerre polynomials
1996	Ikhalfani Solan	Norms of factors of polynomials, an extension of a theorem of Ljung- gren, and the distribution of k-free numbers
1995	Brian D. Beasley	The distribution of powerfree values of irreducible polynomials

Former Masters Students (23 total):

Year	Name	Thesis Title
2022	Maria Cummings	Covering systems and the minimum modulus problem
2017	Spencer Saunders	Polynomials with small Mahler measure and no Newman multiples

Year	Name	Thesis Title
2016	Maria Markovich	On a constant associated with the Prouhet-Tarry-Escott problem
2014	Melissa Bechard	The non-existence of a covering system with all moduli distinct, large and square-free
2013	Morgan Cole	Sharp bounds associated with an irreducibility theorem for polynomials having non-negative coefficients
2013	Daniel White	Coloring Pythagorean triples and a problem concerning cyclotomic poly- nomials
2011	Paul Hendrick	A bound for the irrationality measure of $\zeta(3)$
2007	J Russell Leidy	Galois groups of Laguerre polynomials
2004	Manton Matthews	On the factorization of $f(x)x^n + g(x)$
2003	Robert Murphy	Factorization of polynomials with small Euclidean norm
2001	Michael Williams	<i>Eisenstein's criterion applied to mth order Bernoulli polynomials of de- gree m</i>
1999	Martha Allen	The irreducibility theorems of I. Schur
1998	James Blair	Determining the irreducibility of polynomials through the use of Newton polygons
1997	Brian Hipp	A variation on a theorem of Ljunggren
1996	Gerald Baygents	Reducibility criterion in polyns. with non-negative coefficients
1995	Patrick Harley	On a generalization of an irreducibility theorem of I. Schur
1995	Shannon Smith	An algorithm of Lenstra, Lenstra, and Lovasz
1989	Roger Rosenthal	Dirichlet's theorem for polynomials
1989	Grace De Ramos	Elementary approaches to a gap problem involving k-free numbers
1989	Jacklyn Pitts	On an irreducibility theorem of I. Schur
1989	Angela Andrews	On the density of irreducible polynomials with coefficients 0 and 1
1988	Melonie Rodgers	Problems and results on irreducible polynomials
1987	Janis Alexander	Irred. criteria for polynomials with non-negative coefficients

Former Masters Students (Continued):

Current Students:

Alexandros Kalogirou (Ph.D.)

Conference Organization:

PAlmetto Number Theory Series, UofSC, 12/2024 (with Boylan, Thorne and Tsai)
PAlmetto Number Theory Series, UofSC, 12/2022 (with Boylan and Thorne)
Analytic and Combinatorial Number Theory: The Legacy of Ramanujan, U of I, 06/2019 (with Scott Ahlgren, George Andrews, Atul Dixit, Kevin Ford, A. J. Hildebrand, Timothy Huber, Bruce Reznick and Ae Ja Yee)

PAlmetto Number Theory Series, UofSC, 12/2018 (with Boylan and Thorne) PAlmetto Number Theory Series, UofSC, 12/2016 (with Boylan and Thorne) PAlmetto Number Theory Series, UofSC, 12/2014 (with Boylan and Thorne) PAlmetto Number Theory Series, UofSC, 12/2012 (with Boylan and Thorne) PAlmetto Number Theory Series, UofSC, 12/2010 (with Boylan) PAlmetto Number Theory Series, UofSC, 12/2009 (with Boylan) Workshop on Discovery and Experimentation in Number Theory, Fields Institute, Toronto, Canada, 09/2009 (with Borwein, Hare, Mossinghoff, Smyth) PAlmetto Number Theory Series, UofSC, 12/2008 (with Boylan & Trifonov) PAlmetto Number Theory Series, UofSC, 2007 (with Boylan & Trifonov) Illinois Number Theory Fest, UIUC, 2007 (with Berndt, Daimond & Ford) PAlmetto Number Theory Series, UofSC, 2006 (with Boston & Boylan) South East Regional Meeting On Numbers, UofSC, 2005 (with Murhpy, Trifonov & Yu) MSRI Summer Graduate Program (jointly with P. Borwein, 2 weeks in 06/02) Session of AMS Sectional Meeting in Columbia, SC, 2001 (with Trifonov) South East Regional Meeting On Numbers, UofSC, 1999 (with Trifonov, Ford & Hudson) Session of AMS Sectional Meeting in DeKalb, Illinois, 1993 (with Pomerance) South East Regional Meeting On Numbers, UofSC, 1993

Invited Lectures (since 2002):

A lively journey through sparse polynomials, Kennesaw State colloquium, virtual (11/10/23)

Excursions into the factorization of lacunary polynomials, Oklahoma State University Seminar, Stillwater, OK (03/23/23)

Rotations and translations in Geometry, Stepping Stone program, virtual (03/27/22)

Excursions in digitally delicate primes, Montréal Online Biweekly Inter-University Seminar on Analytic Number Theory, virtual (03/03/22)

Random thoughts related to gaps between squarefree numbers, Towson University seminar, Towson, MD (05/05/22)

On a dense universal Hilbert set, Indian Statistical Institute, Delhi Centre, virtual (11/11/20)

On a dense universal Hilbert set, Towson University Colloquium, virtual (11/06/20)

On a dense universal Hilbert set, Upstate New York Online Number Theory Colloquium, virtual (07/20/20)

Two excursions in digitally delicate primes, Combinatorial and Additive Number Theory (CANT) 2020, virtual conference (06/03/20)

On a problem of Turán and sparse polynomials, Field Arithmetic Seminar, Tel Aviv University, virtual (05/27/20)

Widely Digitally Delicate Primes, Math Club Talk, Clemson University, Clemson, SC (12/13/19) 49598666989151226098104244512918, Colloquium talk, Dalhousie University, Halifax, Nova Scotia, CA (12/10/19)

Practical aspects of testing the irreducibility of the non-reciprocal part of a 0, 1-*polynomial*, plenary talk, INTEGERS Conference 2018, Augusta, GA (10/05/18)

49598666989151226098104244512918, Number Theory Week 2017, Adam Mickiewicz University, Poznań, Poland (09/07/17)

49598666989151226098104244512918, plenary talk, Seventh Annual Upstate New York Num-

ber Theory Conference, Binghamton University, Binghamton, NY (05/07/17)

Roots of polynomials with integer coefficients, AMS Sectional Meeting, Special Session on Experimental Mathematics, University of Georgia, Athens, GA (03/05/16)

Regions containing roots of polynomials, The Geometry, Algebra and Analysis of Algebraic Numbers, Banff International Research Center, Banff, CA (10/6/15)

Coverings of subsets of the integers, Elementary, analytic, and algorithmic number theory: Research inspired by the mathematics of Carl Pomerance, Athens, GA (06/09/15)

The distribution of primes in determining classes of irreducible polynomials, Spring Southeastern Sectional Meeting of the AMS, Special Session on Analytic Methods in Elementary Number Theory, University of Alabama in Huntsville, Huntsville, AL (03/28/15)

Trace fields of hyperbolic 3-manifolds and the factorization of sparse polynomials, AMS Sectional Meeting, Special Session on Connections in Number Theory, University of North Carolina at Greensboro, Greensboro, NC (11/09/14)

Integral points on curves and Hilbert's Irreducibility Theorem, AMS Sectional Meeting, Special Session on Experimental Mathematics in Number Theory, Analysis, and Combinatorics, Dalhousie University, Halifax, Canada (10/18/14)

49598666989151226098104244512917, Canadian Number Theory Association Meeting, Carleton University, Ottawa, CA (06/17/14)

Starting with gaps between k-free numbers, Number Theory at Illinois: A Conference in Memory of the Batemans and Heini Halberstam, Urbana, IL (06/06/14)

The genus behind Hilbert's Irreducibility Theorem, AMS Sectional Meeting, AMS Special Session on Arithmetic of Algebraic Curves, Knoxville, TN (03/22/14)

Applications of the prime factorization of the product of consecutive integers to polynomials, Joint AMS-MAA Meeting, MAA Invited Paper Session on the Continuing Influence of Paul Erdős in Number Theory, Baltimore, MD (01/17/14)

The genus behind Hilbert's Irreducibility Theorem and/or a connection of this theorem to Linnik's result on the smallest prime in an arithmetic progression, Joint AMS-MAA Meeting, AMS Special Session on Analytic Number Theory, Baltimore, MD (01/17/14)

Problems connected to the factorization of $f(x)x^n + g(x)$ and roots outside the unit disk, 2013 Canadian Mathematical Society, Halifax, CA (06/06/13)

A polynomial problem of Turán modulo primes, Joint AMS-MAA Meeting, AMS Special Session on the Coverings of the Integers, San Diego, CA (01/11/13)

49598666989151226098104244512918, Univ. of Waterloo Number Theory Seminar (12/18/12)

49598666989151226098104244512918, Univ. of Illinois Number Theory Seminar (10/18/12)

49598666989151226098104244512918 and 8592444743529135815769545955936773, AMS Sectional Meeting, Special Session on Analytic Number Theory, Rochester, NY (09/23/12)

On a polynomial conjecture of Turán, Canadian Number Theory Association Meeting, Lethridge, Canada (06/21/12)

A survey of results related to the Galois structure of Laguerre polynomials, Olemiss Seminar, The University of Mississippi, MS (10/21/11)

A polynomial conjecture of P. Turán, Olemiss Colloquium, The University of Mississippi, MS

(10/20/11)

Four Seemingly Unrelated Problems, Georgia Tech Seminar, Georgia Tech, GA (02/25/11)

On the irreducibility and Galois structure of Laguerre polynomials, XXIst Rencontres Arithmétiques de Caen, Factorisation des nombres entiers et des polynômes, Université de Caen, Caen, France (06/25/10)

A survey of results related to the Galois structure of Laguerre polynomials, Diophantine Approximation and Analytic Number Theory: A Tribute to Cam Stewart, Banff International Research Station, Banff, Canada (06/03/10)

Missed it by that much, AMS Session on "Special Session on Analytic Number Theory," Penn State, State College, PA (10/25/09)

Open problems on covering systems, Workshop on Discovery and Experimentation in Number Theory, Fields Institute, Toronto, Canada (09/25/09)

Open problems on covering systems, AMS Session on "Number Theory in the Spirit of Erdős," University of Illinois, Urbana, IL (03/28/09)

Diophantine equations arising from the study of Galois groups, Hans Heilbronn 100th Birthday Conference, University of Bristol, Brirstol, UK (09/25/08)

Miscellaneous problems on the factorization of 0,1-polynomials, Conference on the Mathematical Interests of Peter Borwein, IRMACS, Simon Fraser University, Vancouver, CA (05/08)

A Diophantine problem arising from a study in Galois groups, Spring Western AMS Sectional Meeting, Claremont McKenna College, Claremont, CA, Special Session on Diophantine Problems and Discrete Geometry (05/08)

Diophantine equations arising from the study of Galois groups, Colloquium at Kent State University (04/08)

Irreducibility and gcd algorithms for sparse polynomials, Texas A&M Number Theory Seminar (03/08)

Irreducibility and gcd algorithms for sparse polynomials, Illinois Number Theory Fest, University of Illinois, Urbana, IL (05/07)

Prime divisors of binomial coefficients and the like, AMS Regional Meeting, Hoboken, NJ (04/07)

Some recent applications of covering systems of the integers, AMS Regional Meeting, Davidson College, NC (03/07)

Applications of Padé approximants to number theory, Concordia University (Montreal, Quebec, Canada), Number Theory Seminar (01/07)

Irreducibility and gcd algorithms for sparse polynomials, University of Montreal (Montreal, Quebec, Canada), Number Theory Seminar (01/07)

Irreducibility and coprimality algorithms for sparse polynomials, Number Theory and Polynomials Conference, Bristol, England (04/06)

Different uses of Diophantine analysis in the theory of irreducibility, Diophantine Equations Conference at the Tata Institute of Fundamental Research in Honor of T. N. Shorey's 60th birthday, Mumbai, India (12/05)

Recent advances in covering problems, Combinatorial and Additive Number Theory (CANT

2005), in honor of Mel Nathanson, New York, NY (05/05)

Recent advances in covering problems, The Pacific North West Number Theory Conference IX, Simon Fraser University, Vancouver, CA (04/05)

Applications of Padé Approximations of $(1 - z)^k$ to Number Theory, BIRS Workshop on Diophantine Approximation and Analytic Number Theory, Banff, CA (11/04)

Some remarkable polynomials, The 19th Clemson mini-Conference on Discrete Mathematics and Related Fields, Clemson, SC (10/04)

Applications of Padé Approximations of $(1 - z)^k$ to Number Theory, REU Talk, Clemson University, Clemson, SC (06/03)

Primality Testing in Polynomial Time, Colloquium for the Department of Computer Science and Engineering at UofSC, Columbia, SC (10/02)

Applications of Padé Approximations of $(1 - z)^k$ to Number Theory, Penn State, State College, PA (04/02)

On the factorization of n(n + 1), AMS Regional Meeting, Atlanta, GA (03/02)

Refereed for the Following (over 60 research journals): Acta Arithmetica; Acta Mathematica Sinica; Advances in Applied Mathematics; Algebra & Number Theory; American Mathematical Monthly; Annales des Sciences Mathematiques du Quebec; Applicable Analysis and Discrete Mathematics; Ars Combinatoria; British Journal of Applied Science & Technology; Bulletin of the Australian Mathematical Society; Bulletin of the London Mathematical Society; Bulletin of the Malaysian Mathematical Society; Canadian Mathematical Bulletin; Central European Journal of Mathematics; Cogent Mathematics; Colloquium Mathematicum; Contemporary Mathematics; Discrete Mathematics; l'Enseignement Mathematique; Fibonacci Quarterly; Functiones et Approximatio Commentarii Mathematici; Glasgow Mathematical Journal; Hardy Ramanujan Journal; Houston Journal of Mathematics; Illinois Journal of Mathematics; Indagationes Mathematicae; Integers: Electronic Journal of Combinatorial Number Theory; International Journal of Mathematics and Mathematical Sciences; International Journal of Number Theory; Involve, a Journal of Mathematics; Journal of Algebra and Its Applications; Journal für die reine und angewandte Mathematik (Crelle's Journal); Journal of Combinatorial Theory, Series A; Journal of Combinatorics and Number Theory; Journal of Graph Theory; Journal of Inequalities in Pure and Applied Mathematics; Journal of Integer Sequences; Journal of Number Theory; Journal of Systems and Software; Journal of Theoretical Biology; Mathematica Scandinavica; Mathematica Slovaca; Mathematical Proceedings of the Cambridge Philosophical Society; Mathematical Reports for the Canadian Academy of Sciences; Mathematics of Computation; Mathematics Student; Mathematische Zeitschrift; Monatshefte für Mathematik; Moscow Journal of Combinatorics and Number Theory; Nagoya Mathematical Journal; New York Journal of Mathematics; New Zealand Journal of Mathematics; Pacific Journal of Mathematics; Proceedings of the American Mathematical Society; Proceedings of the London Mathematical Society; Publicationes Mathematicae Debrecen; Ramanujan Journal; Research in Number Theory; Revista Colombiana de Matematicas; Rocky Mountain Journal of Mathematics; Sbornik: Mathematics; SIAM Journal on Discrete Mathematics; South East Asian Journal of Mathematics and Mathematical Sciences; Topology and Its Applications; Transactions of the American Mathematical Society [and Mathematical Reviews; CRC Press (Taylor & Francis Group, book proposal); Springer-Verlag (CMS book series); SPEC-TRUM Series of Books for the MAA; Proceedings of Conferences (from Canada, Cardiff, Illinois, & Poland)]

Miscellaneous Other Activities:

Managing editor for the International Journal of Number Theory (2018-present) Editorial board (handling editor) for the International Journal of Number Theory (2012-2018) Editorial board for The Ramanujan Journal (2022-present) Editorial board for Integers Electronic Journal of Combinatorial Number Theory (2016-present) NSF Grant Review Panel for Algebra and Number Theory (2016, 2019) AMS MSP Number Theory Review Panel for NSA Grants (2015-2016) Mungo Graduate Teaching Award Committee (2010-2014, 2019) ASPIRE Award review committee (2012-2013) AMS-MAA Committee on Mathematicians with Disabilities (2011-2013) South Carolina Math Advisory Panel (for the SC State Department of Education; 2008) Spectrum Editorial Board for the MAA (2001-2007) Collaborating Editor for the Problem Section of the Mathematical Monthly (1991-1997) Grader for the William Lowell Putnam Competition (1996, 1997, 1999, 2002, 2015, 2016) Member of the All-State High School Mathematics Selection Committee (1990-2005)

Main Research Publications:

- [1] M. Filaseta and A. Kalogirou, *Covering systems with the sum of the reciprocals of the moduli close to* 1, https://arxiv.org/pdf/2407.15280.
- [2] M. Filaseta and F. Luca, On the distance between factorials and repunits, https://arxiv.org/pdf/2411.09060.
- [3] M. Filaseta, J. Klein and C. Sabuncu, On extreme values of $r_3(n)$ in arithmetic progressions, https://arxiv.org/pdf/2412.01988.
- [4] M. Filaseta and S. Garoufalidis, *Factorization of polynomials in hyperbolic geometry and dynamics*, submitted, https://arxiv.org/abs/2209.08449.
- [5] M. Cummings, M. Filaseta and O. Trifonov, *An upper bound for the minimum modulus in a covering system with squarefree moduli*, Acta Math. Hung., to appear https://arxiv.org/abs/2211.08548.
- [6] M. Allen and M. Filaseta, A generalization of a fourth irreducibility theorem of I. Schur, Hardy-Ramanujan J. 46 (2023), 6–22, https://arxiv.org/abs/2307.05877.
- [7] M. Filaseta and T Luckner, On nth order Euler polynomials of degree n that are Eisenstein, Indag. Math. (N.S.) 35 (2024), 76–86, https://arxiv.org/pdf/2305.09227.
- [8] M. Filaseta, R. Groth, and T Luckner, Generalized Sierpiński numbers, Colloq. Math. 174 (2023), 191–201, https://arxiv.org/pdf/2305.09219.
- [9] M. Filaseta, J. Juillerat and T. Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, Integers 23 (2023), Paper No. A75, 24 pp., https: //arxiv.org/pdf/2209.10646.
- [10] M. Filaseta, On the factorization of lacunary polynomials, Acta Arith. 210 (2023), 23–52, https://arxiv.org/pdf/2207.11648.

- [11] M. Filaseta and J. Juillerat, *Consecutive primes which are widely digitally delicate*, IN-TEGERS: Ron Graham Memorial Volume, Vol. 21A, 2021, Paper No. A12, 37 pp.; also see, Number Theory and Combinatorics: A Collection in Honor of the Mathematics of Ronald Graham, edited by Bruce M. Landman, Florian Luca, Melvyn B. Nathanson, Jaroslav Nešetřil and Aaron Robertson, Berlin, Boston: De Gruyter, 2022, pp. 209–248, https://arxiv.org/pdf/2101.08898.
- [12] M. Filaseta, J. Juillerat and J. Southwick, Widely Digitally Stable Numbers, in *Combina-torial and Additive Number Theory IV* (ed. M. Nathanson), Springer Proc. Math. Stat. 347, Springer, Cham, 2021, 161–193.
- [13] M. Filaseta and J. Southwick, *Primes that become composite after changing an arbitrary digit*, Math. Comp. 90 (2021), 979–993.
- [14] M. Filaseta, H. Li, F. Patane and D. Skabelund, On the irreducibility of the non-reciprocal part of polynomials of the form $f(x)x^n + g(x)$, Acta Arith. 196 (2020), 187–201.
- [15] M. Filaseta and R. Moy, *The distance to a squarefree polynomial over* $\mathbb{F}_2[x]$, Acta Arith. 193 (2020), 419–427.
- [16] M. Filaseta, Practical aspects of testing the irreducibility of the non-reciprocal part of a 0, 1polynomial, INTEGERS 20A (2020), Proceedings of the Integers Conference 2018, Paper No. A7, 16 pp.
- [17] M. Filaseta, R. Murphy and A. Vincent, *Computationally classifying polynomials with small Euclidean norm having reducible non-reciprocal parts*, Number theory week 2017, Banach Center Publ. 118, Polish Acad. Sci. Inst. Math., Warsaw, 2019, pp. 245–259.
- [18] M. Filaseta, A class of irreducible polynomials associated with prime divisors of values of cyclotomic polynomials, Mathematika 65 (2019), 1033–1037.
- [19] M. Filaseta and R. Wilcox, *An explicit dense universal Hilbert set*, Math. Proc. Camb. Phil. Soc. 167 (2019), 531–547.
- [20] M. Filaseta and R. Moy, *On the Galois group over* ℚ *of a truncated binomial expansion*, Colloquium Mathematicum 154 (2018), 295–308.
- [21] M. Filaseta and W. Harvey, *Covering subsets of the integers by congruences*, Acta Arith. 182 (2018), 43–72.
- [22] M. Filaseta and M. Markovich, *Newton polygons and the Prouhet-Tarry-Escott problem*, Journal of Number Theory 174 (2017), 384–400.
- [23] M. Filaseta and B. Rocks, *On the irreducibility of a polynomial associated with the Strong Factorial Conjecture*, Colloquium Mathematicum 145 (2016), 307–314.
- [24] M. Cole, S. Dunn and M. Filaseta, *Further irreducibility criteria for polynomials with non*negative coefficients, Acta Arith. 175 (2016), 137–181.
- [25] M. Filaseta, S. Graham and O. Trifonov, *Starting with gaps between k-free numbers*, International Journal of Number Theory 11 (2015), 1411–1435.

- [26] Joshua Cooper, Michael Filaseta, Joshua Harrington and Daniel White, *Colorings of Pythagorean triples within colorings of the positive integers*, Journal of Combinatorics and Number Theory 6 (2014), 1–16.
- [27] M. Filaseta, *Is every polynomial with integer coefficients near an irreducible polynomial?*, Elemente der Mathematik 69 (2014), 130–143.
- [28] M. Filaseta and S. Gross, 49598666989151226098104244512918, Journal of Number Theory 137 (2014), 16–49.
- [29] E. Dobrowolski, M. Filaseta and A. Vincent, *The non-cyclotomic part of* $f(x)x^n + g(x)$ and *roots of reciprocal polynomials off the unit circle*, International Journal of Number Theory 9 (2013), 1865–1877.
- [30] P. Banerjee, M. Filaseta, C. E. Finch and J. R. Leidy, On classifying Laguerre polynomials which have Galois group the alternating group, Journal de Théorie des Nombres de Bordeaux, 25 (2013), 1–30.
- [31] Michael Filaseta and Josh Harrington, A polynomial investigation inspired by work of Schinzel and Sierpiński, Acta Arith. 155 (2012), 149–161.
- [32] Michael Filaseta, Travis Kidd and Ognian Trifonov, Laguerre polynomials with Galois group A_m for each m, Journal of Number Theory, 132 (2012), 776–805.
- [33] Michael Filaseta, Shanta Laishram and N. Saradha, Solving $n(n+d) \cdots (n+(k-1)d) = by^2$ with $P(b) \leq Ck$, International Journal of Number Theory 8 (2012), 161–173.
- [34] Michael Filaseta and Michael J. Mossinghoff, *The distance to an irreducible polynomial, II*, Math. Comp. 81 (2012), 1571-1585.
- [35] Michael Filaseta, Mark Kozek, Charles Nicol and John Selfridge, *Composites that remain composite after changing a digit*, Journal of Combinatorics and Number Theory 2 (2010), 25–36.
- [36] Dan Baczkowski, Michael Filaseta, Florian Luca and Ognian Trifonov, *On values of* d(n!)/m!, $\phi(n!)/m!$ and $\sigma(n!)/m!$, International Journal of Number Theory 6 (2010), 1199-1214.
- [37] Pradipto Banerjee and Michael Filaseta, *On a polynomial conjecture of Pál Turán*, Acta Arithmetica 143 (2010), 239–255.
- [38] Michael A. Bennett, Michael Filaseta and Ognian Trifonov, *On the factorization of consecutive integers*, J. Reine Angew. Math. (Crelle's Journal) 629 (2009), 171–200.
- [39] Michael Bennett, Michael Filaseta and Ognian Trifonov, *Yet another generalization of the Ramanujan-Nagell equation*, Acta Arith. 134 (2008), 211–217.
- [40] Michael Filaseta, Carrie Finch and Mark Kozek, On powers associated with Sierpinski numbers, Riesel numbers and Polignac's conjecture, Journal of Number Theory 128 (2008), 1916–1940.
- [41] Michael Filaseta, Andrew Granville and Andrzej Schinzel, *Irreducibility and greatest common divisor algorithms for sparse polynomials*, Number Theory and Polynomials (ed. James

McKee and Chris Smyth), LMS Lecture Note Series 352, Cambridge Univ. Press, 2008, pp. 155–176.

- [42] Michael Filaseta, Carrie Finch and J Russell Leidy, T. N. Shorey's influence in the theory of irreducible polynomials, Diophantine Equations (ed. N. Saradha), Narosa Publ. House, New Delhi, 2008, pp. 77–102.
- [43] Michael Filaseta, Florian Luca, Pantelimon Stănică, and Robert Underwood, *Galois groups* of polynomials arising from circulant matrices, Journal of Number Theory 128 (2008), 59–70.
- [44] Michael Filaseta, Florian Luca, Pantelimon Stănică, and Robert Underwood, *Two Diophantine approaches to the irreducibility of certain trinomials*, Acta Arithmetica 128 (2007), 149–156.
- [45] Michael Filaseta, Angel Kumchev and Dima Pasechnik, *On the irreducibility of a truncated binomial expansion*, Rocky Mountain J. Math. 37 (2007), 455–464.
- [46] Michael Filaseta, Kevin Ford, Sergei Konyagin, Carl Pomerance and Gang Yu, Sieving by large integers and covering systems of congruences, Journal of the AMS, 20 (2007), 495– 517.
- [47] Michael Filaseta, Carrie Finch, and Charles Nicol, *On three questions concerning* 0, 1*polynomials*, Journal de Théorie des Nombres de Bordeaux, 18 (2006), 357–370.
- [48] Michael Filaseta and Douglas B. Meade, *Irreducibility testing of lacunary* 0, 1-*polynomials*, J. Algorithms, 55(1):21–28, 2005.
- [49] Michael Filaseta and Manton Matthews, Jr., On the irreducibility of 0, 1-polynomials of the form $f(x)x^n + g(x)$, Colloq. Math., 99(1):1–5, 2004.
- [50] Martha Allen and Michael Filaseta, *A generalization of a third irreducibility theorem of I. Schur*, Acta Arith., 114(2):183–197, 2004.
- [51] Michael Filaseta and Andrzej Schinzel, *On testing the divisibility of lacunary polynomials by cyclotomic polynomials*, Math. Comp., 73(246):957–965 (electronic), 2004.
- [52] Martha Allen and Michael Filaseta, *A generalization of a second irreducibility theorem of I. Schur*, Acta Arith., 109(1):65–79, 2003.
- [53] Michael Filaseta and Richard L. Williams, Jr., On the irreducibility of a certain class of Laguerre polynomials, J. Number Theory, 100(2):229–250, 2003.
- [54] Michael Filaseta, Coverings of the integers associated with an irreducibility theorem of A. Schinzel, In Number theory for the millennium, II (Urbana, IL, 2000), pages 1–24, A K Peters, Natick, MA, 2002.
- [55] M. Filaseta and T.-Y. Lam, *On the irreducibility of the generalized Laguerre polynomials*, Acta Arith., 105(2):177–182, 2002.
- [56] Arnold Adelberg and Michael Filaseta, On mth order Bernoulli polynomials of degree m that are Eisenstein, Colloq. Math., 93(1):21–26, 2002.

- [57] Michael Filaseta and Ognian Trifonov, *The irreducibility of the Bessel polynomials*, J. Reine Angew. Math., 550:125–140, 2002.
- [58] Brian Beasley and Michael Filaseta, A distribution problem for powerfree values of irreducible polynomials, Period. Math. Hungar., 42(1-2):123–144, 2001.
- [59] M. Filaseta, K. Ford, and S. Konyagin, *On an irreducibility theorem of A. Schinzel associated with coverings of the integers*, Illinois J. Math., 44(3):633–643, 2000.
- [60] A. Borisov, M. Filaseta, T. Y. Lam, and O. Trifonov, *Classes of polynomials having only one non-cyclotomic irreducible factor*, Acta Arith., 90(2):121–153, 1999.
- [61] Michael Filaseta, On the factorization of polynomials with small Euclidean norm, In Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997), pages 143–163, de Gruyter, Berlin, 1999.
- [62] Michael Filaseta and Ikhalfani Solan, *An extension of a theorem of Ljunggren*, Math. Scand., 84(1):5–10, 1999.
- [63] Michael Filaseta and Sergeĭ Konyagin, *On a limit point associated with the abc-conjecture*, Colloq. Math., 76(2):265–268, 1998.
- [64] J. Browkin, M. Filaseta, G. Greaves, and A. Schinzel, Squarefree values of polynomials and the abc-conjecture, In Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), volume 237 of London Math. Soc. Lecture Note Ser., pages 65–85, Cambridge Univ. Press, Cambridge, 1997.
- [65] Michael Filaseta and Ikhalfani Solan, Norms of factors of polynomials, Acta Arith., 82(3):243–255, 1997.
- [66] Michael Filaseta, The smallest maximal set of pairwise disjoint partitions, In Number theory (New York, 1991–1995), pages 103–113, Springer, New York, 1996.
- [67] Michael Filaseta, A generalization of an irreducibility theorem of I. Schur, In Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), volume 138 of Progr. Math., pages 371– 396, Birkhäuser Boston, Boston, MA, 1996.
- [68] Michael Filaseta and Ognian Trifonov, *The distribution of fractional parts with applications to gap results in number theory*, Proc. London Math. Soc. (3), 73(2):241–278, 1996.
- [69] Michael Filaseta and Sergei Konyagin, *Squarefree values of polynomials all of whose coefficients are* 0 *and* 1, Acta Arith., 74(3):191–205, 1996.
- [70] Michael Filaseta, *The irreducibility of all but finitely many Bessel polynomials*, Acta Math., 174(2):383–397, 1995.
- [71] Michael Filaseta, *Powerfree values of binary forms*, J. Number Theory, 49(2):250–268, 1994.
- [72] Michael Filaseta and Ognian Trifonov, *The distribution of squarefull numbers in short intervals*, Acta Arith., 67(4):323–333, 1994.
- [73] Michael Filaseta, M. L. Robinson, and Ferrell S. Wheeler, *The minimal Euclidean norm of an algebraic number is effectively computable*, J. Algorithms, 16(2):309–333, 1994.

- [74] Michael Filaseta, On the distribution of gaps between squarefree numbers, Mathematika, 40(1):88–101, 1993.
- [75] R. Blecksmith, M. Filaseta, and C. Nicol, A result on the digits of aⁿ, Acta Arith., 64(4):331– 339, 1993.
- [76] Michael Filaseta, *Short interval results for k-free values of irreducible polynomials*, Acta Arith., 64(3):249–270, 1993.
- [77] M. Filaseta and S. W. Graham, An estimate for the number of reducible Bessel polynomials of bounded degree, Colloq. Math., 65(1):65–68, 1993.
- [78] Michael Filaseta and Ognian Trifonov, On gaps between squarefree numbers, II, J. London Math. Soc. (2), 45(2):215–221, 1992.
- [79] Michael Filaseta, Squarefree values of polynomials, Acta Arith., 60(3):213–231, 1992.
- [80] Michael Filaseta, On an irreducibility theorem of I. Schur, Acta Arith., 58(3):251–272, 1991.
- [81] Michael Filaseta and Ognian Trifonov, On gaps between squarefree numbers, In Analytic number theory (Allerton Park, IL, 1989), volume 85 of Progr. Math., pages 235–253, Birkhäuser Boston, Boston, MA, 1990.
- [82] Michael Filaseta, *Rouché's theorem for polynomials*, Amer. Math. Monthly, 97(9):834–835, 1990.
- [83] Michael Filaseta, *Short interval results for squarefree numbers*, J. Number Theory, 35(2):128–149, 1990.
- [84] Michael A. Filaseta and David R. Richman, *Sets which contain a quadratic residue modulo p for almost all p*, Math. J. Okayama Univ., 31:1–8, 1989.
- [85] Michael Filaseta, An elementary approach to short interval results for k-free numbers, J. Number Theory, 30(2):208–225, 1988.
- [86] Michael Filaseta, Prime values of irreducible polynomials, Acta Arith. 50 (1988), 133–145.
- [87] Michael Filaseta, Irreducibility criteria for polynomials with nonnegative coefficients, Canad. J. Math., 40(2):339–351, 1988.
- [88] Michael Filaseta, *Sets with elements summing to squarefree numbers*, C. R. Math. Rep. Acad. Sci. Canada, 9(5):243–246, 1987.
- [89] Michael Filaseta, *The irreducibility of almost all Bessel polynomials*, J. Number Theory, 27(1):22–32, 1987.
- [90] Michael Filaseta, *Newton's method and simple continued fractions*, Fibonacci Quart., 24(1):41–46, 1986.
- [91] Michael Filaseta, *A new method for solving a class of ballot problems*, J. Combin. Theory Ser. A, 39(1):102–111, 1985.
- [92] Michael Filaseta, An application of Faltings' results to Fermat's last theorem, C. R. Math. Rep. Acad. Sci. Canada, 6(1):31–33, 1984.

- [93] Michael Filaseta, A further generalization of an irreducibility theorem of A. Cohn, Canad. J. Math., 34(6):1390–1395, 1982.
- [94] John Brillhart, Michael Filaseta, and Andrew Odlyzko, *On an irreducibility theorem of A*. *Cohn*, Canad. J. Math., 33(5):1055–1059, 1981.
- [95] Michael Filaseta, *On evaluating the Legendre symbol*, Pi Mu Epsilon Journal, 7:165–168, 1980.

Book:

[96] G. E. Andrews, M. Filaseta and A. J. Yee (editors), Analytic and Combinatorial Number Theory: The Legacy of Ramanujan, Contributions in Honor of Bruce C Berndt, Monographs in Number Theory: Volume 12, World Scientific, Singapore, 2024.

Other Publications: Commentaries, Letters, Obituaries, Problems and Solutions:

- [97] C. Ballot, R. Blecksmith, M. Filaseta, M. Morrison, P. Morton, and S. Wagstaff, Jr., *Letters to the Editor: John Brillart (1930-2022)*, Notices of the AMS 69, No. 9 (October, 2022), p. 7.
- [98] H. Diamond, E. Scourfield, M. Filaseta, K. Ford, Kevin, R. C. Vaughan, J. Halberstam, *Obituary: Heini Halberstam, 1926–2014*, Bull. Lond. Math. Soc. 49 (2017), 1119–1138.
- [99] M. Filaseta, *Commentary on Schinzel's polynomial results in one variable*, in Andrzej Schinzel's Selecta, Vol. 1, European Math. Soc., 2007, 283–294.
- [100] M. Filaseta, Problem: 10640, Amer. Math. Monthly, 105(1):69, 1998.
- [101] M. Filaseta and C. Nicol, Problem: 10423, Amer. Math. Monthly, 101(10):1014, 1994.
- [102] M. Filaseta, Solution of Advanced Problem: 6540, Amer. Math. Monthly, 96(2):165–166, 1989.
- [103] M. Filaseta, Problem: 244, The Two-Year College Math. J., 14(2):173, 1983.
- [104] M. Filaseta, Letter: War without end, Math. Mag., 51:256, 1978.
- [105] M. Filaseta, Solution of Problem: 60, The Two-Year College Math. J., 9(5):299, 1978.
- [106] M. Filaseta, Solution of Problem: 88, The Two-Year College Math. J., 9(4):239, 1978.