On the nonlinearity of quantum dynamical entropy

Duncan Wright

Department of Mathematics
University of South Carolina

CMO-BIRS Workshop
Quantum Transport Equations and Applications

DI I (I E Sy IR WVEVGIIEYEIEEOn the nonlinearity of quantum dynamical en September 4, 2018

1/1



-
The entropy function

Let n: [0,1] — R be the the function given by n(x) = —xlog x, for all
x € (0,1], and n(0) = 0.
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-
The entropy function

Let n: [0,1] — R be the the function given by n(x) = —xlog x, for all
x € (0,1], and n(0) = 0.
Fact 1
The entropy function, n, has the following properties.
o (Nonnegative) n(x) = x for all x € [0, 1].
e (Strictly concave) n(pt + gs) > tn(p) + sn(q), for all t,s € [0,1] and
pe (0,1), where g =1— p.
o (Countable subadditivity) n(>.0" | tn) < >0 i n(ta), whenever
{tn}(;o:l < [07 1]'
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Partitions

Let (2, X, i) be a probability space. We say (2, X, ) is discrete if Q is

countable and X = P(2). We denote by P,.(Q2) the lattice of countable
and measurable partitions of Q.
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Partitions

Let (2, X, i) be a probability space. We say (2, X, ) is discrete if Q is
countable and X = P(2). We denote by P,.(Q2) the lattice of countable

and measurable partitions of Q.
Let C, D € P (Q).
@ We say that C is finer than D, and write D < C, if, for every D € D,
there exists Cp < C such that D = UCp.
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Partitions

Let (2, X, i) be a probability space. We say (2, X, ) is discrete if Q is
countable and X = P(2). We denote by P,.(Q2) the lattice of countable

and measurable partitions of Q.
Let C, D € P (Q).
@ We say that C is finer than D, and write D < C, if, for every D € D,
there exists Cp < C such that D = UCp.

@ The join of C and D is given by
CvD:={CnD:CeCand DeD}eP,(Q).
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Partitions

Let (2, X, i) be a probability space. We say (2, X, ) is discrete if Q is
countable and X = P(2). We denote by P,.(Q2) the lattice of countable

and measurable partitions of Q.
Let C, D € P (Q).
@ We say that C is finer than D, and write D < C, if, for every D € D,
there exists Cp < C such that D = UCp.

@ The join of C and D is given by
CvD:={CnD:CeCand DeD}eP,(Q).

@ Whenever € is discrete, we call the partition into singletons,
{{w}}wea € Pa(Q), the atomic partition and denote it by A.
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|
Entropy of partitions

For C € P,(2), the entropy of C is given by

H(C) = > n(u(A)).
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-
Entropy of partitions

For C € P,(2), the entropy of C is given by

H(C) = > n(u(A)).

Fact 2
For all C,D € P,/(2), we have the following:
e 0 < H(C) with equality iff there exists an A € C such that u(A) = 1.

e H(C) < log|C| with equality (in the case |C| < ) iff u(A) = Ifll for
allAeC.

e H(D) < H(C) whenever D < C.
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Conditional entropy of partitions

The conditional entropy of C given D is given by

H(CID):= ), u(D) Y n(u(C|D)).

DeD CeC
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Conditional entropy of partitions

The conditional entropy of C given D is given by

H(CID):= ), u(D) Y n(u(C|D)).

DeD CeC
Fact 3
For all B,C,D € P,(Q2), we have the following:
e (Chain Rule)
H(C v D) = H(D) + H(C|D)

or more generally

H(vi_oCn) = H(Co) + Z (Ck| Vg Co)

e H(C|D) = 0 with equality iff C <D

e H(C|D) < H(C|B) whenever B <D
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Dynamical entropy of partitions

Theorem 4

Let (Cn)yg < Par(2) be a sequence of partitions. If

limp—o H(Ch| vz;é Ck) exists, then lim,_,q, %H(vz;éck) exists and the
limits are equal.
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Dynamical entropy of partitions

Theorem 4

Let (Cn)yg < Par(2) be a sequence of partitions. If
limp—o H(Ch| vz;é Ck) exists, then lim,_,q, %H(vz;éck) exists and the
limits are equal.

Proof.
The chain rule gives that H(v}]_5Ck) = H(Co) + ST H(C Vo Cp), for
all n € N. The proof then follows from the Césaro mean Theorem. O

v
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Dynamical systems

Let (2, X, 1) be a probability space and f : Q — Q be a measurable map.
The quadruple (Q, %, i, f) is called a dynamical system. If, for all A€ ¥,
w(A) = p(fF~L(A)) we say that j is f-invariant and call the dynamical
system (Q, X, u, f) stationary.
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Dynamical systems

Let (2, X, 1) be a probability space and f : Q — Q be a measurable map.
The quadruple (Q, %, i, f) is called a dynamical system. If, for all A€ ¥,

w(A) = p(fF~L(A)) we say that j is f-invariant and call the dynamical
system (Q, X, u, f) stationary.

Remark

In the literature, the quadruple (Q, X, u, f) is referred to as a dynamical
system only in the case that u is f-invariant.
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Dynamical systems

Let (2, X, 1) be a probability space and f : Q — Q be a measurable map.
The quadruple (Q, %, i, f) is called a dynamical system. If, for all A€ ¥,
w(A) = p(fF~L(A)) we say that j is f-invariant and call the dynamical
system (Q, X, u, f) stationary.

Remark

In the literature, the quadruple (Q, X, u, f) is referred to as a dynamical
system only in the case that u is f-invariant.

Fact 5

Let C € P,(2) and set Ny := N U {0}. Then, for all n € Ny, we have
o F~"(C) :={f"(A)}acc € Pa(Q) and
o VI_ofK(C) = {f~"(An) - A FL(AL) A AolAo, ..., Ay € C).
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Kolmogorov-Sinai entropy

The Kolmogorov-Sinai (KS) entropy of (2, X, u, f) with respect to C is
given by

WS (£.C) Larieke)),

= |im
n—aoo N
whenever the limit exists.
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Kolmogorov-Sinai entropy

The Kolmogorov-Sinai (KS) entropy of (2, X, u, f) with respect to C is
given by
1
KS T - n—1,—k
h™>(f,C) = nll_)moo nH(vk:Of €)),

whenever the limit exists. By Theorem 4, we have
RES(F,C) = lim H(f~"(C)| vIZL £F7%(C)),

n—0o0

whenever the limit exists.
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Kolmogorov-Sinai entropy

The Kolmogorov-Sinai (KS) entropy of (2, X, u, f) with respect to C is
given by
1
KS . —1p—k
h™>(f,C) = nleoo;H(vZ:Of €)),

whenever the limit exists. By Theorem 4, we have

RES(F,C) = lim H(f~"(C)| vIZL £F7%(C)),

n—ao
whenever the limit exists.
Corollary 6

Let (Q,%,u, f) be a stationary dynamical system and C € P,(Q2). Then
both limits above exist and are equal.
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Kolmogorov-Sinai entropy

The KS entropy of (Q, X, i, f) is given by

S () = sup  hKS(F,C).
CePar(2)
H(C)<owo
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Kolmogorov-Sinai entropy

The KS entropy of (Q, X, i, f) is given by

S () = sup  hKS(F,C).
CePar(2)
H(C)<owo

Theorem 7 (Kolmogorov-Sinai Theorem)

Let (Q,X,pu, f) be a dynamical system and C,D € P,.(Q). If
o(D) S o(Ug vi_o FX(C)), then

hES(F,C) = WR5 (£, D).

In particular, if C is a generating partition; i.e. (V% o vi_, fK(C)) =X,
and H(C) < o, then hKS(f) = hKS(f,C).
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Random variables and stochastic processes

Let (Q,X, 1) be a probability space and (E, ) be a measurable space. An
(Q, E) random variable is a measurable map X : Q — E. A sequence,

X = (Xn)j_g, of (2, E) random variables is an (€, E) stochastic process.
We call X (or X) discrete if its range, E, is discrete. Let px and px
denote, respectively, the probability mass functions (pmfs) for discrete
random variable, X, and stochastic process, X; i.e.

px(x) = (X = x) and px(xo, - - -, Xn) = p(Nf_o(Xk = xx))

for all n € Ng. We will denote both by p when there is no confusion.

DI RAEGT (IE N IR MVEVGIIEYEEEOn the nonlinearity of quantum dynamical en September 4, 2018 10/1



Stationary and Markov processes

Recall that a discrete (2, E) stochastic process, X, is called stationary
whenever

w(Xo = x0,- .., Xn = xn) = p(Xj = x0,..., Xnss1 = Xn),

for all n,/ € Ng and xg,...,x, € E.
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Stationary and Markov processes

Recall that a discrete (2, E) stochastic process, X, is called stationary
whenever

w(Xo = x0,- .., Xn = xn) = p(Xj = x0,..., Xnss1 = Xn),

for all n,/ € Ng and xg,...,x, € E.
We will also consider a discrete Markov process governed by a stochastic
matrix P; i.e.

P has (x,y)-entry py, = p(Xpt1 = x| Xy = y), forall ne Ng and x,y € E.
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Stationary and Markov processes

Recall that a discrete (2, E) stochastic process, X, is called stationary
whenever

w(Xo = x0,- .., Xn = xn) = p(Xj = x0,..., Xnss1 = Xn),

for all n,/ € Ng and xg,...,x, € E.
We will also consider a discrete Markov process governed by a stochastic
matrix P; i.e.

P has (x,y)-entry py, = p(Xpt1 = x| Xy = y), forall ne Ng and x,y € E.

Furthermore, we will write px, as a probability vector and define Ppy, by
matrix multiplication. We say that px, (or X) is P-invariant whenever
PpXo = PXo-

DI RN I (I E Sy NI WVEVGIIEYEIEOn the nonlinearity of quantum dynamical en September 4, 2018 1 /1



Entropy in information theory

The partition generated by X, Cx € P.(Q), is given by
Cx :={X"Y({e}) : e€ E} € Pa,(Q). The Shannon entropy of X is given
by

H(X) := H(Cx) = Z n(p(x)) or more generally

xeE
H(Xo, -, Xn) == H(Vi—oCx) = D, 1(p(x0,- -, Xn)).
XkEE
0<k<n
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Entropy in information theory

The partition generated by X, Cx € P.(Q), is given by
Cx :={X"Y({e}) : e€ E} € Pa,(Q). The Shannon entropy of X is given
by

H(X) := H(Cx) = Z n(p(x)) or more generally

xeE

H(Xo, -, Xn) == H(Vi—oCx) = D, 1(p(x0,- -, Xn)).

XkEE
0<k<n

For all n e N, the conditional entropy of X, given Xo, ..., Xp_1
H(Xn|Xo, - - -, Xn—1) := H(Cx,| ViZ4 Cx,)

= > plxos-ixne1) D n(pCalx0s - s Xao1))-
xk€E xp€E
0<k<n-1
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Entropy rate

Let X = (X,);2o be a discrete stochastic process. The entropy rate of X
is given by

HX) = lim ~H(Xo,... Xo_1),

n—oo N
whenever the limit exists.
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-
Entropy rate

Let X = (X,);2o be a discrete stochastic process. The entropy rate of X
is given by
o1
H(X) = nll_>moo ;H(XO, ceey Xn_]_),

whenever the limit exists. By Theorem 4, we have
H(X) := IimOO H(Xn| Xo, -+ s Xn—-1),

whenever the limit exists.
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-
Entropy rate

Let X = (X,);2o be a discrete stochastic process. The entropy rate of X
is given by

HX) = lim ~H(Xo,... Xo_1),

n—oo N

whenever the limit exists. By Theorem 4, we have
H(X) := IimOO H(Xn| Xo, -+ s Xn—-1),

whenever the limit exists.
Corollary 8

If X is a stationary stochastic process, then both limits above exist and are
equal.
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Entropy rate for discrete Markov processes

Theorem 9

Let X be a discrete (2, E) Markov process governed by the transition

matrix P. Then H(X) = limp_o0 >, (P 1)y 2xce M(Px,y ), whenever the
limit exists. Moreover, if X is stationary then

H(X) = Z Hy Z N(Px.y)-

yeE xeE
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Entropy rate for discrete Markov processes

Theorem 9

Let X be a discrete (2, E) Markov process governed by the transition

matrix P. Then H(X) = limp_o0 >, (P 1)y 2xce M(Px,y ), whenever the
limit exists. Moreover, if X is stationary then

H(X) = Z Hy Z N(Px.y)-

yeE xeE

Whenever P has a unique invariant measure, u, we define the entropy of

P to be
H(P) = 2 Hy Z N(Px,y)-

yeE xeE
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Path space for stochastic processes

Let X be an (€2, E) stochastic process. Consider the measurable space
(E*,E*), where E* := ENo and % := 0(U%_,EM). For all ne Ny,
collection of integer times 0 < tp <t < --- < t, and Ag,..., A, €&, we
define the cylinder set

C (AO A") = {x = (Xj)ien, € E* : x¢, € Ak for ke {0,...,n}}.

ty =ty
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Path space for stochastic processes

Let X be an (€2, E) stochastic process. Consider the measurable space
(E*,E*), where E* := ENo and % := 0(U%_,EM). For all ne Ny,
collection of integer times 0 < tp <t < --- < t, and Ag,..., A, €&, we
define the cylinder set

C(om ) i={x=(x)ieny € E* : x¢, € Ak for ke {0,...,n}}.

ty =ty

The measure generated by X, pX, is given on each cylinder set by

pX(C (207 4m) = m(izo(Xs, € Ar)).
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Path space for stochastic processes

Let X be an (€2, E) stochastic process. Consider the measurable space
(E*,E*), where E* := ENo and % := 0(U%_,EM). For all ne Ny,
collection of integer times 0 < tp <t < --- < t, and Ag,..., A, €&, we
define the cylinder set

C(om ) i={x=(x)ieny € E* : x¢, € Ak for ke {0,...,n}}.

to tn
The measure generated by X, pX, is given on each cylinder set by
X o n —
pe(C (/t‘é) /?,, )) = 1("i—o(Xe, € Ax))-

The collection of all cylinder sets forms a 7-system that generates £* and
thus pX extends uniquely to a probability measure on (E*,£*). We call
(E*, &%, X)) the path space of X.
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Symbolic dynamics of stochastic processes

Let (E*,E*, uX) be the path space of an (Q, E) stochastic process X.
Define the shift map s : E* — E* by s(x) = y where y; = x;11, for each
i € Ng. The dynamical system (E*,£*, X, s) is referred to as the
symbolic dynamics of X.
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Symbolic dynamics of stochastic processes

Let (E*,E*, uX) be the path space of an (Q, E) stochastic process X.
Define the shift map s : E* — E* by s(x) = y where y; = x;11, for each
i € Ng. The dynamical system (E*,£*, X, s) is referred to as the
symbolic dynamics of X. For each C € P, (E), we define

(] é\:z {C (é)}AeC € ’Par(E*) and
o the (Q,C) stochastic process X¢ = (X$)%_, where, for each n e Ny
and we Q, XS (w) = A whenever X,(w) € A.
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Symbolic dynamics of a stochastic process

Proposition 10

Let (E*, &%, uX,s) be the symbolic dynamics of an (2, E) stochastic
process X. Then for each C € P, (E), HXc) = hKS(s,é). In particular,
whenever E is a discrete space, H(X) = hK5(s, .AT) where A is the atomic
partition of E.
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Symbolic dynamics of a stochastic process

Proposition 10

Let (E*, &%, uX,s) be the symbolic dynamics of an (2, E) stochastic
process X. Then for each C € P, (E), HXc) = hKS(s,é). In particular,
whenever E is a discrete space, H(X) = hK5(s, A), where A is the atomic
partition of E.

Corollary 11

Let (E* &%, uX,s) be the symbolic dynamics of a discrete (S, E)
stochastic process X and let A be the atomic partition of E. Then
H(X) = h*3(s) = h*S(s, A), whenever Xy has finite entropy.
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Symbolic dynamics of a dynamical system

Similarly, we can define the path space, (Q*,X*, u(f:#), for a dynamical
system (Q, X, u, ) by setting

p(C (30 7 4n)) = p(nfzo(F % (Ak))

on each cylinder set.
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Symbolic dynamics of a dynamical system

Similarly, we can define the path space, (Q*,X*, u(f:#), for a dynamical
system (Q, X, u, ) by setting

p(C (30 7 4n)) = p(nfzo(F % (Ak))

on each cylinder set.

For each C € P,(Q), define the (Q*,C) stochastic process,

X — (x(FrOyz by XSC) (%) = A, whenever x, € A€ C, for all
ne Ng and x € Q*.

Proposition 12

For each C € P,(Q), H(Xéf’“)) = hKS(f,C) = hKS(s,CA). In particular,
whenever Q is a discrete space, H(X(1)) = hKS(f, A) = hKS(s, A),
where A is the atomic partition of Q.
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Symbolic dynamics of a dynamical system

Corollary 13

Let (*,P(Q)*, ul"#) s) be the symbolic dynamics for the discrete
dynamical system (Q, P(Q), u, ) and let A be the atomic partition of Q.
Then H(X(F:1)) = hKS(s) = hS(f) = hKS(f, A), whenever A has finite
entropy.
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Symbolic dynamics of a dynamical system

Corollary 13

e symbolic dynamics for the discrete
f) and let A be the atomic partition of Q.

R t
dynamical system (Q, P(Q), u,
hKS(f) = hKS(f, A), whenever A has finite

Then H(X(F:#)) = pKS(s) =
entropy.

Theorem 14

If X is a stationary (Q, E) stochastic process then (E*,E*, X, s) is a
stationary dynamical system. Conversely, if (Q, X, u, ) is a stationary
dynamical system, then X\F:) s a stationary stochastic process.
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Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let (2, X, u, f) be a dynamical system such that |Q2] = N < oo. Then
hKS(f) = 0.
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Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let (2, X, u, f) be a dynamical system such that |Q2] = N < oo. Then
hKS(f) = 0.

Property 2 (Linear in time)
For any dynamical system (Q, %, u, f), we have

hRS (F1) = nh®S(F), for all n € Ny.
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Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let (2, X, u, f) be a dynamical system such that |Q2] = N < oo. Then
hKS(f) = 0.

Property 2 (Linear in time)
For any dynamical system (Q, %, u, f), we have

hRS (F1) = nh®S(F), for all n € Ny.

v

Let P be the transition matrix governing the unbiased random walk on the
cycle. Then H(P) =1In2 and

H(P?) = 2In2. l.e. we have an example of a stochastic process whose
entropy rate is nonzero on a finite system and is nonlinear in time.
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Measurements

A state space is defined as a pair (X, K), where
(i) X is a real Banach space with norm | -
(if)

(iii) if u,v e K, then |lu| + |v| = ||lu + v||, and

)

(iv) if ue X and € > 0, then there exists uy, up € K such that u = u; — up
and [Jur| + [Juz] < fuf + e

K is a closed cone in X,

For any state space (X, K), there exists a unique positive linear functional
7 : X — R such that 7(u) < |u|, for u e X, with equality when v e K.
We say that u € K is a state if 7(u) = 1.
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Measurements

A state space is defined as a pair (X, K), where
(i) X is a real Banach space with norm | -
(ii

)
(iii) if u,v e K, then |lu| + |v| = ||lu + v||, and
)

K is a closed cone in X,

(iv) if ue X and € > 0, then there exists uy, up € K such that u = u; — up
and [uy | + [uzfl < JJuf + €.

For any state space (X, K), there exists a unique positive linear functional

7 : X — R such that 7(u) < |u|, for u e X, with equality when v e K.

We say that u € K is a state if 7(u) = 1. A phase space is defined as an

arbitrary measurable space (2, X).
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Measurements

A state space is defined as a pair (X, K), where

(i) X is a real Banach space with norm | -
(ii

)
(i) if u,v e K, then |lu| + |v| = ||lu + v
)

K is a closed cone in X,

|, and

(iv) if ue X and € > 0, then there exists uy, up € K such that u = u; — up
and [Jug| + [Juz]| < ful + €
For any state space (X, K), there exists a unique positive linear functional
7 : X — R such that 7(u) < |u|, for u e X, with equality when v e K.
We say that u € K is a state if 7(u) = 1. A phase space is defined as an
arbitrary measurable space (Q,X). We say that x : ¥ — X™ is an
observable if, for every E € ¥, 0 < x(E) < 7 and x(Q2) = 7. Given a state
u € K, an observable x, and E € ¥, we interpret x(E)u as the probability
that a system in state u takes values in E when observed with the
observable x.
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Instruments

An operation is a positive, bounded linear operator T : X — X, such that
0 < 7(Tu) < 7(u) for every ue K. We denote by O := O(X) the set of
all operations on X. Finally, we define an instrument asamap 7 : X —» O
such that 7(7(Q)u) = 7(u), for all ue K, and T (UnE,) = 3., T (En), for
any disjoint sequence of sets {E,} € X, where convergence of the sum is
in the strong operator topology.
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Instruments

An operation is a positive, bounded linear operator T : X — X, such that
0 < 7(Tu) < 7(u) for every ue K. We denote by O := O(X) the set of
all operations on X. Finally, we define an instrument asamap 7 : X —» O
such that 7(7(Q)u) = 7(u), for all ue K, and T (UnE,) = 3., T (En), for
any disjoint sequence of sets {E,} € X, where convergence of the sum is
in the strong operator topology. For any instrument, 7, one can define a
unique observable x7 by setting x7(E)u = 7(T (E)u) for ue X and

E € . However, it is possible that two distinct instruments, 7 # S, give
rise to the same observable, x; = xs. Given an initial state u € K and

E €Y, we can interpret T(E)u/x7(E)u € K as the state of the system
immediately after measuring the system in state u with the instrument 7
and obtaining values in the set E.
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Classical mechanics

o Let Q be a locally compact Hausdorff space and B be the Borel
o-algebra of Q and take (€2, B) to be the phase space.

@ Let X be the real Banach space of all countably additive, regular,
real-valued Borel measures on € equipped with the total variation
norm

@ Let K be the closed cone of X containing the nonnegative measures
on Q and set (X, K) to be the state space.

@ The linear functional 7 is given by 7(v) = {, dv = v(Q) for any
veX.

o We define the (classical) sharp measurement instrument 7 by

T(E)w(A) =v(AnE) forveSand A E € B.
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Hilbert space quantum mechanics

Setting
@ Let H be a Hilbert space.

o Let X = 5{%(H) be the real Banach space of self-adjoint, trace class
operators on H equipped with the trace class norm.

Let K = S;"(H) be the closed cone of X containing the positive,
trace class operators on H and set (X, K) to be the state space.

Let (2, P(2)) be a discrete phase space.
The linear functional 7 is given by the trace, tr.
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Hilbert space quantum mechanics

Setting
@ Let H be a Hilbert space.

Let X = S72(H) be the real Banach space of self-adjoint, trace class
operators on H equipped with the trace class norm.

Let K = S;"(H) be the closed cone of X containing the positive,
trace class operators on H and set (X, K) to be the state space.

Let (2, P(2)) be a discrete phase space.

@ The linear functional 7 is given by the trace, tr.

Given a collection of bounded operators, (B;)icq S B(H), such that
Yicq B Bi = 1 we define the instrument 7 : Q — (X — X) by

T(E)p = Z BipB¥ foreach peSand E€X,
ieE
where the sums are taken with respect to the strong operator topology if

Olintagn [ [ e
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Luders-von Neumann instruments

Let (Pj)ica < B(H) be a family of pairwise orthogonal projections such
that > .. Pi = 1. The Liiders-von Neumann instrument generated by
(Pi)ieq, T, is given by

T(E)p= > PipPi forpeXand Ec¥.
ieE

Notice that 7 is defined by the collapse of wave function formula.
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Luders-von Neumann instruments

Let (Pj)ica < B(H) be a family of pairwise orthogonal projections such
that > .. Pi = 1. The Liiders-von Neumann instrument generated by
(Pi)ieq, T, is given by

T(E)p= > PipPi forpeXand Ec¥.
ieE

Notice that 7 is defined by the collapse of wave function formula.
Whenever the each projection, P;, is rank-1, for all i € €, the Liders-von
Neumann instrument, 7, is called a coherent states instrument.
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Probability measures on the path space

Let (©2,X) be a phase space, (X, K) be a phase space, © a T-preserving
automorphism of X, 7 an instrument and v € K be a state. We will refer
to (©,7,u) as a quantum stochastic process.
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Probability measures on the path space

Let (©2,X) be a phase space, (X, K) be a phase space, © a T-preserving
automorphism of X, 7 an instrument and v € K be a state. We will refer
to (©,7,u) as a quantum stochastic process. On each cylinder set

C ('?é) - i‘n") < Q*, we define a measure, i(© 74 by

A(@,T,u)(c (Ao A, )) — tr(T(Ap) o Otr—tr-15...c@0 1 0T (Ao) o @tou).

,LL to =+ tn
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Probability measures on the path space

Let (©2,X) be a phase space, (X, K) be a phase space, © a T-preserving
automorphism of X, 7 an instrument and v € K be a state. We will refer
to (©,7,u) as a quantum stochastic process. On each cylinder set

C ('?é) - i‘n") < Q*, we define a measure, i(© 74 by

AOTI(C (507 4n) = (T (Ag) 0O to. 0100 T(Ag) 0 ©Pu).

to -+ tp

Remark

Unfortunately, unlike the measures p("#) or X in the path space of a
dynamical system or a stochastic process, respectively, 7i(®7-4) is not well
defined, in general. To create a well defined measure on (Q*,X*), we will
fix a sequence of times at which the system is to be measured.
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Probability measures with a simple time sequence

For ease, we set t, = n for all n € Ny. Then, on each cylinder set

C (’;‘é’ - ‘t‘:) < Q*, we define a measure, M(G’T’”), by

uOT(C (1 4)) = 7(T(Ap) 0O 0+ 080 T(Ag)u).
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Probability measures with a simple time sequence

For ease, we set t, = n for all n € Ny. Then, on each cylinder set
C (’;‘é’ - ‘t‘:) < Q*, we define a measure, ,u(e’T’”), by

uOT(C (1 4)) = 7(T(Ap) 0O 0+ 080 T(Ag)u).

For Ag, A2 € X, we have

HOTOC () = WOTIE (§T%)
7(T(A2) ©© 0T () 0O o T(Ao)u),

which is not necessarily equal to tr(7(Az) o ©2% o T (Ag)u).
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Probability measures with a simple time sequence

For ease, we set t, = n for all n € Ny. Then, on each cylinder set

C (’;\é’ - ‘t‘:) < Q*, we define a measure, ,u(e’T’”), by

P& T (C (Ao Anyy = (T (Ap) 0© o0+ 000 T(Ag)u).
For Ag, A2 € X, we have

M(@,T,U)(C (/(\)0 A22)) = ,u(e’T’”)(C

which is not necessarily equal to tr(7(Az) o ©2 o T(Ag)u). Therefore
,u(@’T’“)(C (‘(‘)0 ’22 )) is interpreted as the probability that a system in initial
state u will be measured at times 0, 1,2 and record the measurement
sequence (Ap, Az) at times 0 and 2.
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Slomczynski-Zyczkowski quantum entropy

The Slomczynski-Zyczkowski (SZ) entropy of (©, T, u) with respect to
C € Pa(Q) is given by

.1
hSZ(@7T7 U7C) = |lim — Z 77(”(@77-7p)(c (/%0 An71>))7

n—oo N
AkEC

0<k<n-1

whenever the limit exists.
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Slomczynski-Zyczkowski quantum entropy

The Slomczynski-Zyczkowski (SZ) entropy of (©, T, u) with respect to
C € Pa(Q) is given by

hSZ(@7T7 U,C) = |Im 1 Z n(u(evTvp)(C (AO An_71>))7

n—oo N
AkEC

0<k<n-1

whenever the limit exists.

Lemma 15

Let everything be as above and let s be the shift map on
(Q*, x*, (&) For each C € P,,(Q), define the (Q*,C) stochastic
process Xée’T’u) analogously to Xg’“ ) for classical dynamical systems.

Then R

HXE ) = 120, T, u,C) = h¥S(s, &7 C).
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Two causes of randomness

The SZ measurement entropy of (©, 7, u) with respect to C, denoted by
hi%as(@, T, p,C), quantifies the amount of randomness we observe in our
system due to our choice of instrument, 7. It is given by

he2.s(©, T, u,C) = h4(1,T,u,C).
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Two causes of randomness

The SZ measurement entropy of (©, 7, u) with respect to C, denoted by
hi%as(@, T, p,C), quantifies the amount of randomness we observe in our
system due to our choice of instrument, 7. It is given by

hiias(@a T7 U,C) = hSZ(LTa U,C).

The remainder

e (©,T,u,C) = h°4(8,T,u,C) — hyt.s(©, T, u,C)

meas

is referred to as the SZ dynamical entropy and quantifies the amount of
randomness we observe in our system due to the dynamics, ©.
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Two causes of randomness

The SZ measurement entropy of (©, 7, u) with respect to C, denoted by
h>2..(©,T, p,C), quantifies the amount of randomness we observe in our

system due to our choice of instrument, 7. It is given by

hiias(@a T7 U,C) = hSZ(LTa U,C).

The remainder

e (©,T,u,C) = h°4(8,T,u,C) — hyt.s(©, T, u,C)

meas

is referred to as the SZ dynamical entropy and quantifies the amount of
randomness we observe in our system due to the dynamics, ©. Luckily, for

Luders-von Neumann instruments and classical sharp measurements,
h>2..(©,T,u,C) =0 and so

hagyzr1 <@7 T7 U,C) = hSZ(@) T? u, C)7

A~

so long as H(C) < 0.
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SZ entropy with classical sharp instruments

Proposition 16

Let (2,B), (X,K), 7 and T be as in the classical mechanics example. Let
w € K be a state; i.e. a probability measure on (Q,B), and f : X — X a
measurable map so that (Q, B, u,f) is a DS. Let Tf : X — X be the
automorphism known as the Koopman operator defined by

T¢(v)(A) := v(fY(A)) for all ve X and A€ B.

Then for each C € P,(Q), h>(f, 1u,C) = h>4(T¢, T, 1, C).
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SZ entropy with coherent states instruments

Let 7 be a coherent states instrument given by a family of orthogonal,
rank-1 projections (P;);cq such that P; = |a;){(a;| for each i € Q.
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SZ entropy with coherent states instruments

Let 7 be a coherent states instrument given by a family of orthogonal,
rank-1 projections (P;);cq such that P; = |a;)(a;| for each i € Q. Then

u®TP)(C (AOO » /‘,\:)) =1tr(T(Ap)0©o---00 0T (Ag)p)

= 2 Caolplao) [ | KanlUlak1)/*.
k=1

akeAk
0<k<n
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SZ entropy with coherent states instruments

Let 7 be a coherent states instrument given by a family of orthogonal,
rank-1 projections (P;);cq such that P; = |a;)(a;| for each i € Q. Then

u®TP)(C (AOO » /‘,\:)) =1tr(T(Ap)0©o---00 0T (Ag)p)

= 2 Caolplao) [ | KanlUlak1)/*.
k=1

akeAk
0<k<n

Thus XE?’T”D) is a Markov process governed by the transition matrix
P = [[(a;|U!aj>\2];JeQ and initial distribution pXO(e,T,p,A) = [<a,-\p]a,->],-eg.
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SZ entropy is nonlinear in time

Theorem 17

Let (Q,P(2)) be a discrete phase space with |Q2| = N for some N e N, T
a Liiders-von Neumann instrument, © a unitary transformation and
p€ S (H) a state. Then hdyn(@” T,p) < N for all ne N. Therefore, if

dyn(@ T,p) # 0, then hdyn(@” T,p) # nhdyn(@,T, p) for all sufficiently
large ne N.
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Hadamard walk

Let Hc = C? with orthonormal basis {|R), |L)}. Consider the vertex set
V =Zor{0,...,N—1} for some N € N with N > 3 and set Hp = (»(Z)
or CN, respectively. Let H = He ® Hp. Define the integer shift operator,

on H, by
N—-1

S= Z |R¢ n+ 1><R>n| + |La n— 1><L>n|>
n=0
where addition on the integers is done modulo N whenever
Q=1{0,...,N —1}, and the unitary operator

e )

on Hc, referred to as the Hadamard matrix (or Hadamard coin/gate). The
Hadamard walk on V is the unitary transformation, ©, on X, given by

O©(p) = UpU*, for all pe X, where U=S(h® 1y,).
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Hadamard walk with measurements

The Hadamard walk with measurements of the coin after each unit time
produces the unbiased random walk.

Long-Term Distribution

010
g

oob )\ p(72,7)

80

Quantum Walks and Search Algorithms, R. Portugal
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Hadamard walk without measurements

Long-Term Distribution

. R,0>+i[L,0
with initial state %
006 4
Pp(100, n)
0,04
0.02
=100 =50 0 50 100
n

Quantum Walks and Search Algorithms, R. Portugal
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Hadamard walk without measurements

Long-Term Distribution
with initial state |R,0)

015
O:15

—0;10

p(100, 7 )

0.0 l

S v,

-100 -50 0 50 100
Source: Renato Portugal (2013): Quantum Walks and S&rch Algorithms

Quantum Walks and Search Algorithms, R. Portugal
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Implementation with Nuclear Magnetic Resonance

Experimental implementation of a discrete-time quantum random walk on
an NMR quantum-information processor, Ryan et. al.
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Two interpretations for measuring position

One option is to take the phase space to be (C x V,P(C x V)), the
coherent states instrument 7 to be given by the family (Pe)eccx v, Where
Pc,v = |c,v){c,v|, and calculate the SZ entropy with respect to the
partition

Cv ={C,}vev, where C, :={|R,v),|L,v)}, for each v e V.
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Two interpretations for measuring position

One option is to take the phase space to be (C x V,P(C x V)), the
coherent states instrument 7 to be given by the family (Pe)eccx v, Where
Pc,v = |c,v){c,v|, and calculate the SZ entropy with respect to the
partition

Cv ={C,}vev, where C, :={|R,v),|L,v)}, for each v e V.
On the other hand we could take the phase space to be (V,P(V)), define
the projections
P, = 1y, ®|v)v|, foreach ve V,

and calculate the SZ entropy of the Liiders-von Neumann instrument V),
governed by the family (P,),ev, with respect to the atomic partition of V.
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Two different outcomes for measuring position

Theorem 18

Let © be the the Hadamard walk on V = {0,..., N — 1} with

|V| = N = 3. Let T be the coherent states instrument given by the family
of orthogonal projections (Pe)eccx v, p = % and Cy the partition given
on the previous slide. Then h°4(©,T,p,Cy) = In2 and

h>2(©2,T,p,Cv) = 3In2.
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Two different outcomes for measuring position

Theorem 18

Let © be the the Hadamard walk on V = {0,..., N — 1} with

|V| = N = 3. Let T be the coherent states instrument given by the family
of orthogonal projections (Pe)eccx v, p = % and Cy the partition given
on the previous slide. Then h°4(©,T,p,Cy) = In2 and

h>2(©2,T,p,Cv) = 3In2.

Theorem 19

Let © be the Hadamard walk on V ={0,...,N — 1} with |V| =N > 3.
Let V be the Liiders-von Neumann instrument given by the family of
orthogonal rank-2 projections (P, ),c\ defined on the previous slide,

p= % and A the atomic partition of V. Then h°%(©,V, p, A) = In2 and
h52(02,V,p, A) = $In2.

v
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