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The entropy function

Let η : r0, 1s Ñ R be the the function given by ηpxq “ ´x log x , for all
x P p0, 1s, and ηp0q “ 0.

Fact 1

The entropy function, η, has the following properties.

(Nonnegative) ηpxq ě x for all x P r0, 1s.

(Strictly concave) ηppt ` qsq ą tηppq ` sηpqq, for all t, s P r0, 1s and
p P p0, 1q, where q “ 1´ p.

(Countable subadditivity) ηp
ř8

n“1 tnq ď
ř8

n“1 ηptnq, whenever
ttnu

8
n“1 Ď r0, 1s.
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Partitions

Let pΩ,Σ, µq be a probability space. We say pΩ,Σ, µq is discrete if Ω is
countable and Σ “ PpΩq. We denote by ParpΩq the lattice of countable
and measurable partitions of Ω.

Let C,D P ParpΩq.

We say that C is finer than D, and write D ď C, if, for every D P D,
there exists CD Ď C such that D “ YCD .

The join of C and D is given by
C _D :“ tC X D : C P C and D P Du P ParpΩq.

Whenever Ω is discrete, we call the partition into singletons,
ttωuuωPΩ P ParpΩq, the atomic partition and denote it by A.
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Entropy of partitions

For C P ParpΩq, the entropy of C is given by

HpCq “
ÿ

APC
ηpµpAqq.

Fact 2

For all C,D P ParpΩq, we have the following:

0 ď HpCq with equality iff there exists an A P C such that µpAq “ 1.

HpCq ď log |C| with equality (in the case |C| ă 8) iff µpAq “ 1
|C| for

all A P C.

HpDq ď HpCq whenever D ď C.
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Conditional entropy of partitions

The conditional entropy of C given D is given by

HpC|Dq :“
ÿ

DPD
µpDq

ÿ

CPC
ηpµpC |Dqq.

Fact 3

For all B, C,D P ParpΩq, we have the following:

(Chain Rule)
HpC _Dq “ HpDq ` HpC|Dq

or more generally

Hp_n
k“0Cnq “ HpC0q `

n
ÿ

k“1

HpCk | _k´1
`“0 C`q

HpC|Dq ě 0 with equality iff C ď D.

HpC|Dq ď HpC|Bq whenever B ď D.
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Dynamical entropy of partitions

Theorem 4

Let pCnq8n“0 Ď ParpΩq be a sequence of partitions. If
limnÑ8HpCn| _n´1

k“0 Ckq exists, then limnÑ8
1
nHp_

n´1
k“0Ckq exists and the

limits are equal.

Proof.

The chain rule gives that Hp_n´1
k“0Ckq “ HpC0q `

řn´1
k“1 HpCn| _

k´1
`“0 C`q, for

all n P N. The proof then follows from the Césaro mean Theorem.
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Dynamical systems

Let pΩ,Σ, µq be a probability space and f : Ω Ñ Ω be a measurable map.
The quadruple pΩ,Σ, µ, f q is called a dynamical system. If, for all A P Σ,
µpAq “ µpf ´1pAqq we say that µ is f -invariant and call the dynamical
system pΩ,Σ, µ, f q stationary.

Remark

In the literature, the quadruple pΩ,Σ, µ, f q is referred to as a dynamical
system only in the case that µ is f -invariant.

Fact 5

Let C P ParpΩq and set N0 :“ NY t0u. Then, for all n P N0, we have

f ´npCq :“ tf ´npAquAPC P ParpΩq and

_n
k“0f

´kpCq “ tf ´npAnq X ¨ ¨ ¨ X f ´1pA1q X A0|A0, . . . ,An P Cu.
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Kolmogorov-Sinai entropy

The Kolmogorov-Sinai (KS) entropy of pΩ,Σ, µ, f q with respect to C is
given by

hKSpf , Cq “ lim
nÑ8

1

n
Hp_n´1

k“0f
´kpCqq,

whenever the limit exists.

By Theorem 4, we have

hKSpf , Cq “ lim
nÑ8

Hpf ´npCq| _n´1
k“0 f

´kpCqq,

whenever the limit exists.

Corollary 6

Let pΩ,Σ, µ, f q be a stationary dynamical system and C P ParpΩq. Then
both limits above exist and are equal.
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Kolmogorov-Sinai entropy

The KS entropy of pΩ,Σ, µ, f q is given by

hKSpf q “ sup
CPParpΩq
HpCqă8

hKSpf , Cq.

Theorem 7 (Kolmogorov-Sinai Theorem)

Let pΩ,Σ, µ, f q be a dynamical system and C,D P ParpΩq. If
σpDq Ď σpY8n“0 _

n
k“0 f

´kpCqq, then

hKSpf , Cq ě hKSpf ,Dq.

In particular, if C is a generating partition; i.e. σpY8n“0 _
n
k“0 f

´kpCqq “ Σ,
and HpCq ă 8, then hKSpf q “ hKSpf , Cq.
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Random variables and stochastic processes

Let pΩ,Σ, µq be a probability space and pE , Eq be a measurable space. An
pΩ,E q random variable is a measurable map X : Ω Ñ E . A sequence,
X :“ pXnq

8
n“0, of pΩ,E q random variables is an pΩ,E q stochastic process.

We call X (or X) discrete if its range, E , is discrete. Let pX and pX
denote, respectively, the probability mass functions (pmfs) for discrete
random variable, X , and stochastic process, X; i.e.

pX pxq “ µpX “ xq and pXpx0, . . . , xnq “ µpXn
k“0pXk “ xkqq

for all n P N0. We will denote both by p when there is no confusion.
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Stationary and Markov processes

Recall that a discrete pΩ,E q stochastic process, X, is called stationary
whenever

µpX0 “ x0, . . . ,Xn “ xnq “ µpXl “ x0, . . . ,Xn`l “ xnq,

for all n, l P N0 and x0, . . . , xn P E .

We will also consider a discrete Markov process governed by a stochastic
matrix P; i.e.

P has px , yq-entry px ,y “ µpXn`1 “ x |Xn “ yq, for all n P N0 and x , y P E .

Furthermore, we will write pX0 as a probability vector and define PpX0 by
matrix multiplication. We say that pX0 (or X) is P-invariant whenever
PpX0 “ pX0 .
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Entropy in information theory

The partition generated by X , CX P ParpΩq, is given by
CX :“ tX´1pteuq : e P Eu P ParpΩq. The Shannon entropy of X is given
by

HpX q :“ HpCX q “
ÿ

xPE

ηpppxqq or more generally

HpX0, . . . ,Xnq :“ Hp_n
k“0CXk

q “
ÿ

xkPE
0ďkďn

ηpppx0, . . . , xnqq.

For all n P N, the conditional entropy of Xn given X0, . . . ,Xn´1

HpXn|X0, . . . ,Xn´1q :“ HpCXn | _
n´1
k“0 CXk

q

“
ÿ

xkPE
0ďkďn´1

ppx0, . . . , xn´1q
ÿ

xnPE

ηpppxn|x0, . . . , xn´1qq.
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Entropy rate

Let X “ pXnq
8
n“0 be a discrete stochastic process. The entropy rate of X

is given by

HpXq :“ lim
nÑ8

1

n
HpX0, . . . ,Xn´1q,

whenever the limit exists.

By Theorem 4, we have

HpXq :“ lim
nÑ8

HpXn|X0, . . . ,Xn´1q,

whenever the limit exists.

Corollary 8

If X is a stationary stochastic process, then both limits above exist and are
equal.
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Entropy rate for discrete Markov processes

Theorem 9

Let X be a discrete pΩ,E q Markov process governed by the transition
matrix P. Then HpXq “ limnÑ8

ř

yPE pP
nµqy

ř

xPE ηppx ,y q, whenever the
limit exists. Moreover, if X is stationary then

HpXq “
ÿ

yPE

µy
ÿ

xPE

ηppx ,y q.

Whenever P has a unique invariant measure, µ, we define the entropy of
P to be

HpPq “
ÿ

yPE

µy
ÿ

xPE

ηppx ,y q.
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Path space for stochastic processes

Let X be an pΩ,E q stochastic process. Consider the measurable space
pE˚, E˚q, where E˚ :“ EN0 and E˚ :“ σpY8n“0Enq. For all n P N0,
collection of integer times 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tn and A0, . . . ,An P E , we
define the cylinder set

C
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

:“ tx “ pxi qiPN0 P E
˚ : xtk P Ak for k P t0, . . . , nuu.

The measure generated by X, µX, is given on each cylinder set by

µXpC
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

q “ µpXn
k“0pXtk P Akqq.

The collection of all cylinder sets forms a π-system that generates E˚ and
thus µX extends uniquely to a probability measure on pE˚, E˚q. We call
pE˚, E˚, µXq the path space of X.
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The measure generated by X, µX, is given on each cylinder set by

µXpC
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

q “ µpXn
k“0pXtk P Akqq.

The collection of all cylinder sets forms a π-system that generates E˚ and
thus µX extends uniquely to a probability measure on pE˚, E˚q. We call
pE˚, E˚, µXq the path space of X.
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Symbolic dynamics of stochastic processes

Let pE˚, E˚, µXq be the path space of an pΩ,E q stochastic process X.
Define the shift map s : E˚ Ñ E˚ by spxq “ y where yi “ xi`1, for each
i P N0. The dynamical system pE˚, E˚, µX, sq is referred to as the
symbolic dynamics of X.

For each C P ParpE q, we define

pC :“ tC
`

A
0

˘

uAPC P ParpE
˚q and

the pΩ, Cq stochastic process XC “ pX
C
n q
8
n“0 where, for each n P N0

and ω P Ω, X C
n pωq “ A whenever Xnpωq P A.
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Symbolic dynamics of a stochastic process

Proposition 10

Let pE˚, E˚, µX, sq be the symbolic dynamics of an pΩ,E q stochastic
process X. Then for each C P ParpE q, HpXCq “ hKSps, pCq. In particular,
whenever E is a discrete space, HpXq “ hKSps, pAq, where A is the atomic
partition of E .

Corollary 11

Let pE˚, E˚, µX, sq be the symbolic dynamics of a discrete pΩ,E q
stochastic process X and let A be the atomic partition of E . Then
HpXq “ hKSpsq “ hKSps, pAq, whenever X0 has finite entropy.
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Symbolic dynamics of a dynamical system

Similarly, we can define the path space, pΩ˚,Σ˚, µpf ,µq, for a dynamical
system pΩ,Σ, µ, f q by setting

µpf ,µqpC
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

q “ µpXn
k“0pf

´tk pAkqq

on each cylinder set.

For each C P ParpΩq, define the pΩ˚, Cq stochastic process,

X
pf ,µq
C “ pX

pf ,µ,Cq
n q8n“0, by X

pf ,µ,Cq
n pxq “ A, whenever xn P A P C, for all

n P N0 and x P Ω˚.

Proposition 12

For each C P ParpΩq, HpX
pf ,µq
C q “ hKSpf , Cq “ hKSps, pCq. In particular,

whenever Ω is a discrete space, HpXpf ,µqq “ hKSpf ,Aq “ hKSps, pAq,
where A is the atomic partition of Ω.
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Symbolic dynamics of a dynamical system

Corollary 13

Let pΩ˚,PpΩq˚, µpf ,µq, sq be the symbolic dynamics for the discrete
dynamical system pΩ,PpΩq, µ, f q and let A be the atomic partition of Ω.
Then HpXpf ,µqq “ hKSpsq “ hKSpf q “ hKSpf ,Aq, whenever A has finite
entropy.

Theorem 14

If X is a stationary pΩ,E q stochastic process then pE˚, E˚, µX, sq is a
stationary dynamical system. Conversely, if pΩ,Σ, µ, f q is a stationary
dynamical system, then Xpf ,µq is a stationary stochastic process.
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Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let pΩ,Σ, µ, f q be a dynamical system such that |Ω| “ N ă 8. Then
hKSpf q “ 0.

Property 2 (Linear in time)

For any dynamical system pΩ,Σ, µ, f q, we have

hKSpf nq “ nhKSpf q, for all n P N0.

Let P be the transition matrix governing the unbiased random walk on the
cycle. Then HpPq “ ln 2 and
HpP2q “ 3

2 ln 2. I.e. we have an example of a stochastic process whose
entropy rate is nonzero on a finite system and is nonlinear in time.
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Measurements

A state space is defined as a pair pX ,K q, where

(i) X is a real Banach space with norm } ¨ },

(ii) K is a closed cone in X ,

(iii) if u, v P K , then }u} ` }v} “ }u ` v}, and

(iv) if u P X and ε ą 0, then there exists u1, u2 P K such that u “ u1 ´ u2

and }u1} ` }u2} ă }u} ` ε.

For any state space pX ,K q, there exists a unique positive linear functional
τ : X Ñ R such that τpuq ď }u}, for u P X , with equality when u P K .
We say that u P K is a state if τpuq “ 1.

A phase space is defined as an
arbitrary measurable space pΩ,Σq. We say that x : Σ Ñ X ˚ is an
observable if, for every E P Σ, 0 ď xpE q ď τ and xpΩq “ τ . Given a state
u P K , an observable x , and E P Σ, we interpret xpE qu as the probability
that a system in state u takes values in E when observed with the
observable x .
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Instruments

An operation is a positive, bounded linear operator T : X Ñ X , such that
0 ď τpTuq ď τpuq for every u P K . We denote by O :“ OpX q the set of
all operations on X . Finally, we define an instrument as a map T : Σ Ñ O
such that τpT pΩquq “ τpuq, for all u P K , and T pYnEnq “

ř

n T pEnq, for
any disjoint sequence of sets tEnu Ď Σ, where convergence of the sum is
in the strong operator topology.

For any instrument, T , one can define a
unique observable xT by setting xT pE qu “ τpT pE quq for u P X and
E P Σ. However, it is possible that two distinct instruments, T ‰ S, give
rise to the same observable, xT “ xS . Given an initial state u P K and
E P Σ, we can interpret T pE qu{xT pE qu P K as the state of the system
immediately after measuring the system in state u with the instrument T
and obtaining values in the set E .
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Classical mechanics

Let Ω be a locally compact Hausdorff space and B be the Borel
σ-algebra of Ω and take pΩ,Bq to be the phase space.

Let X be the real Banach space of all countably additive, regular,
real-valued Borel measures on Ω equipped with the total variation
norm

Let K be the closed cone of X containing the nonnegative measures
on Ω and set pX ,K q to be the state space.

The linear functional τ is given by τpνq “
ş

Ω dν “ νpΩq for any
ν P X .

We define the (classical) sharp measurement instrument T by

T pE qνpAq “ νpAX E q for ν P S and A,E P B.
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Hilbert space quantum mechanics

Setting

Let H be a Hilbert space.

Let X “ S sa
1 pHq be the real Banach space of self-adjoint, trace class

operators on H equipped with the trace class norm.

Let K “ S`1 pHq be the closed cone of X containing the positive,
trace class operators on H and set pX ,K q to be the state space.

Let pΩ,PpΩqq be a discrete phase space.

The linear functional τ is given by the trace, tr.

Given a collection of bounded operators, pBi qiPΩ Ď BpHq, such that
ř

iPΩ B˚i Bi “ 1H we define the instrument T : Ω Ñ pX Ñ X q by

T pE qρ “
ÿ

iPE

BiρB
˚
i for each ρ P S and E P Σ,

where the sums are taken with respect to the strong operator topology if
Ω is countably infinite.
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Lüders-von Neumann instruments

Let pPi qiPΩ Ă BpHq be a family of pairwise orthogonal projections such
that

ř

iPΩ Pi “ 1. The Lüders-von Neumann instrument generated by
pPi qiPΩ, T , is given by

T pE qρ “
ÿ

iPE

PiρPi for ρ P X and E P Σ.

Notice that T is defined by the collapse of wave function formula.

Whenever the each projection, Pi , is rank-1, for all i P Ω, the Lüders-von
Neumann instrument, T , is called a coherent states instrument.
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Probability measures on the path space

Let pΩ,Σq be a phase space, pX ,K q be a phase space, Θ a τ -preserving
automorphism of X , T an instrument and u P K be a state. We will refer
to pΘ, T , uq as a quantum stochastic process.

On each cylinder set
C
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

Ď Ω˚, we define a measure, pµpΘ,T ,uq, by

pµpΘ,T ,uqpC
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

q “ trpT pAnq ˝Θtn´tn´1 ˝ ¨ ¨ ¨ ˝Θt1´t0 ˝T pA0q ˝Θt0uq.

Remark

Unfortunately, unlike the measures µpf ,µq or µX in the path space of a
dynamical system or a stochastic process, respectively, pµpΘ,T ,uq is not well
defined, in general. To create a well defined measure on pΩ˚,Σ˚q, we will
fix a sequence of times at which the system is to be measured.
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Probability measures with a simple time sequence

For ease, we set tn “ n for all n P N0. Then, on each cylinder set
C
`

A0 ¨¨¨ An
t0 ¨¨¨ tn

˘

Ď Ω˚, we define a measure, µpΘ,T ,uq, by

µpΘ,T ,uqpC
`

A0 ¨¨¨ An
0 ¨¨¨ n

˘

q :“ τpT pAnq ˝Θ ˝ ¨ ¨ ¨ ˝Θ ˝ T pA0quq.

For A0,A2 P Σ, we have

µpΘ,T ,uqpC
`

A0 A2
0 2

˘

q “ µpΘ,T ,uqpC
`

A0 Ω A2
0 1 2

˘

q

“ τpT pA2q ˝Θ ˝ T pΩq ˝Θ ˝ T pA0quq,

which is not necessarily equal to trpT pA2q ˝Θ2 ˝ T pA0quq. Therefore
µpΘ,T ,uqpC

`

A0 A2
0 2

˘

q is interpreted as the probability that a system in initial
state u will be measured at times 0, 1, 2 and record the measurement
sequence pA0,A2q at times 0 and 2.
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Slomczynski-Zyczkowski quantum entropy

The Slomczynski-Zyczkowski (SZ) entropy of pΘ, T , uq with respect to
C P ParpΩq is given by

hSZ pΘ, T , u, Cq “ lim
nÑ8

1

n

ÿ

AkPC
0ďkďn´1

ηpµpΘ,T ,ρqpC
´

A0 ¨¨¨ An´1

0 ¨¨¨ n´1

¯

qq,

whenever the limit exists.

Lemma 15

Let everything be as above and let s be the shift map on
pΩ˚,Σ˚, µpΘ,T ,uqq. For each C P ParpΩq, define the pΩ˚, Cq stochastic

process X
pΘ,T ,uq
C analogously to X

pf ,µq
C for classical dynamical systems.

Then
HpX

pΘ,T ,uq
C q “ hSZ pΘ, T , u, Cq “ hKSps, µpΘ,T ,uq, pCq.

Duncan Wright (Department of Mathematics University of South Carolina)On the nonlinearity of quantum dynamical entropy September 4, 2018 28 / 1



Slomczynski-Zyczkowski quantum entropy

The Slomczynski-Zyczkowski (SZ) entropy of pΘ, T , uq with respect to
C P ParpΩq is given by

hSZ pΘ, T , u, Cq “ lim
nÑ8

1

n

ÿ

AkPC
0ďkďn´1

ηpµpΘ,T ,ρqpC
´

A0 ¨¨¨ An´1

0 ¨¨¨ n´1

¯

qq,

whenever the limit exists.

Lemma 15

Let everything be as above and let s be the shift map on
pΩ˚,Σ˚, µpΘ,T ,uqq. For each C P ParpΩq, define the pΩ˚, Cq stochastic

process X
pΘ,T ,uq
C analogously to X

pf ,µq
C for classical dynamical systems.

Then
HpX

pΘ,T ,uq
C q “ hSZ pΘ, T , u, Cq “ hKSps, µpΘ,T ,uq, pCq.

Duncan Wright (Department of Mathematics University of South Carolina)On the nonlinearity of quantum dynamical entropy September 4, 2018 28 / 1



Two causes of randomness

The SZ measurement entropy of pΘ, T , uq with respect to C, denoted by
hSZmeaspΘ, T , ρ, Cq, quantifies the amount of randomness we observe in our
system due to our choice of instrument, T . It is given by

hSZmeaspΘ, T , u, Cq “ hSZ p1, T , u, Cq.

The remainder

hSZdynpΘ, T , u, Cq “ hSZ pΘ, T , u, Cq ´ hSZmeaspΘ, T , u, Cq

is referred to as the SZ dynamical entropy and quantifies the amount of
randomness we observe in our system due to the dynamics, Θ. Luckily, for
Lüders-von Neumann instruments and classical sharp measurements,
hSZmeaspΘ, T , u, Cq “ 0 and so

hSZdynpΘ, T , u, Cq “ hSZ pΘ, T , u, Cq,

so long as HppCq ă 8.
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SZ entropy with classical sharp instruments

Proposition 16

Let pΩ,Bq, pX ,K q, τ and T be as in the classical mechanics example. Let
µ P K be a state; i.e. a probability measure on pΩ,Bq, and f : X Ñ X a
measurable map so that pΩ,B, µ, f q is a DS. Let Tf : X Ñ X be the
automorphism known as the Koopman operator defined by

Tf pνqpAq :“ νpf ´1pAqq for all ν P X and A P B.

Then for each C P ParpΩq, h
KSpf , µ, Cq “ hSZ pTf , T , µ, Cq.
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SZ entropy with coherent states instruments

Let T be a coherent states instrument given by a family of orthogonal,
rank-1 projections pPi qiPΩ such that Pi “ |aiyxai | for each i P Ω.

Then

µpΘ,T ,ρqpC
`

A0 ¨¨¨ An
0 ¨¨¨ n

˘

q “ trpT pAnq ˝Θ ˝ ¨ ¨ ¨ ˝Θ ˝ T pA0qρq

“
ÿ

akPAk
0ďkďn

xa0|ρ|a0y

n
ź

k“1

|xak |U|ak´1y|
2.

Thus X
pΘ,T ,ρq
A is a Markov process governed by the transition matrix

P “ r|xai |U|ajy|
2si ,jPΩ and initial distribution p

X
pΘ,T ,ρ,Aq
0

“ rxai |ρ|aiysiPΩ.
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SZ entropy is nonlinear in time

Theorem 17

Let pΩ,PpΩqq be a discrete phase space with |Ω| “ N for some N P N, T
a Lüders-von Neumann instrument, Θ a unitary transformation and
ρ P S`1 pHq a state. Then hSZdynpΘ

n, T , ρq ď N for all n P N. Therefore, if

hSZdynpΘ, T , ρq ‰ 0, then hSZdynpΘ
n, T , ρq ‰ nhSZdynpΘ, T , ρq for all sufficiently

large n P N.
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Hadamard walk

Let HC “ C2 with orthonormal basis t|Ry, |Lyu. Consider the vertex set
V “ Z or t0, . . . ,N ´ 1u for some N P N with N ě 3 and set HP “ `2pZq
or CN , respectively. Let H “ HC b HP . Define the integer shift operator,
on H, by

S “
N´1
ÿ

n“0

|R, n ` 1yxR, n| ` |L, n ´ 1yxL, n|,

where addition on the integers is done modulo N whenever
Ω “ t0, . . . ,N ´ 1u, and the unitary operator

h :“
1
?

2

„

1 1
1 ´1



,

on HC , referred to as the Hadamard matrix (or Hadamard coin/gate). The
Hadamard walk on V is the unitary transformation, Θ, on X , given by

Θpρq “ UρU˚, for all ρ P X , where U “ Sph b 1HP
q.
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Hadamard walk with measurements

The Hadamard walk with measurements of the coin after each unit time
produces the unbiased random walk.

Long-Term Distribution

Quantum Walks and Search Algorithms, R. Portugal
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Hadamard walk without measurements

Long-Term Distribution
with initial state |R,0y`i |L,0y

?
2

Quantum Walks and Search Algorithms, R. Portugal
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Hadamard walk without measurements

Long-Term Distribution
with initial state |R, 0y

Quantum Walks and Search Algorithms, R. Portugal
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Implementation with Nuclear Magnetic Resonance

Experimental implementation of a discrete-time quantum random walk on
an NMR quantum-information processor, Ryan et. al.
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Two interpretations for measuring position

One option is to take the phase space to be pC ˆ V ,PpC ˆ V qq, the
coherent states instrument T to be given by the family pPeqePCˆV , where
Pc,v “ |c , vyxc, v |, and calculate the SZ entropy with respect to the
partition

CV “ tCvuvPV , where Cv :“ t|R, vy, |L, vyu, for each v P V .

On the other hand we could take the phase space to be pV ,PpV qq, define
the projections

Pv “ 1HC
b |vyxv |, for each v P V ,

and calculate the SZ entropy of the Lüders-von Neumann instrument V,
governed by the family pPv qvPV , with respect to the atomic partition of V .
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Two different outcomes for measuring position

Theorem 18

Let Θ be the the Hadamard walk on V “ t0, . . . ,N ´ 1u with
|V | “ N ě 3. Let T be the coherent states instrument given by the family
of orthogonal projections pPeqePCˆV , ρ “ 1

2N and CV the partition given
on the previous slide. Then hSZ pΘ, T , ρ, CV q “ ln 2 and
hSZ pΘ2, T , ρ, CV q “ 3

2 ln 2.

Theorem 19

Let Θ be the Hadamard walk on V “ t0, . . . ,N ´ 1u with |V | “ N ě 3.
Let V be the Lüders-von Neumann instrument given by the family of
orthogonal rank-2 projections pPv qvPV defined on the previous slide,
ρ “ 1

2N and A the atomic partition of V . Then hSZ pΘ,V, ρ,Aq “ ln 2 and
hSZ pΘ2,V, ρ,Aq “ 4

3 ln 2.
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