On the nonlinearity of quantum dynamical entropy

Duncan Wright

Department of Mathematics University of South Carolina

CMO-BIRS Workshop Quantum Transport Equations and Applications

Duncan Wright (Department of Mathematics<mark>On the nonlinearity of quantum dynamical en</mark>

The entropy function

Let $\eta : [0,1] \to \mathbb{R}$ be the function given by $\eta(x) = -x \log x$, for all $x \in (0,1]$, and $\eta(0) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let $\eta : [0,1] \to \mathbb{R}$ be the function given by $\eta(x) = -x \log x$, for all $x \in (0,1]$, and $\eta(0) = 0$.

Fact 1

The entropy function, η , has the following properties.

- (Nonnegative) $\eta(x) \ge x$ for all $x \in [0, 1]$.
- (Strictly concave) $\eta(pt + qs) > t\eta(p) + s\eta(q)$, for all $t, s \in [0, 1]$ and $p \in (0, 1)$, where q = 1 p.
- (Countable subadditivity) $\eta(\sum_{n=1}^{\infty} t_n) \leq \sum_{n=1}^{\infty} \eta(t_n)$, whenever $\{t_n\}_{n=1}^{\infty} \subseteq [0,1]$.

伺下 イヨト イヨ

Let (Ω, Σ, μ) be a probability space. We say (Ω, Σ, μ) is *discrete* if Ω is countable and $\Sigma = \mathcal{P}(\Omega)$. We denote by $\mathcal{P}_{ar}(\Omega)$ the lattice of countable and measurable partitions of Ω .

• • • • • • • • • • • • •

Let (Ω, Σ, μ) be a probability space. We say (Ω, Σ, μ) is *discrete* if Ω is countable and $\Sigma = \mathcal{P}(\Omega)$. We denote by $\mathcal{P}_{ar}(\Omega)$ the lattice of countable and measurable partitions of Ω . Let $\mathcal{C}, \mathcal{D} \in \mathcal{P}_{ar}(\Omega)$.

• We say that C is finer than D, and write $D \leq C$, if, for every $D \in D$, there exists $C_D \subseteq C$ such that $D = \cup C_D$.

< 回 ト < 三 ト < 三 ト

3/1

Let (Ω, Σ, μ) be a probability space. We say (Ω, Σ, μ) is *discrete* if Ω is countable and $\Sigma = \mathcal{P}(\Omega)$. We denote by $\mathcal{P}_{ar}(\Omega)$ the lattice of countable and measurable partitions of Ω . Let $\mathcal{C}, \mathcal{D} \in \mathcal{P}_{ar}(\Omega)$.

- We say that C is finer than D, and write $D \leq C$, if, for every $D \in D$, there exists $C_D \subseteq C$ such that $D = \cup C_D$.
- The join of C and D is given by $C \lor D := \{C \cap D : C \in C \text{ and } D \in D\} \in \mathcal{P}_{ar}(\Omega).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (Ω, Σ, μ) be a probability space. We say (Ω, Σ, μ) is *discrete* if Ω is countable and $\Sigma = \mathcal{P}(\Omega)$. We denote by $\mathcal{P}_{ar}(\Omega)$ the lattice of countable and measurable partitions of Ω . Let $\mathcal{C}, \mathcal{D} \in \mathcal{P}_{ar}(\Omega)$.

- We say that C is finer than D, and write $D \leq C$, if, for every $D \in D$, there exists $C_D \subseteq C$ such that $D = \cup C_D$.
- The join of C and D is given by $C \lor D := \{C \cap D : C \in C \text{ and } D \in D\} \in \mathcal{P}_{ar}(\Omega).$
- Whenever Ω is discrete, we call the partition into singletons, $\{\{\omega\}\}_{\omega\in\Omega} \in \mathcal{P}_{ar}(\Omega)$, the atomic partition and denote it by \mathcal{A} .

- 4 同 6 4 日 6 4 日 6

Entropy of partitions

For $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$, the *entropy* of \mathcal{C} is given by

$$H(\mathcal{C}) = \sum_{A \in \mathcal{C}} \eta(\mu(A)).$$

(日) (周) (三) (三)

- 31

Entropy of partitions

For $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$, the *entropy* of \mathcal{C} is given by

$$H(\mathcal{C}) = \sum_{A \in \mathcal{C}} \eta(\mu(A)).$$

Fact 2

For all $C, D \in \mathcal{P}_{ar}(\Omega)$, we have the following:

- $0 \leq H(C)$ with equality iff there exists an $A \in C$ such that $\mu(A) = 1$.
- $H(\mathcal{C}) \leq \log |\mathcal{C}|$ with equality (in the case $|\mathcal{C}| < \infty$) iff $\mu(A) = \frac{1}{|\mathcal{C}|}$ for all $A \in \mathcal{C}$.

•
$$H(\mathcal{D}) \leq H(\mathcal{C})$$
 whenever $\mathcal{D} \leq \mathcal{C}$.

Conditional entropy of partitions

The conditional entropy of C given \mathcal{D} is given by $H(\mathcal{C}|\mathcal{D}) := \sum \mu(D) \sum n(\mu(C)|\mathcal{D})$

$$\mathcal{I}(\mathcal{C}|\mathcal{D}) := \sum_{D \in \mathcal{D}} \mu(D) \sum_{C \in \mathcal{C}} \eta(\mu(C|D))$$

.

Image: A mathematical states and a mathem

3

Conditional entropy of partitions

The conditional entropy of C given D is given by $H(C|D) := \sum_{D \in D} \mu(D) \sum_{C \in C} \eta(\mu(C|D)).$

Fact 3

For all $\mathcal{B}, \mathcal{C}, \mathcal{D} \in \mathcal{P}_{ar}(\Omega)$, we have the following:

• (Chain Rule)

$$H(\mathcal{C} \lor \mathcal{D}) = H(\mathcal{D}) + H(\mathcal{C}|\mathcal{D})$$

or more generally

$$H(\vee_{k=0}^{n}\mathcal{C}_{n}) = H(\mathcal{C}_{0}) + \sum_{k=1}^{n} H(\mathcal{C}_{k}| \vee_{\ell=0}^{k-1} \mathcal{C}_{\ell})$$

H(*C*|*D*) ≥ 0 with equality iff *C* ≤ *D*. *H*(*C*|*D*) ≤ *H*(*C*|*B*) whenever *B* ≤ *D*.

Duncan Wright (Department of MathematicsOn the nonlinearity of quantum dynamical en

Dynamical entropy of partitions

Theorem 4

Let $(\mathcal{C}_n)_{n=0}^{\infty} \subseteq \mathcal{P}_{ar}(\Omega)$ be a sequence of partitions. If $\lim_{n\to\infty} H(\mathcal{C}_n| \vee_{k=0}^{n-1} \mathcal{C}_k)$ exists, then $\lim_{n\to\infty} \frac{1}{n}H(\vee_{k=0}^{n-1} \mathcal{C}_k)$ exists and the limits are equal.

Dynamical entropy of partitions

Theorem 4

Let $(C_n)_{n=0}^{\infty} \subseteq \mathcal{P}_{ar}(\Omega)$ be a sequence of partitions. If $\lim_{n\to\infty} H(C_n| \vee_{k=0}^{n-1} C_k)$ exists, then $\lim_{n\to\infty} \frac{1}{n} H(\vee_{k=0}^{n-1} C_k)$ exists and the limits are equal.

Proof.

The chain rule gives that $H(\vee_{k=0}^{n-1}C_k) = H(C_0) + \sum_{k=1}^{n-1}H(C_n|\vee_{\ell=0}^{k-1}C_\ell)$, for all $n \in \mathbb{N}$. The proof then follows from the Césaro mean Theorem.

Dynamical systems

Let (Ω, Σ, μ) be a probability space and $f : \Omega \to \Omega$ be a measurable map. The quadruple (Ω, Σ, μ, f) is called a *dynamical system*. If, for all $A \in \Sigma$, $\mu(A) = \mu(f^{-1}(A))$ we say that μ is *f*-invariant and call the dynamical system (Ω, Σ, μ, f) stationary.

イロン イボン イヨン イヨン 三日

Dynamical systems

Let (Ω, Σ, μ) be a probability space and $f : \Omega \to \Omega$ be a measurable map. The quadruple (Ω, Σ, μ, f) is called a *dynamical system*. If, for all $A \in \Sigma$, $\mu(A) = \mu(f^{-1}(A))$ we say that μ is *f*-invariant and call the dynamical system (Ω, Σ, μ, f) stationary.

Remark

In the literature, the quadruple (Ω, Σ, μ, f) is referred to as a dynamical system only in the case that μ is *f*-invariant.

Dynamical systems

Let (Ω, Σ, μ) be a probability space and $f : \Omega \to \Omega$ be a measurable map. The quadruple (Ω, Σ, μ, f) is called a *dynamical system*. If, for all $A \in \Sigma$, $\mu(A) = \mu(f^{-1}(A))$ we say that μ is *f*-invariant and call the dynamical system (Ω, Σ, μ, f) stationary.

Remark

In the literature, the quadruple (Ω, Σ, μ, f) is referred to as a dynamical system only in the case that μ is *f*-invariant.

Fact 5

Let
$$C \in \mathcal{P}_{ar}(\Omega)$$
 and set $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Then, for all $n \in \mathbb{N}_0$, we have
• $f^{-n}(C) := \{f^{-n}(A)\}_{A \in C} \in \mathcal{P}_{ar}(\Omega)$ and
• $\vee_{k=0}^n f^{-k}(C) = \{f^{-n}(A_n) \cap \cdots \cap f^{-1}(A_1) \cap A_0 | A_0, \dots, A_n \in C\}.$

A (1) > A (2) > A

The Kolmogorov-Sinai (KS) entropy of (Ω, Σ, μ, f) with respect to C is given by

$$h^{KS}(f,\mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{k=0}^{n-1} f^{-k}(\mathcal{C})),$$

whenever the limit exists.

▲ □ ► ▲ □ ► ▲

The Kolmogorov-Sinai (KS) entropy of (Ω, Σ, μ, f) with respect to C is given by

$$h^{KS}(f,\mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{k=0}^{n-1} f^{-k}(\mathcal{C})),$$

whenever the limit exists. By Theorem 4, we have

$$h^{\mathsf{KS}}(f,\mathcal{C}) = \lim_{n \to \infty} H(f^{-n}(\mathcal{C})| \vee_{k=0}^{n-1} f^{-k}(\mathcal{C})),$$

whenever the limit exists.

A (10) F (10)

The Kolmogorov-Sinai (KS) entropy of (Ω, Σ, μ, f) with respect to C is given by

$$h^{KS}(f,\mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} H(\bigvee_{k=0}^{n-1} f^{-k}(\mathcal{C})),$$

whenever the limit exists. By Theorem 4, we have

$$h^{\mathsf{KS}}(f,\mathcal{C}) = \lim_{n \to \infty} H(f^{-n}(\mathcal{C})| \vee_{k=0}^{n-1} f^{-k}(\mathcal{C})),$$

whenever the limit exists.

Corollary 6

Let (Ω, Σ, μ, f) be a stationary dynamical system and $C \in \mathcal{P}_{ar}(\Omega)$. Then both limits above exist and are equal.

The KS entropy of (Ω, Σ, μ, f) is given by

$$h^{\mathsf{KS}}(f) = \sup_{\substack{\mathcal{C}\in\mathcal{P}_{\mathsf{ar}}(\Omega)\\ H(\mathcal{C})<\infty}} h^{\mathsf{KS}}(f,\mathcal{C}).$$

・ロン ・四 ・ ・ ヨン ・ ヨン

- 2

The KS entropy of (Ω, Σ, μ, f) is given by

$$h^{\mathsf{KS}}(f) = \sup_{\substack{\mathcal{C}\in\mathcal{P}_{ar}(\Omega)\\ H(\mathcal{C})<\infty}} h^{\mathsf{KS}}(f,\mathcal{C}).$$

Theorem 7 (Kolmogorov-Sinai Theorem)

Let (Ω, Σ, μ, f) be a dynamical system and $\mathcal{C}, \mathcal{D} \in \mathcal{P}_{ar}(\Omega)$. If $\sigma(\mathcal{D}) \subseteq \sigma(\cup_{n=0}^{\infty} \vee_{k=0}^{n} f^{-k}(\mathcal{C}))$, then

$$h^{KS}(f, \mathcal{C}) \ge h^{KS}(f, \mathcal{D}).$$

In particular, if C is a generating partition; i.e. $\sigma(\cup_{n=0}^{\infty} \vee_{k=0}^{n} f^{-k}(C)) = \Sigma$, and $H(C) < \infty$, then $h^{KS}(f) = h^{KS}(f,C)$.

- 31

・ロト ・ 同ト ・ ヨト ・ ヨト

Random variables and stochastic processes

Let (Ω, Σ, μ) be a probability space and (E, \mathcal{E}) be a measurable space. An (Ω, E) random variable is a measurable map $X : \Omega \to E$. A sequence, $\mathbf{X} := (X_n)_{n=0}^{\infty}$, of (Ω, E) random variables is an (Ω, E) stochastic process. We call X (or X) *discrete* if its range, E, is discrete. Let p_X and p_X denote, respectively, the probability mass functions (pmfs) for discrete random variable, X, and stochastic process, X; i.e.

$$p_X(x) = \mu(X = x)$$
 and $p_X(x_0, ..., x_n) = \mu(\cap_{k=0}^n (X_k = x_k))$

for all $n \in \mathbb{N}_0$. We will denote both by p when there is no confusion.

・ 同 ト ・ 三 ト ・ 三 ト

Stationary and Markov processes

Recall that a discrete (Ω, E) stochastic process, **X**, is called *stationary* whenever

$$\mu(X_0 = x_0, \dots, X_n = x_n) = \mu(X_1 = x_0, \dots, X_{n+1} = x_n),$$

for all $n, l \in \mathbb{N}_0$ and $x_0, \ldots, x_n \in E$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Stationary and Markov processes

Recall that a discrete (Ω, E) stochastic process, **X**, is called *stationary* whenever

$$\mu(X_0 = x_0, \dots, X_n = x_n) = \mu(X_l = x_0, \dots, X_{n+l} = x_n),$$

for all $n, l \in \mathbb{N}_0$ and $x_0, \ldots, x_n \in E$.

We will also consider a discrete Markov process governed by a stochastic matrix P; i.e.

 $P \text{ has } (x,y)\text{-entry } p_{x,y} = \mu(X_{n+1} = x | X_n = y), \text{ for all } n \in \mathbb{N}_0 \text{ and } x,y \in E.$

E Sac

Stationary and Markov processes

Recall that a discrete (Ω, E) stochastic process, **X**, is called *stationary* whenever

$$\mu(X_0 = x_0, \dots, X_n = x_n) = \mu(X_l = x_0, \dots, X_{n+l} = x_n),$$

for all $n, l \in \mathbb{N}_0$ and $x_0, \ldots, x_n \in E$.

We will also consider a discrete Markov process governed by a stochastic matrix P; i.e.

$$P$$
 has (x, y) -entry $p_{x,y} = \mu(X_{n+1} = x | X_n = y)$, for all $n \in \mathbb{N}_0$ and $x, y \in E$.

Furthermore, we will write p_{X_0} as a probability vector and define Pp_{X_0} by matrix multiplication. We say that p_{X_0} (or **X**) is *P*-invariant whenever $Pp_{X_0} = p_{X_0}$.

E SQA

くほと くほと くほと

Entropy in information theory

The partition generated by X, $C_X \in \mathcal{P}_{ar}(\Omega)$, is given by $C_X := \{X^{-1}(\{e\}) : e \in E\} \in \mathcal{P}_{ar}(\Omega)$. The Shannon entropy of X is given by

$$\mathcal{H}(X):=\mathcal{H}(\mathcal{C}_X)=\sum_{x\in E}\eta(p(x))$$
 or more generally

$$H(X_0,\ldots,X_n):=H(\vee_{k=0}^n \mathcal{C}_{X_k})=\sum_{\substack{x_k\in E\\0\leqslant k\leqslant n}}\eta(p(x_0,\ldots,x_n)).$$

Entropy in information theory

The partition generated by X, $C_X \in \mathcal{P}_{ar}(\Omega)$, is given by $C_X := \{X^{-1}(\{e\}) : e \in E\} \in \mathcal{P}_{ar}(\Omega)$. The *Shannon entropy* of X is given by

$$H(X) := H(\mathcal{C}_X) = \sum_{x \in E} \eta(p(x))$$
 or more generally

$$H(X_0,\ldots,X_n):=H(\vee_{k=0}^n \mathcal{C}_{X_k})=\sum_{\substack{x_k\in E\\0\leqslant k\leqslant n}}\eta(p(x_0,\ldots,x_n)).$$

For all $n \in \mathbb{N}$, the *conditional entropy* of X_n given X_0, \ldots, X_{n-1}

$$H(X_n|X_0,...,X_{n-1}) := H(\mathcal{C}_{X_n}| \vee_{k=0}^{n-1} \mathcal{C}_{X_k})$$

= $\sum_{\substack{x_k \in E \\ 0 \le k \le n-1}} p(x_0,...,x_{n-1}) \sum_{x_n \in E} \eta(p(x_n|x_0,...,x_{n-1})).$

Entropy rate

Let $\mathbf{X} = (X_n)_{n=0}^{\infty}$ be a discrete stochastic process. The *entropy rate* of \mathbf{X} is given by

$$H(\mathbf{X}) := \lim_{n \to \infty} \frac{1}{n} H(X_0, \dots, X_{n-1}),$$

whenever the limit exists.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Entropy rate

Let $\mathbf{X} = (X_n)_{n=0}^{\infty}$ be a discrete stochastic process. The *entropy rate* of \mathbf{X} is given by

$$H(\mathbf{X}) := \lim_{n \to \infty} \frac{1}{n} H(X_0, \dots, X_{n-1}),$$

whenever the limit exists. By Theorem 4, we have

$$H(\mathbf{X}) := \lim_{n \to \infty} H(X_n | X_0, \dots, X_{n-1}),$$

whenever the limit exists.

13 / 1

Entropy rate

Let $\mathbf{X} = (X_n)_{n=0}^{\infty}$ be a discrete stochastic process. The *entropy rate* of \mathbf{X} is given by

$$H(\mathbf{X}) := \lim_{n \to \infty} \frac{1}{n} H(X_0, \dots, X_{n-1}),$$

whenever the limit exists. By Theorem 4, we have

$$H(\mathbf{X}) := \lim_{n \to \infty} H(X_n | X_0, \dots, X_{n-1}),$$

whenever the limit exists.

Corollary 8

If X is a stationary stochastic process, then both limits above exist and are equal.

< 回 ト < 三 ト < 三 ト

Entropy rate for discrete Markov processes

Theorem 9

Let **X** be a discrete (Ω, E) Markov process governed by the transition matrix *P*. Then $H(\mathbf{X}) = \lim_{n \to \infty} \sum_{y \in E} (P^n \mu)_y \sum_{x \in E} \eta(p_{x,y})$, whenever the limit exists. Moreover, if **X** is stationary then

$$H(\mathbf{X}) = \sum_{y \in E} \mu_y \sum_{x \in E} \eta(\mathbf{p}_{x,y}).$$

Entropy rate for discrete Markov processes

Theorem 9

Let **X** be a discrete (Ω, E) Markov process governed by the transition matrix *P*. Then $H(\mathbf{X}) = \lim_{n \to \infty} \sum_{y \in E} (P^n \mu)_y \sum_{x \in E} \eta(p_{x,y})$, whenever the limit exists. Moreover, if **X** is stationary then

$$H(\mathbf{X}) = \sum_{y \in E} \mu_y \sum_{x \in E} \eta(\mathbf{p}_{x,y}).$$

Whenever *P* has a unique invariant measure, μ , we define the *entropy* of *P* to be

$$H(P) = \sum_{y \in E} \mu_y \sum_{x \in E} \eta(p_{x,y}).$$

Path space for stochastic processes

Let **X** be an (Ω, E) stochastic process. Consider the measurable space (E^*, \mathcal{E}^*) , where $E^* := E^{\mathbb{N}_0}$ and $\mathcal{E}^* := \sigma(\bigcup_{n=0}^{\infty} \mathcal{E}^n)$. For all $n \in \mathbb{N}_0$, collection of integer times $0 \leq t_0 < t_1 < \cdots < t_n$ and $A_0, \ldots, A_n \in \mathcal{E}$, we define the cylinder set

$$C\left(\begin{smallmatrix}A_0&\cdots&A_n\\t_0&\cdots&t_n\end{smallmatrix}\right):=\{x=(x_i)_{i\in\mathbb{N}_0}\in E^*:x_{t_k}\in A_k\text{ for }k\in\{0,\ldots,n\}\}.$$

Path space for stochastic processes

Let **X** be an (Ω, E) stochastic process. Consider the measurable space (E^*, \mathcal{E}^*) , where $E^* := E^{\mathbb{N}_0}$ and $\mathcal{E}^* := \sigma(\bigcup_{n=0}^{\infty} \mathcal{E}^n)$. For all $n \in \mathbb{N}_0$, collection of integer times $0 \leq t_0 < t_1 < \cdots < t_n$ and $A_0, \ldots, A_n \in \mathcal{E}$, we define the cylinder set

$$C\left(\begin{smallmatrix}A_0&\cdots&A_n\\t_0&\cdots&t_n\end{smallmatrix}\right):=\{x=(x_i)_{i\in\mathbb{N}_0}\in E^*:x_{t_k}\in A_k\text{ for }k\in\{0,\ldots,n\}\}.$$

The measure generated by **X**, $\mu^{\mathbf{X}}$, is given on each cylinder set by

$$\mu^{\mathbf{X}}(C\left(\begin{smallmatrix}A_0 & \cdots & A_n\\t_0 & \cdots & t_n\end{smallmatrix}\right)) = \mu(\bigcap_{k=0}^n (X_{t_k} \in A_k)).$$

Path space for stochastic processes

Let **X** be an (Ω, E) stochastic process. Consider the measurable space (E^*, \mathcal{E}^*) , where $E^* := E^{\mathbb{N}_0}$ and $\mathcal{E}^* := \sigma(\bigcup_{n=0}^{\infty} \mathcal{E}^n)$. For all $n \in \mathbb{N}_0$, collection of integer times $0 \leq t_0 < t_1 < \cdots < t_n$ and $A_0, \ldots, A_n \in \mathcal{E}$, we define the cylinder set

$$C\left(\begin{smallmatrix}A_0&\cdots&A_n\\t_0&\cdots&t_n\end{smallmatrix}\right) := \{x = (x_i)_{i \in \mathbb{N}_0} \in E^* : x_{t_k} \in A_k \text{ for } k \in \{0,\ldots,n\}\}.$$

The measure generated by **X**, $\mu^{\mathbf{X}}$, is given on each cylinder set by

$$\mu^{\mathbf{X}}(C\left(\begin{smallmatrix}A_0 & \cdots & A_n\\t_0 & \cdots & t_n\end{smallmatrix}\right)) = \mu(\bigcap_{k=0}^n (X_{t_k} \in A_k)).$$

The collection of all cylinder sets forms a π -system that generates \mathcal{E}^* and thus $\mu^{\mathbf{X}}$ extends uniquely to a probability measure on (E^*, \mathcal{E}^*) . We call $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}})$ the *path space* of **X**.

Symbolic dynamics of stochastic processes

Let $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}})$ be the path space of an (Ω, E) stochastic process \mathbf{X} . Define the shift map $s : E^* \to E^*$ by s(x) = y where $y_i = x_{i+1}$, for each $i \in \mathbb{N}_0$. The dynamical system $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}}, s)$ is referred to as the symbolic dynamics of \mathbf{X} .
Symbolic dynamics of stochastic processes

Let $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}})$ be the path space of an (Ω, E) stochastic process \mathbf{X} . Define the shift map $s : E^* \to E^*$ by s(x) = y where $y_i = x_{i+1}$, for each $i \in \mathbb{N}_0$. The dynamical system $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}}, s)$ is referred to as the symbolic dynamics of \mathbf{X} . For each $\mathcal{C} \in \mathcal{P}_{ar}(E)$, we define

•
$$\widehat{\mathcal{C}} := \{ C \begin{pmatrix} A \\ 0 \end{pmatrix} \}_{A \in \mathcal{C}} \in \mathcal{P}_{ar}(E^*) \text{ and }$$

• the (Ω, \mathcal{C}) stochastic process $\mathbf{X}_{\mathcal{C}} = (X_n^{\mathcal{C}})_{n=0}^{\infty}$ where, for each $n \in \mathbb{N}_0$ and $\omega \in \Omega$, $X_n^{\mathcal{C}}(\omega) = A$ whenever $X_n(\omega) \in A$.

Symbolic dynamics of a stochastic process

Proposition 10

Let $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}}, s)$ be the symbolic dynamics of an (Ω, E) stochastic process \mathbf{X} . Then for each $\mathcal{C} \in \mathcal{P}_{ar}(E)$, $H(\mathbf{X}_{\mathcal{C}}) = h^{KS}(s, \widehat{\mathcal{C}})$. In particular, whenever E is a discrete space, $H(\mathbf{X}) = h^{KS}(s, \widehat{\mathcal{A}})$, where \mathcal{A} is the atomic partition of E.

Symbolic dynamics of a stochastic process

Proposition 10

Let $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}}, s)$ be the symbolic dynamics of an (Ω, E) stochastic process \mathbf{X} . Then for each $\mathcal{C} \in \mathcal{P}_{ar}(E)$, $H(\mathbf{X}_{\mathcal{C}}) = h^{KS}(s, \widehat{\mathcal{C}})$. In particular, whenever E is a discrete space, $H(\mathbf{X}) = h^{KS}(s, \widehat{\mathcal{A}})$, where \mathcal{A} is the atomic partition of E.

Corollary 11

Let $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}}, s)$ be the symbolic dynamics of a discrete (Ω, E) stochastic process \mathbf{X} and let \mathcal{A} be the atomic partition of E. Then $H(\mathbf{X}) = h^{KS}(s) = h^{KS}(s, \hat{\mathcal{A}})$, whenever X_0 has finite entropy.

くほと くほと くほと

Similarly, we can define the path space, $(\Omega^*, \Sigma^*, \mu^{(f,\mu)})$, for a dynamical system (Ω, Σ, μ, f) by setting

$$\mu^{(f,\mu)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\t_0&\cdots&t_n\end{smallmatrix}\right))=\mu(\cap_{k=0}^n(f^{-t_k}(A_k))$$

on each cylinder set.

Similarly, we can define the path space, $(\Omega^*, \Sigma^*, \mu^{(f,\mu)})$, for a dynamical system (Ω, Σ, μ, f) by setting

$$\mu^{(f,\mu)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\t_0&\cdots&t_n\end{smallmatrix}\right))=\mu(\cap_{k=0}^n(f^{-t_k}(A_k))$$

on each cylinder set.

For each $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$, define the (Ω^*, \mathcal{C}) stochastic process, $\mathbf{X}_{\mathcal{C}}^{(f,\mu)} = (X_n^{(f,\mu,\mathcal{C})})_{n=0}^{\infty}$, by $X_n^{(f,\mu,\mathcal{C})}(x) = A$, whenever $x_n \in A \in \mathcal{C}$, for all $n \in \mathbb{N}_0$ and $x \in \Omega^*$.

Proposition 12

For each $C \in \mathcal{P}_{ar}(\Omega)$, $H(\mathbf{X}_{C}^{(f,\mu)}) = h^{KS}(f,C) = h^{KS}(s,\widehat{C})$. In particular, whenever Ω is a discrete space, $H(\mathbf{X}^{(f,\mu)}) = h^{KS}(f,\mathcal{A}) = h^{KS}(s,\widehat{\mathcal{A}})$, where \mathcal{A} is the atomic partition of Ω .

- 3

イロト 不得下 イヨト イヨト

Corollary 13

Let $(\Omega^*, \mathcal{P}(\Omega)^*, \mu^{(f,\mu)}, s)$ be the symbolic dynamics for the discrete dynamical system $(\Omega, \mathcal{P}(\Omega), \mu, f)$ and let \mathcal{A} be the atomic partition of Ω . Then $H(\mathbf{X}^{(f,\mu)}) = h^{KS}(s) = h^{KS}(f) = h^{KS}(f, \mathcal{A})$, whenever \mathcal{A} has finite entropy.

Corollary 13

Let $(\Omega^*, \mathcal{P}(\Omega)^*, \mu^{(f,\mu)}, s)$ be the symbolic dynamics for the discrete dynamical system $(\Omega, \mathcal{P}(\Omega), \mu, f)$ and let \mathcal{A} be the atomic partition of Ω . Then $H(\mathbf{X}^{(f,\mu)}) = h^{KS}(s) = h^{KS}(f) = h^{KS}(f, \mathcal{A})$, whenever \mathcal{A} has finite entropy.

Theorem 14

If **X** is a stationary (Ω, E) stochastic process then $(E^*, \mathcal{E}^*, \mu^{\mathbf{X}}, s)$ is a stationary dynamical system. Conversely, if (Ω, Σ, μ, f) is a stationary dynamical system, then $\mathbf{X}^{(f,\mu)}$ is a stationary stochastic process.

くほと くほと くほと

Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let (Ω, Σ, μ, f) be a dynamical system such that $|\Omega| = N < \infty$. Then $h^{KS}(f) = 0$.

Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let (Ω, Σ, μ, f) be a dynamical system such that $|\Omega| = N < \infty$. Then $h^{KS}(f) = 0$.

Property 2 (Linear in time)

For any dynamical system (Ω, Σ, μ, f) , we have

$$h^{KS}(f^n) = nh^{KS}(f), \text{ for all } n \in \mathbb{N}_0.$$

Two fundamental properties of KS entropy

Property 1 (Zero on finite systems)

Let (Ω, Σ, μ, f) be a dynamical system such that $|\Omega| = N < \infty$. Then $h^{KS}(f) = 0$.

Property 2 (Linear in time)

For any dynamical system (Ω, Σ, μ, f) , we have

$$h^{KS}(f^n) = nh^{KS}(f), \text{ for all } n \in \mathbb{N}_0.$$

Let P be the transition matrix governing the unbiased random walk on the cycle. Then $H(P) = \ln 2$ and $H(P^2) = \frac{3}{2} \ln 2$. I.e. we have an example of a stochastic process whose entropy rate is nonzero on a finite system and is nonlinear in time.

- 4 週 ト - 4 三 ト - 4 三 ト

Measurements

A state space is defined as a pair (X, K), where

- (i) X is a real Banach space with norm $\|\cdot\|$,
- (ii) K is a closed cone in X,
- (iii) if $u, v \in K$, then ||u|| + ||v|| = ||u + v||, and
- (iv) if $u \in X$ and $\epsilon > 0$, then there exists $u_1, u_2 \in K$ such that $u = u_1 u_2$ and $||u_1|| + ||u_2|| < ||u|| + \epsilon$.

For any state space (X, K), there exists a unique positive linear functional $\tau : X \to \mathbb{R}$ such that $\tau(u) \leq ||u||$, for $u \in X$, with equality when $u \in K$. We say that $u \in K$ is a *state* if $\tau(u) = 1$.

Measurements

A state space is defined as a pair (X, K), where

- (i) X is a real Banach space with norm $\|\cdot\|$,
- (ii) K is a closed cone in X,
- (iii) if $u, v \in K$, then ||u|| + ||v|| = ||u + v||, and
- (iv) if $u \in X$ and $\epsilon > 0$, then there exists $u_1, u_2 \in K$ such that $u = u_1 u_2$ and $||u_1|| + ||u_2|| < ||u|| + \epsilon$.

For any state space (X, K), there exists a unique positive linear functional $\tau : X \to \mathbb{R}$ such that $\tau(u) \leq ||u||$, for $u \in X$, with equality when $u \in K$. We say that $u \in K$ is a *state* if $\tau(u) = 1$. A *phase space* is defined as an arbitrary measurable space (Ω, Σ) .

Measurements

A state space is defined as a pair (X, K), where

- (i) X is a real Banach space with norm $\|\cdot\|$,
- (ii) K is a closed cone in X,
- (iii) if $u, v \in K$, then ||u|| + ||v|| = ||u + v||, and
- (iv) if $u \in X$ and $\epsilon > 0$, then there exists $u_1, u_2 \in K$ such that $u = u_1 u_2$ and $||u_1|| + ||u_2|| < ||u|| + \epsilon$.

For any state space (X, K), there exists a unique positive linear functional $\tau : X \to \mathbb{R}$ such that $\tau(u) \leq ||u||$, for $u \in X$, with equality when $u \in K$. We say that $u \in K$ is a *state* if $\tau(u) = 1$. A *phase space* is defined as an arbitrary measurable space (Ω, Σ) . We say that $x : \Sigma \to X^*$ is an *observable* if, for every $E \in \Sigma$, $0 \leq x(E) \leq \tau$ and $x(\Omega) = \tau$. Given a state $u \in K$, an observable x, and $E \in \Sigma$, we interpret x(E)u as the probability that a system in state u takes values in E when observed with the observable x.

Instruments

An operation is a positive, bounded linear operator $T: X \to X$, such that $0 \leq \tau(Tu) \leq \tau(u)$ for every $u \in K$. We denote by $\mathcal{O} := \mathcal{O}(X)$ the set of all operations on X. Finally, we define an *instrument* as a map $\mathcal{T} : \Sigma \to \mathcal{O}$ such that $\tau(\mathcal{T}(\Omega)u) = \tau(u)$, for all $u \in K$, and $\mathcal{T}(\cup_n E_n) = \sum_n \mathcal{T}(E_n)$, for any disjoint sequence of sets $\{E_n\} \subseteq \Sigma$, where convergence of the sum is in the strong operator topology.

Instruments

An operation is a positive, bounded linear operator $T: X \to X$, such that $0 \leq \tau(Tu) \leq \tau(u)$ for every $u \in K$. We denote by $\mathcal{O} := \mathcal{O}(X)$ the set of all operations on X. Finally, we define an *instrument* as a map $\mathcal{T}: \Sigma \to \mathcal{O}$ such that $\tau(\mathcal{T}(\Omega)u) = \tau(u)$, for all $u \in K$, and $\mathcal{T}(\cup_n E_n) = \sum_n \mathcal{T}(E_n)$, for any disjoint sequence of sets $\{E_n\} \subseteq \Sigma$, where convergence of the sum is in the strong operator topology. For any instrument, \mathcal{T} , one can define a unique observable $x_{\mathcal{T}}$ by setting $x_{\mathcal{T}}(E)u = \tau(\mathcal{T}(E)u)$ for $u \in X$ and $E \in \Sigma$. However, it is possible that two distinct instruments, $\mathcal{T} \neq \mathcal{S}$, give rise to the same observable, $x_T = x_S$. Given an initial state $u \in K$ and $E \in \Sigma$, we can interpret $\mathcal{T}(E)u/x_{\mathcal{T}}(E)u \in K$ as the state of the system immediately after measuring the system in state u with the instrument \mathcal{T} and obtaining values in the set E.

Classical mechanics

- Let Ω be a locally compact Hausdorff space and \mathcal{B} be the Borel σ -algebra of Ω and take (Ω, \mathcal{B}) to be the phase space.
- Let X be the real Banach space of all countably additive, regular, real-valued Borel measures on Ω equipped with the total variation norm
- Let K be the closed cone of X containing the nonnegative measures on Ω and set (X, K) to be the state space.
- The linear functional τ is given by $\tau(\nu) = \int_{\Omega} d\nu = \nu(\Omega)$ for any $\nu \in X$.
- We define the (classical) sharp measurement instrument ${\mathcal T}$ by

$$\mathcal{T}(E)\nu(A) = \nu(A \cap E) \text{ for } \nu \in S \text{ and } A, E \in \mathcal{B}.$$

Hilbert space quantum mechanics

Setting

- Let *H* be a Hilbert space.
- Let $X = S_1^{sa}(H)$ be the real Banach space of self-adjoint, trace class operators on H equipped with the trace class norm.
- Let K = S₁⁺(H) be the closed cone of X containing the positive, trace class operators on H and set (X, K) to be the state space.
- Let $(\Omega, \mathcal{P}(\Omega))$ be a discrete phase space.
- The linear functional au is given by the trace, tr.

Hilbert space quantum mechanics

Setting

- Let *H* be a Hilbert space.
- Let $X = S_1^{sa}(H)$ be the real Banach space of self-adjoint, trace class operators on H equipped with the trace class norm.
- Let $K = S_1^+(H)$ be the closed cone of X containing the positive, trace class operators on H and set (X, K) to be the state space.
- Let $(\Omega, \mathcal{P}(\Omega))$ be a discrete phase space.
- The linear functional au is given by the trace, tr.

Given a collection of bounded operators, $(B_i)_{i\in\Omega} \subseteq B(H)$, such that $\sum_{i\in\Omega} B_i^* B_i = \mathbb{1}_H$ we define the instrument $\mathcal{T} : \Omega \to (X \to X)$ by $\mathcal{T}(\Gamma) = \sum_{i\in\Omega} B_i^* \text{ for each } i \in \Omega \text{ and } \Gamma \in \Sigma$

$$\mathcal{T}(E)
ho = \sum_{i \in E} B_i
ho B_i^*$$
 for each $ho \in S$ and $E \in \Sigma$

where the sums are taken with respect to the strong operator topology if O is countably infinite Duncan Wright (Department of MathematicsOn the nonlinearity of quantum dynamical en September 4, 2018 24 / 1 Let $(P_i)_{i\in\Omega} \subset B(H)$ be a family of pairwise orthogonal projections such that $\sum_{i\in\Omega} P_i = \mathbb{1}$. The Lüders-von Neumann instrument generated by $(P_i)_{i\in\Omega}$, \mathcal{T} , is given by

$$\mathcal{T}(E)
ho = \sum_{i\in E} P_i
ho P_i$$
 for $ho\in X$ and $E\in \Sigma$.

Notice that \mathcal{T} is defined by the collapse of wave function formula.

Let $(P_i)_{i\in\Omega} \subset B(H)$ be a family of pairwise orthogonal projections such that $\sum_{i\in\Omega} P_i = \mathbb{1}$. The Lüders-von Neumann instrument generated by $(P_i)_{i\in\Omega}, \mathcal{T}$, is given by

$$\mathcal{T}(E)
ho = \sum_{i\in E} P_i
ho P_i$$
 for $ho \in X$ and $E \in \Sigma$.

Notice that \mathcal{T} is defined by the collapse of wave function formula. Whenever the each projection, P_i , is rank-1, for all $i \in \Omega$, the Lüders-von Neumann instrument, \mathcal{T} , is called a *coherent states instrument*.

Probability measures on the path space

Let (Ω, Σ) be a phase space, (X, K) be a phase space, Θ a τ -preserving automorphism of X, \mathcal{T} an instrument and $u \in K$ be a state. We will refer to (Θ, \mathcal{T}, u) as a *quantum stochastic process*.

Probability measures on the path space

Let (Ω, Σ) be a phase space, (X, K) be a phase space, Θ a τ -preserving automorphism of X, \mathcal{T} an instrument and $u \in K$ be a state. We will refer to (Θ, \mathcal{T}, u) as a *quantum stochastic process*. On each cylinder set $C\begin{pmatrix} A_0 & \cdots & A_n \\ t_0 & \cdots & t_n \end{pmatrix} \subseteq \Omega^*$, we define a measure, $\hat{\mu}^{(\Theta, \mathcal{T}, u)}$, by

$$\widehat{\mu}^{(\Theta,\mathcal{T},u)}(\mathcal{C}\left(\begin{smallmatrix}A_{0}&\cdots&A_{n}\\t_{0}&\cdots&t_{n}\end{smallmatrix}\right))=\mathsf{tr}(\mathcal{T}(A_{n})\circ\Theta^{t_{n}-t_{n-1}}\circ\cdots\circ\Theta^{t_{1}-t_{0}}\circ\mathcal{T}(A_{0})\circ\Theta^{t_{0}}u).$$

Probability measures on the path space

Let (Ω, Σ) be a phase space, (X, K) be a phase space, Θ a τ -preserving automorphism of X, \mathcal{T} an instrument and $u \in K$ be a state. We will refer to (Θ, \mathcal{T}, u) as a *quantum stochastic process*. On each cylinder set $C\begin{pmatrix} A_0 & \cdots & A_n \\ t_0 & \cdots & t_n \end{pmatrix} \subseteq \Omega^*$, we define a measure, $\hat{\mu}^{(\Theta, \mathcal{T}, u)}$, by

$$\widehat{\mu}^{(\Theta,\mathcal{T},u)}(\mathcal{C}\left(\begin{smallmatrix}A_{0}&\cdots&A_{n}\\t_{0}&\cdots&t_{n}\end{smallmatrix}\right))=\mathsf{tr}(\mathcal{T}(A_{n})\circ\Theta^{t_{n}-t_{n-1}}\circ\cdots\circ\Theta^{t_{1}-t_{0}}\circ\mathcal{T}(A_{0})\circ\Theta^{t_{0}}u).$$

Remark

Unfortunately, unlike the measures $\mu^{(f,\mu)}$ or $\mu^{\mathbf{X}}$ in the path space of a dynamical system or a stochastic process, respectively, $\hat{\mu}^{(\Theta,\mathcal{T},u)}$ is not well defined, in general. To create a well defined measure on (Ω^*, Σ^*) , we will fix a sequence of times at which the system is to be measured.

Probability measures with a simple time sequence

For ease, we set $t_n = n$ for all $n \in \mathbb{N}_0$. Then, on each cylinder set $C\left(\begin{smallmatrix} A_0 & \cdots & A_n \\ t_0 & \cdots & t_n \end{smallmatrix}\right) \subseteq \Omega^*$, we define a measure, $\mu^{(\Theta, \mathcal{T}, u)}$, by

$$\mu^{(\Theta,\mathcal{T},u)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\0&\cdots&n\end{smallmatrix}\right)):=\tau(\mathcal{T}(A_n)\circ\Theta\circ\cdots\circ\Theta\circ\mathcal{T}(A_0)u).$$

Probability measures with a simple time sequence

For ease, we set $t_n = n$ for all $n \in \mathbb{N}_0$. Then, on each cylinder set $C\begin{pmatrix} A_0 & \dots & A_n \\ t_0 & \dots & t_n \end{pmatrix} \subseteq \Omega^*$, we define a measure, $\mu^{(\Theta, \mathcal{T}, u)}$, by

$$\mu^{(\Theta,\mathcal{T},u)}(\mathcal{C}\left(\begin{smallmatrix}A_0&\cdots&A_n\\0&\cdots&n\end{smallmatrix}\right)):=\tau(\mathcal{T}(A_n)\circ\Theta\circ\cdots\circ\Theta\circ\mathcal{T}(A_0)u).$$

For $A_0, A_2 \in \Sigma$, we have

$$\mu^{(\Theta,\mathcal{T},u)}(C\left(\begin{smallmatrix}A_0 & A_2\\ 0 & 2\end{smallmatrix}\right)) = \mu^{(\Theta,\mathcal{T},u)}(C\left(\begin{smallmatrix}A_0 & \Omega & A_2\\ 0 & 1 & 2\end{smallmatrix}\right)) = \tau(\mathcal{T}(A_2) \circ \Theta \circ \mathcal{T}(\Omega) \circ \Theta \circ \mathcal{T}(A_0)u),$$

which is not necessarily equal to $tr(\mathcal{T}(A_2) \circ \Theta^2 \circ \mathcal{T}(A_0)u)$.

Probability measures with a simple time sequence

For ease, we set $t_n = n$ for all $n \in \mathbb{N}_0$. Then, on each cylinder set $C\begin{pmatrix} A_0 & \dots & A_n \\ t_0 & \dots & t_n \end{pmatrix} \subseteq \Omega^*$, we define a measure, $\mu^{(\Theta, \mathcal{T}, u)}$, by

$$\mu^{(\Theta,\mathcal{T},u)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\0&\cdots&n\end{smallmatrix}\right)):=\tau(\mathcal{T}(A_n)\circ\Theta\circ\cdots\circ\Theta\circ\mathcal{T}(A_0)u).$$

For $A_0, A_2 \in \Sigma$, we have

$$\mu^{(\Theta,\mathcal{T},u)}(\mathcal{C}\begin{pmatrix}A_0 & A_2\\ 0 & 2\end{pmatrix}) = \mu^{(\Theta,\mathcal{T},u)}(\mathcal{C}\begin{pmatrix}A_0 & \Omega & A_2\\ 0 & 1 & 2\end{pmatrix}) \\ = \tau(\mathcal{T}(\mathcal{A}_2) \circ \Theta \circ \mathcal{T}(\Omega) \circ \Theta \circ \mathcal{T}(\mathcal{A}_0)u),$$

which is not necessarily equal to $\operatorname{tr}(\mathcal{T}(A_2) \circ \Theta^2 \circ \mathcal{T}(A_0)u)$. Therefore $\mu^{(\Theta,\mathcal{T},u)}(C\left(\begin{smallmatrix}A_0 & A_2\\ 0 & 2\end{smallmatrix}\right))$ is interpreted as the probability that a system in initial state u will be measured at times 0, 1, 2 and record the measurement sequence (A_0, A_2) at times 0 and 2.

- 4 回 ト 4 三 ト - 三 - シック

Slomczynski-Zyczkowski quantum entropy

The *Slomczynski-Zyczkowski (SZ) entropy* of (Θ, \mathcal{T}, u) with respect to $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$ is given by

$$h^{SZ}(\Theta, \mathcal{T}, u, \mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} \sum_{\substack{A_k \in \mathcal{C} \\ 0 \leq k \leq n-1}} \eta(\mu^{(\Theta, \mathcal{T}, \rho)}(\mathcal{C}\begin{pmatrix} A_0 & \cdots & A_{n-1} \\ 0 & \cdots & n-1 \end{pmatrix})),$$

whenever the limit exists.

- 4 同 6 4 日 6 4 日 6

- 31

Slomczynski-Zyczkowski quantum entropy

The *Slomczynski-Zyczkowski (SZ) entropy* of (Θ, \mathcal{T}, u) with respect to $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$ is given by

$$h^{SZ}(\Theta, \mathcal{T}, u, \mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} \sum_{\substack{A_k \in \mathcal{C} \\ 0 \leq k \leq n-1}} \eta(\mu^{(\Theta, \mathcal{T}, \rho)}(C\left(\begin{smallmatrix} A_0 & \cdots & A_{n-1} \\ 0 & \cdots & n-1 \end{smallmatrix}\right))),$$

whenever the limit exists.

Lemma 15

Let everything be as above and let s be the shift map on $(\Omega^*, \Sigma^*, \mu^{(\Theta, T, u)})$. For each $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$, define the (Ω^*, \mathcal{C}) stochastic process $\mathbf{X}_{\mathcal{C}}^{(\Theta, T, u)}$ analogously to $\mathbf{X}_{\mathcal{C}}^{(f, \mu)}$ for classical dynamical systems. Then

$$H(\mathbf{X}_{\mathcal{C}}^{(\Theta,\mathcal{T},u)}) = h^{SZ}(\Theta,\mathcal{T},u,\mathcal{C}) = h^{KS}(s,\mu^{(\Theta,\mathcal{T},u)},\widehat{\mathcal{C}}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Two causes of randomness

The SZ measurement entropy of (Θ, \mathcal{T}, u) with respect to C, denoted by $h_{\text{meas}}^{SZ}(\Theta, \mathcal{T}, \rho, C)$, quantifies the amount of randomness we observe in our system due to our choice of instrument, \mathcal{T} . It is given by

$$h^{SZ}_{\text{meas}}(\Theta, \mathcal{T}, u, \mathcal{C}) = h^{SZ}(\mathbb{1}, \mathcal{T}, u, \mathcal{C}).$$

Two causes of randomness

The SZ measurement entropy of (Θ, \mathcal{T}, u) with respect to C, denoted by $h_{\text{meas}}^{SZ}(\Theta, \mathcal{T}, \rho, C)$, quantifies the amount of randomness we observe in our system due to our choice of instrument, \mathcal{T} . It is given by

$$h^{SZ}_{\text{meas}}(\Theta, \mathcal{T}, u, \mathcal{C}) = h^{SZ}(\mathbb{1}, \mathcal{T}, u, \mathcal{C}).$$

The remainder

$$h^{SZ}_{\mathsf{dyn}}(\Theta,\mathcal{T},u,\mathcal{C}) = h^{SZ}(\Theta,\mathcal{T},u,\mathcal{C}) - h^{SZ}_{\mathsf{meas}}(\Theta,\mathcal{T},u,\mathcal{C})$$

is referred to as the SZ dynamical entropy and quantifies the amount of randomness we observe in our system due to the dynamics, Θ .

Two causes of randomness

The SZ measurement entropy of (Θ, \mathcal{T}, u) with respect to C, denoted by $h_{\text{meas}}^{SZ}(\Theta, \mathcal{T}, \rho, C)$, quantifies the amount of randomness we observe in our system due to our choice of instrument, \mathcal{T} . It is given by

$$h^{SZ}_{\text{meas}}(\Theta, \mathcal{T}, u, \mathcal{C}) = h^{SZ}(\mathbb{1}, \mathcal{T}, u, \mathcal{C}).$$

The remainder

$$h^{SZ}_{\mathsf{dyn}}(\Theta,\mathcal{T},u,\mathcal{C}) = h^{SZ}(\Theta,\mathcal{T},u,\mathcal{C}) - h^{SZ}_{\mathsf{meas}}(\Theta,\mathcal{T},u,\mathcal{C})$$

is referred to as the SZ dynamical entropy and quantifies the amount of randomness we observe in our system due to the dynamics, Θ . Luckily, for Lüders-von Neumann instruments and classical sharp measurements, $h_{\text{meas}}^{SZ}(\Theta, \mathcal{T}, u, \mathcal{C}) = 0$ and so

$$h^{SZ}_{dyn}(\Theta,\mathcal{T},u,\mathcal{C}) = h^{SZ}(\Theta,\mathcal{T},u,\mathcal{C}),$$

so long as $H(\widehat{\mathcal{C}}) < \infty$.

Duncan Wright (Department of MathematicsOn the nonlinearity of quantum dynamical en

SZ entropy with classical sharp instruments

Proposition 16

Let (Ω, \mathcal{B}) , (X, K), τ and \mathcal{T} be as in the classical mechanics example. Let $\mu \in K$ be a state; i.e. a probability measure on (Ω, \mathcal{B}) , and $f : X \to X$ a measurable map so that $(\Omega, \mathcal{B}, \mu, f)$ is a DS. Let $T_f : X \to X$ be the automorphism known as the Koopman operator defined by

$$\mathcal{T}_f(
u)(\mathcal{A}):=
u(f^{-1}(\mathcal{A}))$$
 for all $u\in X$ and $\mathcal{A}\in\mathcal{B}.$

Then for each $C \in \mathcal{P}_{ar}(\Omega)$, $h^{KS}(f, \mu, C) = h^{SZ}(T_f, \mathcal{T}, \mu, C)$.

SZ entropy with coherent states instruments

Let \mathcal{T} be a coherent states instrument given by a family of orthogonal, rank-1 projections $(P_i)_{i\in\Omega}$ such that $P_i = |a_i\rangle\langle a_i|$ for each $i \in \Omega$.

SZ entropy with coherent states instruments

Let \mathcal{T} be a coherent states instrument given by a family of orthogonal, rank-1 projections $(P_i)_{i\in\Omega}$ such that $P_i = |a_i\rangle\langle a_i|$ for each $i \in \Omega$. Then

$$\mu^{(\Theta,\mathcal{T},\rho)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\0&\cdots&n\end{smallmatrix}\right)) = \operatorname{tr}(\mathcal{T}(A_n)\circ\Theta\circ\cdots\circ\Theta\circ\mathcal{T}(A_0)\rho)$$
$$= \sum_{\substack{a_k\in A_k\\0\leqslant k\leqslant n}}\langle a_0|\rho|a_0\rangle\prod_{k=1}^n|\langle a_k|U|a_{k-1}\rangle|^2.$$

SZ entropy with coherent states instruments

Let \mathcal{T} be a coherent states instrument given by a family of orthogonal, rank-1 projections $(P_i)_{i\in\Omega}$ such that $P_i = |a_i \times a_i|$ for each $i \in \Omega$. Then

$$u^{(\Theta,\mathcal{T},\rho)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\0&\cdots&n\end{smallmatrix}\right)) = \operatorname{tr}(\mathcal{T}(A_n)\circ\Theta\circ\cdots\circ\Theta\circ\mathcal{T}(A_0)\rho)$$
$$= \sum_{\substack{a_k\in A_k\\0\leqslant k\leqslant n}}\langle a_0|\rho|a_0\rangle\prod_{k=1}^n|\langle a_k|U|a_{k-1}\rangle|^2.$$

Thus $\mathbf{X}_{\mathcal{A}}^{(\Theta,\mathcal{T},\rho)}$ is a Markov process governed by the transition matrix $P = [|\langle a_i | U | a_j \rangle|^2]_{i,j\in\Omega}$ and initial distribution $p_{X_0^{(\Theta,\mathcal{T},\rho,\mathcal{A})}} = [\langle a_i | \rho | a_i \rangle]_{i\in\Omega}$.

SZ entropy is nonlinear in time

Theorem 17

Let $(\Omega, \mathcal{P}(\Omega))$ be a discrete phase space with $|\Omega| = N$ for some $N \in \mathbb{N}$, \mathcal{T} a Lüders-von Neumann instrument, Θ a unitary transformation and $\rho \in S_1^+(H)$ a state. Then $h_{dyn}^{SZ}(\Theta^n, \mathcal{T}, \rho) \leq N$ for all $n \in \mathbb{N}$. Therefore, if $h_{dyn}^{SZ}(\Theta, \mathcal{T}, \rho) \neq 0$, then $h_{dyn}^{SZ}(\Theta^n, \mathcal{T}, \rho) \neq nh_{dyn}^{SZ}(\Theta, \mathcal{T}, \rho)$ for all sufficiently large $n \in \mathbb{N}$.
Hadamard walk

Let $H_C = \mathbb{C}^2$ with orthonormal basis $\{|R\rangle, |L\rangle\}$. Consider the vertex set $V = \mathbb{Z}$ or $\{0, \ldots, N-1\}$ for some $N \in \mathbb{N}$ with $N \ge 3$ and set $H_P = \ell_2(\mathbb{Z})$ or \mathbb{C}^N , respectively. Let $H = H_C \otimes H_P$. Define the integer shift operator, on H, by

$$S = \sum_{n=0}^{N-1} |R, n+1 \times R, n| + |L, n-1 \times L, n|,$$

where addition on the integers is done modulo N whenever $\Omega = \{0, \ldots, N-1\},$ and the unitary operator

$$h:=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\1&-1\end{bmatrix},$$

on H_C , referred to as the Hadamard matrix (or Hadamard coin/gate). The Hadamard walk on V is the unitary transformation, Θ , on X, given by

$$\Theta(\rho) = U\rho U^*$$
, for all $\rho \in X$, where $U = S(h \otimes \mathbb{1}_{H_P})$.

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ●のの⊙

Hadamard walk with measurements

The Hadamard walk with measurements of the coin after each unit time produces the unbiased random walk.

Long-Term Distribution

Quantum Walks and Search Algorithms, R. Portugal

Duncan Wright (Department of Mathematics<mark>On the nonlinearity of quantum dynamical en</mark>

Hadamard walk without measurements

Quantum Walks and Search Algorithms, R. Portugal

Duncan Wright (Department of MathematicsOn the nonlinearity of quantum dynamical en

Hadamard walk without measurements

Quantum Walks and Search Algorithms, R. Portugal

Duncan Wright (Department of Mathematics<mark>On the nonlinearity of quantum dynamical en</mark>

Implementation with Nuclear Magnetic Resonance

Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor, Ryan et. al.

Two interpretations for measuring position

One option is to take the phase space to be $(C \times V, \mathcal{P}(C \times V))$, the coherent states instrument \mathcal{T} to be given by the family $(P_e)_{e \in C \times V}$, where $P_{c,v} = |c, v\rangle\langle c, v|$, and calculate the SZ entropy with respect to the partition

$$\mathcal{C}_V = \{C_v\}_{v \in V}, \text{ where } C_v := \{|R, v\rangle, |L, v\rangle\}, \text{ for each } v \in V.$$

Two interpretations for measuring position

One option is to take the phase space to be $(C \times V, \mathcal{P}(C \times V))$, the coherent states instrument \mathcal{T} to be given by the family $(P_e)_{e \in C \times V}$, where $P_{c,v} = |c, v \not\setminus c, v|$, and calculate the SZ entropy with respect to the partition

$$\mathcal{C}_V = \{C_v\}_{v \in V}, \text{ where } C_v := \{|R, v\rangle, |L, v\rangle\}, \text{ for each } v \in V.$$

On the other hand we could take the phase space to be $(V, \mathcal{P}(V))$, define the projections

$$P_{v} = \mathbb{1}_{H_{\mathcal{C}}} \otimes |v\rangle \langle v|, \text{ for each } v \in V,$$

and calculate the SZ entropy of the Lüders-von Neumann instrument \mathcal{V} , governed by the family $(P_v)_{v \in V}$, with respect to the atomic partition of V.

(**D**) | | **A A B**) | | **A B**) | **A** | **B**) | **A** | **B**) | **A** | **B**) | | **A** | **B**) | | **A** | **B**) | **A** | **B**) | **A** | **B**) | **A**

Two different outcomes for measuring position

Theorem 18

Let Θ be the Hadamard walk on $V = \{0, ..., N-1\}$ with $|V| = N \ge 3$. Let \mathcal{T} be the coherent states instrument given by the family of orthogonal projections $(P_e)_{e \in C \times V}$, $\rho = \frac{1}{2N}$ and \mathcal{C}_V the partition given on the previous slide. Then $h^{SZ}(\Theta, \mathcal{T}, \rho, \mathcal{C}_V) = \ln 2$ and $h^{SZ}(\Theta^2, \mathcal{T}, \rho, \mathcal{C}_V) = \frac{3}{2} \ln 2$.

Two different outcomes for measuring position

Theorem 18

Let Θ be the Hadamard walk on $V = \{0, ..., N-1\}$ with $|V| = N \ge 3$. Let \mathcal{T} be the coherent states instrument given by the family of orthogonal projections $(P_e)_{e \in C \times V}$, $\rho = \frac{1}{2N}$ and \mathcal{C}_V the partition given on the previous slide. Then $h^{SZ}(\Theta, \mathcal{T}, \rho, \mathcal{C}_V) = \ln 2$ and $h^{SZ}(\Theta^2, \mathcal{T}, \rho, \mathcal{C}_V) = \frac{3}{2} \ln 2$.

Theorem 19

Let Θ be the Hadamard walk on $V = \{0, \ldots, N-1\}$ with $|V| = N \ge 3$. Let \mathcal{V} be the Lüders-von Neumann instrument given by the family of orthogonal rank-2 projections $(P_v)_{v \in V}$ defined on the previous slide, $\rho = \frac{1}{2N}$ and \mathcal{A} the atomic partition of V. Then $h^{SZ}(\Theta, \mathcal{V}, \rho, \mathcal{A}) = \ln 2$ and $h^{SZ}(\Theta^2, \mathcal{V}, \rho, \mathcal{A}) = \frac{4}{3} \ln 2$.

- 31

イロト 不得下 イヨト イヨト

This work was partially supported by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.

References

- T. M. Cover and J. A. Thomas (1991) Elements of Information Theory Wiley Interscience New York
- T. Downarowicz (2011) Entropy in Dynamical Systems *Cambridge University Press* New York
- R. Portugal (2013) Quantum Random Walks and Search Algorithms Springer New York
- W. Slomczyski and A. Szymusiak (2017) Quantum Dynamical Entropy, Chaotic Unitaries and Complex Hadamard Matrices *IEEE Trans. Inform. Theory* 63(12), 7821 7831
- W. Slomczynski and K. Zyczkowski (1994) Quantum Chaos: An Entropy Approach J. Math. Phys. 35(2), 5674 – 5700

イロト 不得下 イヨト イヨト