The Nonlinearity of Quantum Dynamical Entropy

Duncan Wright

University of South Carolina

Classical Mechanics

- (Phase space) (Ω, \mathcal{B}), where Ω is a locally compact Hausdorff space.
- (State space) (X, K), where $X(K)$ consists of all countably additive, regular, real-valued (positive) Borel measures.
- (States) $\mu \in K$, where μ is a probability measure
- (Sharp Instrument) $\mathcal{T}: \mathcal{B} \rightarrow \mathcal{O}$ given by

$$
\mathcal{T}(E) \nu(A)=\nu(A \cap E)
$$

for $\nu \in S$ and $A, E \in \mathcal{B}$.

- (Measurements) $\tau: X \rightarrow \mathbb{R}$ given by

$$
\tau(\nu)=\int_{\Omega} d \nu=\nu(\Omega)
$$

for $\nu \in X$.

- (Dynamics) $T_{f}: X \rightarrow X$ is the Koopman operator given by

$$
T_{f}(\nu)(A):=\nu\left(f^{-1}(A)\right)
$$

for $f: \Omega \rightarrow \Omega, \nu \in X$ and $A \in \mathcal{B}$.

Kolmogorov-Sinai Entropy

A dynamical system is a quadruple $(\Omega, \mathcal{B}, \mu, f)$ where

- $(\Omega, \mathcal{B}, \mu)$ is a probability space.
- $f: \Omega \rightarrow \Omega$ is a measurable map which governs the dynamics.
The partition dependent KS entropy is given by

$$
h^{K S}(f, \mathcal{C})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(\vee_{k=0}^{n-1} f^{-k}(\mathcal{C})\right)
$$

The partition independent KS entropy is given by

$$
h^{K S}(f)=\sup _{\substack{\mathcal{C} \in \mathcal{P}_{a}(\Omega) \\ H(\mathcal{C})<\infty}} h^{K S}(f, \mathcal{C}) .
$$

Comparison to SZ Entropy
Given a dynamical system $(\Omega, \mathcal{B}, \mu, f)$, a partition $\mathcal{C} \in \mathcal{P}_{\text {ar }}(\Omega)$, and the remaining terms as defined for classical mechanics, we have
$h^{K S}(f, \mathcal{C})=h^{S Z}\left(T_{f}, \mathcal{T}, \mu, \mathcal{C}\right)$.

Slomczynski-Zyczkowski Quantum Dynamical Entropy
Fix a phase space (Ω, Σ), a state space (X, K), an instrument $\mathcal{T}: \Omega \rightarrow \mathcal{O}$, a state $u \in K$, a measurement functional $\tau: \mathbf{X} \rightarrow \mathbb{R}$ and a τ-preserving map $\Theta: X \rightarrow X$. We can then define a probability measure, $\mu^{(\Theta, \mathcal{T}, u)}$, on $\left(\Omega^{*}, \Sigma^{*}\right)$, where $\Omega^{*}:=E^{\mathbb{N}_{0}}$ and $\Sigma^{*}:=\sigma\left(\cup_{n=0}^{\infty} \Sigma^{n}\right)$, by

$$
\mu^{\Theta, \mathcal{T}, u)}\left(C\left(\begin{array}{c}
A_{0} \cdots \\
0
\end{array} A_{n}\right)\right):=\tau\left(\mathcal{T}\left(A_{n}\right) \circ \Theta \circ \cdots \circ \Theta \circ \mathcal{T}\left(A_{0}\right) u\right) .
$$

The partition dependent dynamical $S Z$ entropy is given by

$$
h^{S Z}(\Theta, \mathcal{T}, u, \mathcal{C})=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{0 \leq k \leq \in \mathcal{C}} \eta\left(\mu^{(\Theta, \mathcal{T}, \rho)}\left(C\left(\begin{array}{c}
A_{0} \cdots \cdots \\
0 \\
0
\end{array} A_{n-1} \begin{array}{l}
n-1
\end{array}\right)\right)\right) .
$$

The partition independent dynamical $S Z$ entropy is given by

$$
h^{S Z}(\Theta, \mathcal{T}, u)=\sup _{\substack{\mathcal{C} \in \mathcal{P} \\ H(\mathcal{C}(\Omega)<\infty}} h^{S Z}(\Theta, \mathcal{T}, u, \mathcal{C})
$$

Hilbert Space Mechanics

- (Phase space) $(\Omega, \mathcal{P}(\Omega))$, where Ω is a discrete space.
- (State space) (X, K), where $X(K)$ consists of all self-adjoint (positive), trace class operators on \mathcal{H}.
- (States) $\rho \in K$ such that $\operatorname{tr}(\rho)=1$.
- (LvN Instrument) $\mathcal{T}: \mathcal{P}(\Omega) \rightarrow \mathcal{O}$ given by
$\mathcal{T}(E) \rho=\sum_{i \in E} P_{i} \rho P_{i}$
for $\rho \in X, E \in \Sigma$ and $\left(P_{i}\right)_{i \in \Omega}$ a family of
pairwise orthogonal projections summing to $\mathbb{1}$.
- (Measurements) $\tau: X \rightarrow \mathbb{R}$ is the trace tr.
- (Dynamics) $\Theta: X \rightarrow X$ is a unitary transformation given by

$$
\Theta(\rho)=U \rho U^{*}
$$

for $\rho \in X$.

SZ Entropy is Nonlinear

Let all terms be defined as for Hilbert space mechanics such that $|\Omega|=N$ for some $N \in \mathbb{N}$. If $h^{S Z}(\Theta, \mathcal{T}, \rho) \neq 0$, then
$h^{S Z}\left(\Theta^{n}, \mathcal{T}, \rho\right) \neq n h_{\mathrm{dyn}}^{S Z}(\Theta, \mathcal{T}, \rho)$
for all sufficiently large $n \in \mathbb{N}$. This is in contrast to KS entropy, which is linear in time.

The Hadamard walk is the most well-studied coined unitary quantum random walk. It is given by a unitary transformation, Θ, on the tensored Hilbert space $\mathcal{H}=\mathcal{H}_{C} \otimes \mathcal{H}_{P}$, where $\mathcal{H}_{C}=\mathbb{C}^{2}$ and $\mathcal{H}_{P}=\mathbb{C}^{N}$ for some $N \in \mathbb{N}$. To measure the position of the Hadamard walk, we can either use a LvN instrument, \mathcal{T}, of rank- 1 projections with respect to the partition

$$
\mathcal{C}_{V}=\{\{|R, n\rangle,|L, n\rangle\}\}_{n=0}^{N-1}
$$

or we can use a LvN instrument, \mathcal{V}, of rank-2 projections,

$$
\left(P_{n}\right)_{n=0}^{N-1}, \quad \text { with } P_{n}=\mathbb{1}_{H_{C}} \otimes|n\rangle\langle n|
$$

with respect to the atomic partition, \mathcal{A}

> Ambiguity in Measurement

Letting $\rho=\mathbb{1}_{H} / 2 N$, we find that

$$
h^{S Z}\left(\Theta^{2}, \mathcal{T}, \rho, \mathcal{C}_{V}\right) \neq h^{S Z}\left(\Theta^{2}, \mathcal{V}, \rho, \mathcal{A}\right)
$$

reflecting the sensitivity of a quantum system to measurement.

Acknowledgements

This work was partially supported by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.

Connection to Entropy Rate
Let $\mathbf{X}^{(\Theta, \mathcal{T}, u)}=\left(X_{n}^{(\Theta, \mathcal{T}, u)}\right)_{n=0}^{\infty}$ be the stochastic process, with $X_{n}^{(\Theta, \mathcal{T}, u)}: \Omega^{*} \rightarrow \Omega$, given by

$$
X_{n}^{(\Theta, \mathcal{T}, u)}(x)=x_{n}
$$

for all $x \in \Omega^{*}$ and $n \in \mathbb{N}_{0}$. Then $\mu^{(\Theta, \mathcal{T}, \rho)}$ is simply the probability distribution function of $\mathbf{X}^{(\Theta, \mathcal{T}, u)}$.

Discrete Phase Space

Whenever the phase space (Ω, Σ) is discrete, we have that

$$
h^{S Z}(\Theta, \mathcal{T}, u)=H\left(\mathbf{X}^{(\Theta, \mathcal{T}, u)}\right) .
$$

Fix a partition $\mathcal{C} \in \mathcal{P}_{a r}(\Omega)$. We then define the restricted stochastic process $\mathbf{X}_{\mathcal{C}}^{(\Theta, \mathcal{T}, u)}=$ $\left(X_{n}^{(\Theta, \mathcal{T}, u, \mathcal{C})}\right)_{n=0}^{\infty}$, with $X_{n}^{(\Theta, \mathcal{T}, u, \mathcal{C})}: \Omega^{*} \rightarrow \mathcal{C}$, given by

$$
X_{n}^{(\Theta, \mathcal{T}, u, \mathcal{C})}=i_{\mathcal{C}} \circ X_{n}^{(\Theta, \mathcal{T}, u)}
$$

where $i_{\mathcal{C}}: \Omega \rightarrow \mathcal{C}$ is given by $i_{\mathcal{C}}(\omega)=A \in \mathcal{C}$ whenever $\omega \in A$. The following holds:

$$
h^{S Z}(\Theta, \mathcal{T}, u, \mathcal{C})=H\left(\mathbf{X}_{\mathcal{C}}^{(\Theta, \mathcal{T}, u)}\right)
$$

Coherent States Instruments

Whenever the family $\left(P_{i}\right)$ consists of rank- 1 projections, the process $\mathbf{X}^{(\Theta, \mathcal{T}, \rho)}$ is a Markov process with transitions probabilities $\left.p_{i, j}=\left|\left\langle a_{i}\right| U\right| a_{j}\right\rangle\left.\right|^{2}$ and initial distribution $\mu(i)=\left\langle a_{i}\right| \rho\left|a_{i}\right\rangle$, where $P_{i}=\left|a_{i}\right\rangle\left\langle a_{i}\right|$, for $i \in \Omega$. Therefore
$h^{S Z}(\Theta, \mathcal{T}, \rho)=\sum_{j \in \Omega} \mu(j) \sum_{i \in \Omega} \eta\left(p_{i, j}\right)$.

Undefined Terms

symbol	meaning
\mathcal{B}	Borel σ-algebra
\mathcal{O}	Operations
H	Entropy (rate)
$\mathcal{P}_{\text {ar }}(\Omega)$	Countable partitions
$\mathcal{P}(\Omega)$	Power set
\mathcal{H}	Hilbert space
\mathbb{N}_{0}	$\mathbb{N} \cup\{0\}$
$C\left(\begin{array}{llll}A_{0} & \cdots & A_{n} \\ 0 & \ldots & n\end{array}\right)$	Cylinder set
η	$\eta(x)=-x \log x$

