The Nonlinearity of Quantum Dynamical Entropy

Duncan Wright

University of South Carolina

Classical Mechanics

- (Phase space) (Ω, \mathcal{B}) , where Ω is a locally compact Hausdorff space.
- (State space) (X, K), where X(K) consists of all countably additive, regular, real-valued (positive) Borel measures.
- (States) $\mu \in K$, where μ is a probability measure.
- (Sharp Instrument) $\mathcal{T}: \mathcal{B} \to \mathcal{O}$ given by

$$\mathcal{T}(E)\nu(A) = \nu(A \cap E)$$

for $\nu \in S$ and $A, E \in \mathcal{B}$.

• (Measurements) $\tau: X \to \mathbb{R}$ given by

$$\tau(\nu) = \int_{\Omega} d\nu = \nu(\Omega)$$

for $\nu \in X$.

• (Dynamics) $T_f: X \to X$ is the Koopman operator given by

$$T_f(\nu)(A) := \nu(f^{-1}(A))$$

for $f: \Omega \to \Omega$, $\nu \in X$ and $A \in \mathcal{B}$.

Kolmogorov-Sinai Entropy

A dynamical system is a quadruple $(\Omega, \mathcal{B}, \mu, f)$ where

- $(\Omega, \mathcal{B}, \mu)$ is a probability space.
- $f:\Omega\to\Omega$ is a measurable map which governs the dynamics.

The partition dependent KS entropy is given by

$$h^{KS}(f,\mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} H(\vee_{k=0}^{n-1} f^{-k}(\mathcal{C})).$$

The partition independent KS entropy is given by

$$h^{KS}(f) = \sup_{\substack{\mathcal{C} \in \mathcal{P}_{ar}(\Omega) \\ H(\mathcal{C}) < \infty}} h^{KS}(f, \mathcal{C}).$$

Comparison to SZ Entropy

Given a dynamical system $(\Omega, \mathcal{B}, \mu, f)$, a partition $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$, and the remaining terms as defined for classical mechanics, we have

$$h^{KS}(f, \mathcal{C}) = h^{SZ}(T_f, \mathcal{T}, \mu, \mathcal{C}).$$

Slomczynski-Zyczkowski Quantum Dynamical Entropy

Fix a phase space (Ω, Σ) , a state space (X, K), an instrument $\mathcal{T}: \Omega \to \mathcal{O}$, a state $u \in K$, a measurement functional $\tau: \mathbf{X} \to \mathbb{R}$ and a τ -preserving map $\Theta: X \to X$. We can then define a probability measure, $\mu^{(\Theta, \mathcal{T}, u)}$, on (Ω^*, Σ^*) , where $\Omega^* := E^{\mathbb{N}_0}$ and $\Sigma^* := \sigma(\cup_{n=0}^{\infty} \Sigma^n)$, by

$$\mu^{(\Theta,\mathcal{T},u)}(C\left(\begin{smallmatrix}A_0&\cdots&A_n\\0&\cdots&n\end{smallmatrix}\right)):=\tau(\mathcal{T}(A_n)\circ\Theta\circ\cdots\circ\Theta\circ\mathcal{T}(A_0)u).$$

The partition dependent dynamical SZ entropy is given by

$$h^{SZ}(\Theta, \mathcal{T}, u, \mathcal{C}) = \lim_{n \to \infty} \frac{1}{n} \sum_{\substack{A_k \in \mathcal{C} \\ 0 \le k \le n-1}} \eta(\mu^{(\Theta, \mathcal{T}, \rho)}(C(A_0 \le A_{n-1}))).$$

The partition independent dynamical SZ entropy is given by

$$h^{SZ}(\Theta, \mathcal{T}, u) = \sup_{\substack{\mathcal{C} \in \mathcal{P}_{ar}(\Omega) \\ H(\mathcal{C}) < \infty}} h^{SZ}(\Theta, \mathcal{T}, u, \mathcal{C}).$$

Hilbert Space Mechanics

- (Phase space) $(\Omega, \mathcal{P}(\Omega))$, where Ω is a discrete space.
- (State space) (X, K), where X(K) consists of all self-adjoint (positive), trace class operators on \mathcal{H} .
- (States) $\rho \in K$ such that $tr(\rho) = 1$.
- (LvN Instrument) $\mathcal{T}: \mathcal{P}(\Omega) \to \mathcal{O}$ given by

$$\mathcal{T}(E)\rho = \sum_{i \in E} P_i \rho P_i$$

for $\rho \in X$, $E \in \Sigma$ and $(P_i)_{i \in \Omega}$ a family of pairwise orthogonal projections summing to 1.

- (Measurements) $\tau: X \to \mathbb{R}$ is the trace tr.
- (Dynamics) $\Theta: X \to X$ is a unitary transformation given by

$$\Theta(\rho) = U\rho U^*$$

for $\rho \in X$.

SZ Entropy is Nonlinear

Let all terms be defined as for Hilbert space mechanics such that $|\Omega| = N$ for some $N \in \mathbb{N}$. If $h^{SZ}(\Theta, \mathcal{T}, \rho) \neq 0$, then

$$h^{SZ}(\Theta^n, \mathcal{T}, \rho) \neq nh_{\mathrm{dyn}}^{SZ}(\Theta, \mathcal{T}, \rho)$$

for all sufficiently large $n \in \mathbb{N}$. This is in contrast to KS entropy, which is linear in time.

Hadamard Walk

The Hadamard walk is the most well-studied coined unitary quantum random walk. It is given by a unitary transformation, Θ , on the tensored Hilbert space $\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_P$, where $\mathcal{H}_C = \mathbb{C}^2$ and $\mathcal{H}_P = \mathbb{C}^N$ for some $N \in \mathbb{N}$. To measure the position of the Hadamard walk, we can either use a LvN instrument, \mathcal{T} , of rank-1 projections with respect to the partition

$$C_V = \{\{|R,n\rangle, |L,n\rangle\}\}_{n=0}^{N-1}$$

or we can use a LvN instrument, \mathcal{V} , of rank-2 projections,

$$(P_n)_{n=0}^{N-1}$$
, with $P_n = \mathbb{1}_{H_C} \otimes |n\rangle\langle n|$

with respect to the atomic partition, \mathcal{A} .

Ambiguity in Measurement

Letting $\rho = \mathbb{1}_H/2N$, we find that $h^{SZ}(\Theta^2, \mathcal{T}, \rho, \mathcal{C}_V) \neq h^{SZ}(\Theta^2, \mathcal{V}, \rho, \mathcal{A}),$

reflecting the sensitivity of a quantum system to measurement.

Acknowledgements

This work was partially supported by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.

Connection to Entropy Rate

Let $\mathbf{X}^{(\Theta,\mathcal{T},u)} = (X_n^{(\Theta,\mathcal{T},u)})_{n=0}^{\infty}$ be the stochastic process, with $X_n^{(\Theta,\mathcal{T},u)}: \Omega^* \to \Omega$, given by

$$X_n^{(\Theta,\mathcal{T},u)}(x) = x_n$$

for all $x \in \Omega^*$ and $n \in \mathbb{N}_0$. Then $\mu^{(\Theta, \mathcal{T}, \rho)}$ is simply the probability distribution function of $\mathbf{X}^{(\Theta, \mathcal{T}, u)}$.

Discrete Phase Space

Whenever the phase space (Ω, Σ) is discrete, we have that

$$h^{SZ}(\Theta, \mathcal{T}, u) = H(\mathbf{X}^{(\Theta, \mathcal{T}, u)}).$$

Fix a partition $\mathcal{C} \in \mathcal{P}_{ar}(\Omega)$. We then define the restricted stochastic process $\mathbf{X}_{\mathcal{C}}^{(\Theta,\mathcal{T},u)} = (X_n^{(\Theta,\mathcal{T},u,\mathcal{C})})_{n=0}^{\infty}$, with $X_n^{(\Theta,\mathcal{T},u,\mathcal{C})} : \Omega^* \to \mathcal{C}$, given by $X_n^{(\Theta,\mathcal{T},u,\mathcal{C})} = i_{\mathcal{C}} \circ X_n^{(\Theta,\mathcal{T},u)}$,

where $i_{\mathcal{C}}: \Omega \to \mathcal{C}$ is given by $i_{\mathcal{C}}(\omega) = A \in \mathcal{C}$ whenever $\omega \in A$. The following holds:

$$h^{SZ}(\Theta, \mathcal{T}, u, \mathcal{C}) = H(\mathbf{X}_{\mathcal{C}}^{(\Theta, \mathcal{T}, u)}).$$

Coherent States Instruments

Whenever the family (P_i) consists of rank-1 projections, the process $\mathbf{X}^{(\Theta,\mathcal{T},\rho)}$ is a Markov process with transitions probabilities $p_{i,j} = |\langle a_i|U|a_j\rangle|^2$ and initial distribution $\mu(i) = \langle a_i|\rho|a_i\rangle$, where $P_i = |a_i\rangle\langle a_i|$, for $i \in \Omega$. Therefore $h^{SZ}(\Theta,\mathcal{T},\rho) = \sum_{j\in\Omega}\mu(j)\sum_{i\in\Omega}\eta(p_{i,j})$.

Undefined Terms

symbol	meaning
\mathcal{B}	Borel σ -algebra
\mathcal{O}	Operations
H	Entropy (rate)
$\mathcal{P}_{ar}\!(\Omega)$	Countable partitions
$\mathcal{P}(\Omega)$	Power set
${\cal H}$	Hilbert space
\mathbb{N}_0	$\mathbb{N} \cup \{0\}$
$C\left(egin{array}{ccc} A_0 & \cdots & A_n \ 0 & \cdots & n \end{array} ight)$	Cylinder set
η	$\eta(x) = -x \log x$