## Chapter 12

Section 12.5

## Equations of Lines

1. The vector equation of a line is the most basic and easiest to remember. Given a point on a line $r_{0}$ and a directional vector $v$ every point on the line as a representation as

$$
r=r_{0}+t \quad \text { for some } t \in \mathbf{R} .
$$

2. The parametric equations of a line follow immediately from this. They are just the invidual equations for the $x, y$ and $z$ coordinates.
3. The symmetric equations of a line follow from the parametric equations and are obtained by setting all the parametric equations equal to the parameter $t$.

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

Note: We can restrict the parameter $t$ to create line segments instead of lines.

## Equations of Planes

Unfortunately, one vector in a plane is not enough information to completely to define a plane like it is for a line. However, if we find a vector orthogonal to a plane, as well as a point in the plane, it is enough information to completely define a plane. This orthogonal vector is called the normal vector and is usually denoted with $n$.

1. If $r, r_{0}$ are vectors in the plane then $n \cdot\left(r-r_{0}\right)=0$ or $n \cdot r=n \cdot r_{0}$. This is called the vector equation of the plane.
2. By expanding this dot product we get

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

which is known as the scalar equation of the plane.
3. Noticing that the above scalar equation is a linear equation, the linear equation of a plane is

$$
a x+b y+c z+d=0 .
$$

## Examples and Applications

1. Find an equation of the plane through the point $(2,4,-1)$ with normal vector $n=<2,3,4>$ and find the intercepts.
2. Find an equation of the plane that passes through the points $P(1,3,2), Q(3,-1,6)$ and $R(5,2,0)$.
3. Find the point at which the line with parametric equations $x=2+3 t, y=4 t, z=5+t$ intersects the plane $4 x+5 y-2 z=18$.
4. Find that angle between the planes $x+y+z=1$ and $x-2 y+3 z=1$. Then find the symmetric equations for the line of intersection.
5. Find a formula for the distance $D$ from a point $P(x, y, z)$ to the plane $a x+b y+c z+d=0$.
6. Find the distance between the parallel lines $10 x+2 y-2 z=5$ and $5 x+y-z=1$.
