Arithmetic Progressions in the Polygonal Numbers

Scott M. Dunn
(Joint work with Kenny Brown and Josh Harrington)

Department of Mathematics
University of South Carolina
Columbia, SC 29208, USA

June 22, 2012
Canadian Number Theory Association XII Meeting
Definition: Triangular Number

The n-th Triangular Number $T(n)$ is the number of points that are needed to fill an equilateral triangle with sides of length $n - 1$. This number is given by

$$T(n) = \frac{n(n + 1)}{2}.$$
Definition: Triangular Number

The n-th Triangular Number $T(n)$ is the number of points that are needed to fill an equilateral triangle with sides of length $n - 1$. This number is given by

$$T(n) = \frac{n(n + 1)}{2}.$$

Consider the sequence $\{T(n)\}_{n=1}^{\infty}$.

Motivating Question

Do infinitely-long arithmetic progressions exist in the triangular numbers?

No.

Do arbitrarily-long arithmetic progressions exist in the triangular numbers?

???

What can we say about arithmetic progressions in the triangular numbers?

???
Motivating Question

Definition: Triangular Number

The \(n \)-th Triangular Number \(T(n) \) is the number of points that are needed to fill an equilateral triangle with sides of length \(n - 1 \). This number is given by

\[
T(n) = \frac{n(n + 1)}{2}.
\]

Consider the sequence \(\{T(n)\}_{n=1}^{\infty} \).

- Do infinitely-long arithmetic progressions exist in the triangular numbers?
Definition: Triangular Number

The n-th Triangular Number $T(n)$ is the number of points that are needed to fill an equilateral triangle with sides of length $n - 1$. This number is given by

$$T(n) = \frac{n(n + 1)}{2}.$$

Consider the sequence $\{T(n)\}_{n=1}^{\infty}$.

- Do infinitely-long arithmetic progressions exist in the triangular numbers? No.
Motivating Question

Definition: Triangular Number

The n-th Triangular Number $T(n)$ is the number of points that are needed to fill an equilateral triangle with sides of length $n - 1$. This number is given by

$$T(n) = \frac{n(n + 1)}{2}.$$

Consider the sequence $\{T(n)\}_{n=1}^{\infty}$.

- Do infinitely-long arithmetic progressions exist in the triangular numbers? No.
- Do arbitrarily-long arithmetic progressions exist in the triangular numbers?
Motivating Question

Definition: Triangular Number

The n-th Triangular Number $T(n)$ is the number of points that are needed to fill an equilateral triangle with sides of length $n - 1$. This number is given by

$$T(n) = \frac{n(n + 1)}{2}.$$

Consider the sequence $\{T(n)\}_{n=1}^{\infty}$.

- Do infinitely-long arithmetic progressions exist in the triangular numbers? No.
- Do arbitrarily-long arithmetic progressions exist in the triangular numbers? ???
Motivating Question

Definition: Triangular Number

The \(n \)-th Triangular Number \(T(n) \) is the number of points that are needed to fill an equilateral triangle with sides of length \(n - 1 \). This number is given by

\[
T(n) = \frac{n(n + 1)}{2}.
\]

Consider the sequence \(\{ T(n) \}_{n=1}^{\infty} \).

- Do infinitely-long arithmetic progressions exist in the triangular numbers? No.
- Do arbitrarily-long arithmetic progressions exist in the triangular numbers? ???
- What can we say about arithmetic progressions in the triangular numbers?
Motivating Question

Definition: Triangular Number

The n-th Triangular Number $T(n)$ is the number of points that are needed to fill an equilateral triangle with sides of length $n - 1$. This number is given by

$$T(n) = \frac{n(n + 1)}{2}.$$

Consider the sequence $\{T(n)\}_{n=1}^{\infty}$.

- Do infinitely-long arithmetic progressions exist in the triangular numbers? No.
- Do arbitrarily-long arithmetic progressions exist in the triangular numbers? ???
- What can we say about arithmetic progressions in the triangular numbers? ???
Definition: Arithmetic Progression

An arithmetic progression (AP) with a common difference d is a sequence of numbers, finite or infinite, such that the difference of any two consecutive terms is a constant d. For the purposes of this talk, we will assume that d is a positive integer. We will also assume that our sequence has at least three terms.
Definition: Arithmetic Progression

An arithmetic progression (AP) with a common difference d is a sequence of numbers, finite or infinite, such that the difference of any two consecutive terms is a constant d.

For the purposes of this talk, we will assume that d is a positive integer.
Definition: Arithmetic Progression

An arithmetic progression (AP) with a common difference d is a sequence of numbers, finite or infinite, such that the difference of any two consecutive terms is a constant d.

For the purposes of this talk, we will assume that d is a positive integer.

We will also assume that our sequence has at least three terms.
Question: Do arithmetic progressions even exist in the triangular numbers?
Question: Do arithmetic progressions even exist in the triangular numbers? Yes.
Some Examples

Question: Do arithmetic progressions even exist in the triangular numbers? Yes.

- \(T(1) = 1, \ T(7) = 28, \) and \(T(10) = 55 \) form an arithmetic progression with common difference \(d = 27 \)
Question: Do arithmetic progressions even exist in the triangular numbers? Yes.

- $T(1) = 1$, $T(7) = 28$, and $T(10) = 55$ form an arithmetic progression with common difference $d = 27$
- $T(2) = 3$, $T(12) = 78$, and $T(17) = 153$ form an arithmetic progression with common difference $d = 75$
Question: Do arithmetic progressions even exist in the triangular numbers? Yes.

- $T(1) = 1$, $T(7) = 28$, and $T(10) = 55$ form an arithmetic progression with common difference $d = 27$
- $T(2) = 3$, $T(12) = 78$, and $T(17) = 153$ form an arithmetic progression with common difference $d = 75$
- $T(2) = 3$, $T(72) = 2628$, and $T(102) = 153$ form an arithmetic progression with common difference $d = 2625$
Four-Term AP’s in the Triangular Numbers

Theorem (Mordell 1969; Sierpiński 1964)

There cannot be four squares in arithmetic progression with common difference $d \neq 0$.

Theorem (Brown, D., Harrington)

There cannot be four triangular numbers in arithmetic progression with common difference $d \neq 0$.
Theorem (Mordell 1969; Sierpiński 1964)

There cannot be four squares in arithmetic progression with common difference $d \neq 0$.
Theorem (Mordell 1969; Sierpiński 1964)

There cannot be four squares in arithmetic progression with common difference $d \neq 0$.

Theorem (Brown, D., Harrington)

There cannot be four triangular numbers in arithmetic progression with common difference $d \neq 0$.
Theorem (Brown, D., Harrington)

Let n be an arbitrary positive integer. Then there exist infinitely many integers $d > 0$ such that there is a three-term arithmetic progression with common difference d in the triangular numbers beginning with $T(n)$.
Theorem (Brown, D., Harrington)

Let n be an arbitrary positive integer. Then there exist infinitely many integers $d > 0$ such that there is a three-term arithmetic progression with common difference d in the triangular numbers beginning with $T(n)$.
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)

Then \((2b + 1)^2 - 2(2a + 1)^2 = -(2n + 1)^2 \).
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)

Then \((2b + 1)^2 - 2(2a + 1)^2 = -(2n + 1)^2.\)

Letting \(B = 2b + 1, A = 2a + 1,\) and \(N = 2n + 1,\) we have

\[B^2 - 2A^2 = -N^2. \]
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)

Then \((2b + 1)^2 - 2(2a + 1)^2 = -(2n + 1)^2 \).

Letting \(B = 2b + 1 \), \(A = 2a + 1 \), and \(N = 2n + 1 \), we have

\[
B^2 - 2A^2 = -N^2.
\]

Supposing that \(B = NX \) and \(A = NY \), we can reduce this to

\[
X^2 - 2Y^2 = -1.
\]
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)
Then \((2b + 1)^2 - 2(2a + 1)^2 = -(2n + 1)^2\).
Letting \(B = 2b + 1, A = 2a + 1, \) and \(N = 2n + 1, \) we have

\[B^2 - 2A^2 = -N^2. \]

Supposing that \(B = NX \) and \(A = NY, \) we can reduce this to

\[X^2 - 2Y^2 = -1. \]

This Pell equation has infinitely many solutions \((X, Y)\)
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)

Then \((2b + 1)^2 - 2(2a + 1)^2 = -(2n + 1)^2.\)

Letting \(B = 2b + 1,\ A = 2a + 1,\) and \(N = 2n + 1,\) we have

\[B^2 - 2A^2 = -N^2. \]

Supposing that \(B = NX\) and \(A = NY,\) we can reduce this to

\[X^2 - 2Y^2 = -1. \]

This Pell equation has infinitely many solutions \((X, Y)\)
(and it is easy to show that both \(X\) and \(Y\) are odd).
Proof Idea:

Suppose that we do have a three-term arithmetic progression in the triangular numbers. \(T(n) - T(a) = T(b) - T(a) \)

Then \((2b + 1)^2 - 2(2a + 1)^2 = -(2n + 1)^2\).

Letting \(B = 2b + 1, A = 2a + 1, \) and \(N = 2n + 1 \), we have

\[B^2 - 2A^2 = -N^2. \]

Supposing that \(B = NX \) and \(A = NY \), we can reduce this to

\[X^2 - 2Y^2 = -1. \]

This Pell equation has infinitely many solutions \((X, Y)\) (and it is easy to show that both \(X \) and \(Y \) are odd).

Then \(b = \frac{(2n+1)X-1}{2} \) and \(a = \frac{(2n+1)Y-1}{2} \) for any positive integer \(n \).
Some Notes on Pell Equations:

We reduced our problem to the equation $B^2 - 2A^2 = -N^2$. For any divisor q_i of N, we can let $B = q_i X_i$, $A = q_i Y_i$, $Q_i = N/q_i$, and consider $X_i^2 - 2Y_i^2 = -Q_i^2$. If this equation has a relatively prime solution, we get infinitely many solutions. This allows us to find all three-term arithmetic progressions beginning with $T(n)$.
Some Notes on Pell Equations:

We reduced our problem to the equation $B^2 - 2A^2 = -N^2$.
Some Notes on Pell Equations:

We reduced our problem to the equation $B^2 - 2A^2 = -N^2$.

For any divisor q_i of N, we can let $B = q_iX_i$, $A = q_iY_i$, $Q_i = N/q_i$, and consider

$$X_i^2 - 2Y_i^2 = -Q_i^2.$$
Some Notes on Pell Equations:

We reduced our problem to the equation \(B^2 - 2A^2 = -N^2 \).

For any divisor \(q_i \) of \(N \), we can let \(B = q_iX_i \), \(A = q_iY_i \),
\(Q_i = N/q_i \), and consider

\[
X_i^2 - 2Y_i^2 = -Q_i^2.
\]

If this equation has a relatively prime solution, we get infinitely many solutions.
Some Notes on Pell Equations:

We reduced our problem to the equation $B^2 - 2A^2 = -N^2$.

For any divisor q_i of N, we can let $B = q_iX_i$, $A = q_iY_i$, $Q_i = N/q_i$, and consider

$$X_i^2 - 2Y_i^2 = -Q_i^2.$$

If this equation has a relatively prime solution, we get infinitely many solutions.

This allows us to find all three-term arithmetic progressions beginning with $T(n)$.

Scott M. Dunn (University of South Carolina)
Polygonal Numbers

Definition: Polygonal Number

Let s be a fixed integer with $s \geq 3$. For a natural number n, the n-th Polygonal Number $P_s(n)$ is the number of points that are needed to create a regular s-gon with each side being of length $n - 1$. This number is given by

$$P_s(n) = \frac{s^2 - 1}{2} n^2 - \frac{s^2 - 2}{2} n.$$

Examples:

$P_3(4) = 10$, $P_4(4) = 16$, $P_5(4) = 22$.

Examples of Polygonal Numbers for $s = 3, 4, 5$ and $n = 1, 2, 3, 4$.

Scott M. Dunn (University of South Carolina)
Definition: Polygonal Number

Let s be a fixed integer with $s \geq 3$. For a natural number n, the n-th Polygonal Number $P_s(n)$ is the number of points that are needed to create a regular s-gon with each side being of length $n - 1$. This number is given by

$$P_s(n) = \left(\frac{s}{2} - 1\right) n^2 - \left(\frac{s}{2} - 2\right) n.$$
Definition: Polygonal Number

Let s be a fixed integer with $s \geq 3$. For a natural number n, the n-th Polygonal Number $P_s(n)$ is the number of points that are needed to create a regular s-gon with each side being of length $n - 1$. This number is given by

$$P_s(n) = \left(\frac{s}{2} - 1\right) n^2 - \left(\frac{s}{2} - 2\right) n.$$

Examples: $P_3(4) = 10$, $P_4(4) = 16$, $P_5(4) = 22$
Definition: Polygonal Number

Let s be a fixed integer with $s \geq 3$. For a natural number n, the n-th Polygonal Number $P_s(n)$ is the number of points that are needed to create a regular s-gon with each side being of length $n - 1$. This number is given by

$$P_s(n) = \left(\frac{s}{2} - 1\right) n^2 - \left(\frac{s}{2} - 2\right) n.$$

Examples: $P_3(4) = 10$, $P_4(4) = 16$, $P_5(4) = 22$

Examples of Polygonal Numbers for $s = 3, 4, 5$ and $n = 1, 2, 3, 4$.
Theorem (Brown, D., Harrington)

Let s be a fixed integer with $s \geq 3$. Then there cannot be four s-gonal numbers in arithmetic progression with common difference $d \neq 0$.

Theorem (Brown, D., Harrington)

Let s be a fixed integer with $s \geq 3$. Let n be an arbitrary positive integer. Then there exist infinitely many integers $d > 0$ such that there is a three-term arithmetic progression with a common difference d in the s-gonal numbers beginning with $P_s(n)$.
Theorem (Brown, D., Harrington)

Let s be a fixed integer with $s \geq 3$. Then there cannot be four s-gonal numbers in arithmetic progression with common difference $d \neq 0$.
Theorem (Brown, D., Harrington)

Let s be a fixed integer with $s \geq 3$. Then there cannot be four s-gonal numbers in arithmetic progression with common difference $d \neq 0$.

Theorem (Brown, D., Harrington)

Let s be a fixed integer with $s \geq 3$. Let n be an arbitrary positive integer. Then there exist infinitely many integers $d > 0$ such that there is a three-term arithmetic progression with a common difference d in the s-gonal numbers beginning with $P_s(n)$.
Some Remarks about AP’s in the Polygonal Numbers

The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with \(P_5(n) \).
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with $P_5(n)$. We need a solutions to $(6b - 1)^2 - 2(6a - 1)^2 = -(6n - 1)^2$.
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with $P_5(n)$. We need a solutions to $(6b - 1)^2 - 2(6a - 1)^2 = -(6n - 1)^2$. With $B = 6b - 1$, $A = 6a - 1$, and $N = 6n - 1$, we have $B^2 - 2A^2 = -N^2$.
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with $P_5(n)$. We need a solutions to $(6b - 1)^2 - 2(6a - 1)^2 = -(6n - 1)^2$.

With $B = 6b - 1$, $A = 6a - 1$, and $N = 6n - 1$, we have $B^2 - 2A^2 = -N^2$.

Supposing $B = NX$ and $A = NY$, we have $X^2 - 2Y^2 = -1$.
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with $P_5(n)$. We need a solutions to $(6b - 1)^2 - 2(6a - 1)^2 = -(6n - 1)^2$.

With $B = 6b - 1$, $A = 6a - 1$, and $N = 6n - 1$, we have $B^2 - 2A^2 = -N^2$.

Supposing $B = NX$ and $A = NY$, we have $X^2 - 2Y^2 = -1$. ($X = 7$ and $Y = 5$ is a solution.)
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with $P_5(n)$. We need a solutions to $(6b - 1)^2 - 2(6a - 1)^2 = -(6n - 1)^2$.

With $B = 6b - 1$, $A = 6a - 1$, and $N = 6n - 1$, we have $B^2 - 2A^2 = -N^2$.

Supposing $B = NX$ and $A = NY$, we have $X^2 - 2Y^2 = -1$. ($X = 7$ and $Y = 5$ is a solution.)

Then $b = \frac{(6n-1)X+1}{6}$ and $a = \frac{(6n-1)Y+1}{6}$.
The proof of the last theorem is actually very explicit. It provides an algorithm for finding all three-term arithmetic progressions in the polygonal numbers.

Not all solutions to the associated Pell equation generate arithmetic progressions.

For example, three-term arithmetic progression starting with $P_5(n)$. We need a solutions to $(6b - 1)^2 - 2(6a - 1)^2 = -(6n - 1)^2$. With $B = 6b - 1$, $A = 6a - 1$, and $N = 6n - 1$, we have $B^2 - 2A^2 = -N^2$.

Supposing $B = NX$ and $A = NY$, we have $X^2 - 2Y^2 = -1$. ($X = 7$ and $Y = 5$ is a solution.) Then $b = \frac{(6n-1)X+1}{6}$ and $a = \frac{(6n-1)Y+1}{6}$.

Using $X = 7$, $Y = 5$, and $n = 1$, we have $b = 6$ and $a = \frac{26}{6}$.

Scott M. Dunn (University of South Carolina)
A Variation on AP’s in the Polygonal Numbers

Let $T = \{ P_3(n) \}_{n=1}^{\infty}$ be the triangular numbers and $S = \{ P_4(n) \}_{n=0}^{\infty}$ be the square numbers. Take $P = T \cup S$.

What can be said about arithmetic progressions in P?

This is being investigated by Dr. Lenny Jones and Joshua Ide from Shippensburg University.

What if we took S to be a finite subset of the natural numbers and constructed $P = \bigcup_{s \in S} \{ P_s(n) \}_{n=1}^{\infty}$? Can we say anything about arithmetic progressions in P?

We do note that $\bigcup_{s=3}^{\infty} \{ P_s(n) \}_{n=1}^{\infty} = \mathbb{N} \{ 2 \}$, so we do need this to be a finite union above.
Let \(T = \{ P_3(n) \}_{n=1}^{\infty} \) be the triangular numbers and \(S = \{ P_4(n) \}_{n=0}^{\infty} \) be the square numbers. Take \(P = T \cup S \).
Let $T = \{ P_3(n) \}_{n=1}^{\infty}$ be the triangular numbers and $S = \{ P_4(n) \}_{n=0}^{\infty}$ be the square numbers. Take $P = T \cup S$. What can be said about arithmetic progressions in P?
Let $T = \{P_3(n)\}_{n=1}^{\infty}$ be the triangular numbers and $S = \{P_4(n)\}_{n=0}^{\infty}$ be the square numbers. Take $P = T \cup S$. What can be said about arithmetic progressions in P? This is being investigated by Dr. Lenny Jones and Joshua Ide from Shippensburg University.

What if we took S to be a finite subset of the natural numbers and constructed $P = \bigcup_{s \in S} \{P_s(n)\}_{n=1}^{\infty}$? Can we say anything about arithmetic progressions in P? We do note that $\bigcup_{s=3}^{\infty} \{P_s(n)\}_{n=1}^{\infty} = \mathbb{N}\{2\}$, so we do need this to be a finite union above.
Let $T = \{P_3(n)\}_{n=1}^{\infty}$ be the triangular numbers and $S = \{P_4(n)\}_{n=0}^{\infty}$ be the square numbers. Take $P = T \cup S$.

What can be said about arithmetic progressions in P? This is being investigated by Dr. Lenny Jones and Joshua Ide from Shippensburg University.

What if we took S to be a finite subset of the natural numbers and constructed $P = \bigcup_{s \in S} \{P_s(n)\}_{n=1}^{\infty}$? Can we say anything about arithmetic progressions in P?
Let $T = \{ P_3(n) \}^\infty_{n=1}$ be the triangular numbers and $S = \{ P_4(n) \}^\infty_{n=0}$ be the square numbers. Take $P = T \cup S$. What can be said about arithmetic progressions in P?

This is being investigated by Dr. Lenny Jones and Joshua Ide from Shippensburg University.

What if we took S to be a finite subset of the natural numbers and constructed $P = \bigcup_{s \in S} \{ P_s(n) \}^\infty_{n=1}$? Can we say anything about arithmetic progressions in P?

We do note that $\bigcup_{s=3}^\infty \{ P_s(n) \}^\infty_{n=1} = \mathbb{N} \setminus \{2\}$, so we do need this to be a finite union above.
Take $f(x) \in \mathbb{Z}[x]$ and consider the sequence $F = \{f(n)\}_{n=1}^{\infty}$.

What can we say about arithmetic progressions in F?

Example ($f(x) = x^3 - x$)

Let $f(x) = x^3 - x$. Then $f(1) = 0$, $f(4) = 60$, and $f(5) = 120$ form a three-term arithmetic progression with common difference $d = 60$.

Example ($f(x) = x^3$)

Let $f(x) = x^3$. Let $F = \{f(n)\}_{n=1}^{\infty}$. Finding a three-term arithmetic progression in F amounts to solving the Diophantine equation $A^3 - 2B^3 = -C^3$ in positive integers $A < B < C$. This equation has no solution by a theorem of Mordell from 1969.
Take $f(x) \in \mathbb{Z}[x]$ and consider the sequence $F = \{f(n)\}_{n=1}^{\infty}$.

What can we say about arithmetic progressions in F?

Example ($f(x) = x^3 - x$)

Let $f(x) = x^3 - x$. Then $f(1) = 0$, $f(4) = 60$, and $f(5) = 120$ form a three-term arithmetic progression with common difference $d = 60$.
Take \(f(x) \in \mathbb{Z}[x] \) and consider the sequence \(F = \{f(n)\}_{n=1}^{\infty} \). What can we say about arithmetic progressions in \(F \)?

Example (\(f(x) = x^3 - x \))

Let \(f(x) = x^3 - x \). Then \(f(1) = 0, f(4) = 60, \) and \(f(5) = 120 \) form a three-term arithmetic progression with common difference \(d = 60 \).

Example (\(f(x) = x^3 \))

Let \(f(x) = x^3 \). Let \(F = \{f(n)\}_{n=1}^{\infty} \). Finding a three-term arithmetic progression in \(F \) amounts to solving the Diophantine equation \(A^3 - 2B^3 = -C^3 \) in positive integers \(A < B < C \). This equation has no solution by a theorem of Mordell from 1969.
Thank You!