MATH 728A, BIOMOLECULAR GEOMETRY,
SOLUTION TO HOMEWORK 7.1

Problem 7.1 (Rotation Matrices). Define SO(3) to be the set of all rotation matrices
A, i.e. 3 x 3 real matrices such that AT A = I (I denotes the 3 x 3 identity matrix) and
detA = 1. Show that there exists a pair (¢?, u), uniquely determined (when A # I) up to
reflection (e~%, —u), where 6 is real and u € R? is a unit vector, such that for all x € R?
we have

Ax =u(u-x)+ [x —u(u-x)]cosf + (u x x) sin 6.
Solution. First we will prove the following Lemma:

Lemma. If A € SO(3) then there exists a matriz U € SO(3) such that AU = UR, where

cos —sinf 0
R= | sinf cosf 0], 0<0<m.
0 0 1

The third column of the matriz U s the axis of the right-handed rotation through the angle
0 performed by A in R3.

Proof. If z,y € R? then (Az)TAy = 2T AT Ay = 2Ty, so in particular ||Az| = ||z||
and the angle between Ax and Ay is the same as the angle between z and y. The cubic
polynomial det(AI — A) has real coefficients, so A has at least one real eigenvalue, and any
nonreal eigenvalues must form a complex conjugate pair. If A is any eigenvalue of A with
eigenvector z, then ||Az| = ||z| implies |A\| = 1. Thus the real eigenvalues are from the
set {1,—1}. If —1 is the only real eigenvalue, it cannot occur with algebraic multiplicity
two, since the other eigenvalue would have to be real, and yet could not be 1 or —1. Since
det(A) is the product of the eigenvalues, we see that the product of the eigenvalues is 1.
If —1 has multiplicity one, then there must be a nonreal complex conjugate pair e*®, e~
of eigenvalues. But since the product of e¢?® and its complex conjugate is 1, we obtain
the contradiction that (—1)e®e=%* = 1. If —1 has multiplicity three then we obtain the
contradiction (—1)2 = 1. Thus 1 must be an eigenvalue. Let @3 be a normalized eigenvector
of A belonging to the eigenvalue 1, and let %1, be an orthonormal basis of the plane
perpendicular to @3, so that (i, s, 3) forms a positively oriented frame of R3. Define

(T, g, Us3) ad Ay > 0,

(w1, u2,u3) = {

(Gig, U1y, —u3) 3 Atg < 0.

Clearly (u1,u2,us3) is a positively oriented orthonormal basis. In the first case above we
clearly have ugAul > 0. In the second case we claim that ug’Aul > 0. To see this,
let P = span{uj,us}. A maps P into itself. The ordered pairs (uj,us2) and (Auj, Aug)



determine the same orientation of P, i.e. they are related by a 2 X 2 matrix with positive
determinant. (To see this note that

ai; az; O
A(ul,uz,U3) = (Aul,AU,Q,A’U,g) = (’U,l,’u,g,’u,g) a2 an9 0
0 0 1

Now take the determinant of both sides of this equation.) Let the plane P be coordi-
natized by the components with respect to the vectors (4, u2). Then the second case is
characterized by the inequality 42 A@; < 0, which means that Auy = Ay is in the third
or fourth quadrant. Hence Au; = Ats is in the first or fourth quadrant, and hence the
angle between uy and Au, is less than /2, as claimed. Now define 0 < 6 < 7 such that
cosf = quul. It follows that Au; = uj cos@ + ug sin@ and Aus = uy(—sinf) + usg cosb.
Setting U = (uq, ug,us) we get the result. [

We define u to be the third column vector ug of the matrix U in the above lemma. Now
let x € R3 be given. Since U € SO(3) we have U~! = UT. Thus

cosf —sinf 0 ufx
Ax =URU'x = (u; up wu)| sinfd cosd 0 ulx
0 0 1 ul'x

cos Quf x — sin ful x
= (u; uz u) | sinfufx+ coshulx
ul'x

= uy(cos Bulx — sin Oul'x) + uy(sin Gul'x + cos fulx) + uulz

= uu’z + (u1ul x + upul x) cos O + (—ugud x + ugul x) sin 6.
Since I = UUT = wjuf + usul + uu? we have that ujuf + ugul = I — uu? and
therefore ujud x + usulx = x —uu’x. Also u x x = u x (v1ul x + upul x + uu’'x) =
(u x up)ud x+ (ux uz)ud x = upu¥x — uyud'x. This demonstrates the existence of the pair
(€??,u) with the desired properties.

Clearly if the pair (e, u) works then so does (e~® —u). The vector u must be an
eigenvector of A associated to the eigenvalue 1, and this eigenvalue cannot have algebraic
or geometric multiplicity two, since then the other eigenvalue would have to be —1, con-
tradicting the fact that detA = 1. (The geometric multiplicity is equal to the algebraic
multiplicity since A is clearly diagonalizable.) If the multiplicity is 3 then A =1. If A # I
then the multiplicity is 1, and hence the eigenspace of 1 contains only two real unit eigen-
vectors. Suppose x is a unit vector perpendicular to u. Then Ax = xcosf + u X xsinf
is an expansion in an orthonormal basis {u,x,u x x}, and hence cosf = x - Ax and
sinf = (u x x) - Ax. The same values of cos @ and sin § are obtained independently of the
choice of x. Thus both cosf and sinf are determined by u. This proves the uniqueness
claim.



