
MATH 728A, BIOMOLECULAR GEOMETRY,

SOLUTION TO HOMEWORK 7.1

Problem 7.1 (Rotation Matrices). De�ne SO(3) to be the set of all rotation matrices
A, i.e. 3 � 3 real matrices such that ATA = I (I denotes the 3 � 3 identity matrix) and
detA = 1. Show that there exists a pair (ei�;u), uniquely determined (when A 6= I) up to
re
ection (e�i�;�u), where � is real and u 2 R

3 is a unit vector, such that for all x 2 R
3

we have

Ax = u(u � x) + [x� u(u � x)] cos � + (u� x) sin �:

Solution. First we will prove the following Lemma:

Lemma. If A 2 SO(3) then there exists a matrix U 2 SO(3) such that AU = UR, where

R =

0
@ cos � � sin � 0

sin � cos � 0
0 0 1

1
A ; 0 � � � �:

The third column of the matrix U is the axis of the right-handed rotation through the angle

� performed by A in R
3 .

Proof. If x; y 2 R
3 then (Ax)TAy = xTATAy = xT y, so in particular kAxk = kxk

and the angle between Ax and Ay is the same as the angle between x and y. The cubic
polynomial det(�I�A) has real coeÆcients, so A has at least one real eigenvalue, and any
nonreal eigenvalues must form a complex conjugate pair. If � is any eigenvalue of A with
eigenvector x, then kAxk = kxk implies j�j = 1. Thus the real eigenvalues are from the
set f1;�1g. If �1 is the only real eigenvalue, it cannot occur with algebraic multiplicity
two, since the other eigenvalue would have to be real, and yet could not be 1 or �1. Since
det(A) is the product of the eigenvalues, we see that the product of the eigenvalues is 1.
If �1 has multiplicity one, then there must be a nonreal complex conjugate pair ei�; e�i�

of eigenvalues. But since the product of ei� and its complex conjugate is 1, we obtain
the contradiction that (�1)ei�e�i� = 1. If �1 has multiplicity three then we obtain the
contradiction (�1)3 = 1. Thus 1 must be an eigenvalue. Let ~u3 be a normalized eigenvector
of A belonging to the eigenvalue 1, and let ~u1; ~u2 be an orthonormal basis of the plane

perpendicular to ~u3, so that (~u1; ~u2; ~u3) forms a positively oriented frame of R 3 . De�ne

(u1; u2; u3) =

�
(~u1; ~u2; ~u3) ~uT

2
A~u1 � 0;

(~u2; ~u1;�~u3) ~uT
2
A~u1 < 0:

Clearly (u1; u2; u3) is a positively oriented orthonormal basis. In the �rst case above we
clearly have uT

2
Au1 � 0. In the second case we claim that uT

2
Au1 > 0. To see this,

let P = spanfu1; u2g. A maps P into itself. The ordered pairs (u1; u2) and (Au1; Au2)



determine the same orientation of P , i.e. they are related by a 2� 2 matrix with positive
determinant. (To see this note that

A(u1; u2; u3) = (Au1; Au2; Au3) = (u1; u2; u3)

0
@ a11 a21 0
a12 a22 0
0 0 1

1
A :

Now take the determinant of both sides of this equation.) Let the plane P be coordi-
natized by the components with respect to the vectors (~u1; ~u2). Then the second case is
characterized by the inequality ~uT

2
A~u1 < 0, which means that Au2 = A~u1 is in the third

or fourth quadrant. Hence Au1 = A~u2 is in the �rst or fourth quadrant, and hence the
angle between u2 and Au1 is less than �=2, as claimed. Now de�ne 0 � � � � such that
cos � = uT

1
Au1. It follows that Au1 = u1 cos � + u2 sin � and Au2 = u1(� sin �) + u2 cos �.

Setting U = (u1; u2; u3) we get the result. �

We de�ne u to be the third column vector u3 of the matrix U in the above lemma. Now
let x 2 R

3 be given. Since U 2 SO(3) we have U�1 = UT . Thus

Ax = URUTx = (u1 u2 u )

0
@ cos � � sin � 0

sin � cos � 0
0 0 1

1
A
0
@ uT

1
x

uT
2
x

uTx

1
A

= (u1 u2 u )

0
@ cos �uT

1
x� sin �uT

2
x

sin �uT
1
x+ cos �uT

2
x

uTx

1
A

= u1(cos �u
T

1
x� sin �uT

2
x) + u2(sin �u

T

1
x+ cos �uT

2
x) + uuTx

= uuTx+ (u1u
T

1
x+ u2u

T

2
x) cos � + (�u1u

T

2
x+ u2u

T

1
x) sin �:

Since I = UUT = u1u
T

1
+ u2u

T

2
+ uuT we have that u1u

T

1
+ u2u

T

2
= I � uuT and

therefore u1u
T

1
x + u2u

T

2
x = x � uuTx. Also u � x = u � (u1u

T

1
x + u2u

T

2
x + uuTx) =

(u�u1)u
T

1
x+(u�u2)u

T

2
x = u2u

T

1
x�u1u

T

2
x. This demonstrates the existence of the pair

(ei�;u) with the desired properties.
Clearly if the pair (ei�;u) works then so does (e�i�;�u). The vector u must be an

eigenvector of A associated to the eigenvalue 1, and this eigenvalue cannot have algebraic
or geometric multiplicity two, since then the other eigenvalue would have to be �1, con-
tradicting the fact that detA = 1. (The geometric multiplicity is equal to the algebraic
multiplicity since A is clearly diagonalizable.) If the multiplicity is 3 then A = I. If A 6= I
then the multiplicity is 1, and hence the eigenspace of 1 contains only two real unit eigen-
vectors. Suppose x is a unit vector perpendicular to u. Then Ax = x cos � + u � x sin �
is an expansion in an orthonormal basis fu;x;u � xg, and hence cos � = x � Ax and
sin � = (u� x) �Ax. The same values of cos � and sin � are obtained independently of the
choice of x. Thus both cos � and sin � are determined by u. This proves the uniqueness
claim.


