EXTRA HOMEWORK 2 WITH SOLUTIONS

Suppose $\hat{\mathbf{u}}$ is a unit vector in the abstract vector space V, and $\theta \in \mathbb{R}$. For every vector \mathbf{r} in V define:

$$R(\theta, \hat{\mathbf{u}})\mathbf{r} = \mathbf{r}\cos\theta + \hat{\mathbf{u}}(\hat{\mathbf{u}}\cdot\mathbf{r})(1-\cos\theta) + \hat{\mathbf{u}}\times\mathbf{r}\sin\theta.$$

Answer the following:

Problem 1 Show that $R(-\theta, -\hat{\mathbf{u}})\mathbf{r} = R(\theta, \hat{\mathbf{u}})\mathbf{r}$. Draw a picture illustrating this fact.

Solution: Note that
$$\cos(-\theta) = \cos\theta$$
 and $\sin(-\theta) = -\sin\theta$, so
$$R(-\theta, -\hat{\mathbf{u}})\mathbf{r} = \mathbf{r}\cos(-\theta) + (-\hat{\mathbf{u}})[(-\hat{\mathbf{u}}) \cdot \mathbf{r}][1 - \cos(-\theta)] + (-\hat{\mathbf{u}}) \times \mathbf{r}\sin(-\theta)$$

$$= \mathbf{r}\cos\theta + \hat{\mathbf{u}}(\hat{\mathbf{u}} \cdot \mathbf{r})(1 - \cos\theta) + \hat{\mathbf{u}} \times \mathbf{r}\sin\theta$$

$$= R(\theta, \hat{\mathbf{u}})\mathbf{r}.$$

For the picture see Figure 1a).

Problem 2 If $\theta = \pi$ show that $R(\pi, -\hat{\mathbf{u}})\mathbf{r} = R(\pi, \hat{\mathbf{u}})\mathbf{r}$. Draw a picture illustrating this fact.

Solution: Computing we have:

$$\begin{split} R(\pi, -\hat{\mathbf{u}})\mathbf{r} &= \mathbf{r}\cos(\pi) + (-\hat{\mathbf{u}})[(-\hat{\mathbf{u}}) \cdot \mathbf{r}][1 - \cos(\pi)] + (-\hat{\mathbf{u}}) \times \mathbf{r}\sin(\pi) \\ &= -\mathbf{r} + 2\hat{\mathbf{u}}(\hat{\mathbf{u}} \cdot \mathbf{r}) \\ &= \mathbf{r}\cos(\pi) + \hat{\mathbf{u}}(\hat{\mathbf{u}} \cdot \mathbf{r})[1 - \cos(\pi)] + \hat{\mathbf{u}} \times \mathbf{r}\sin(\pi) \\ &= R(\pi, \hat{\mathbf{u}})\mathbf{r}. \end{split}$$

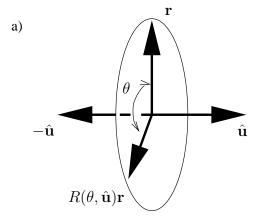
For the picture see Figure 1b).

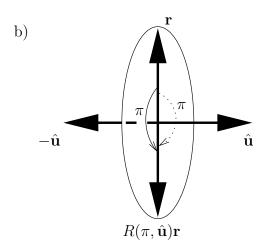
Problem 3 If $\pi \leq \theta < 2\pi$ show that $R(\theta, \hat{\mathbf{u}})\mathbf{r} = R(2\pi - \theta, -\hat{\mathbf{u}})\mathbf{r}$. Draw a picture illustrating this fact.

Solution: Because of the periodicity of the sine and cosine we have

$$\begin{split} R(2\pi-\theta,-\hat{\mathbf{u}})\mathbf{r} \\ &= \mathbf{r}\cos(2\pi-\theta) + (-\hat{\mathbf{u}})[(-\hat{\mathbf{u}})\cdot\mathbf{r}][1-\cos(2\pi-\theta)] + (-\hat{\mathbf{u}})\times\mathbf{r}\sin(2\pi-\theta) \\ &= \mathbf{r}\cos(-\theta) + \hat{\mathbf{u}}(\hat{\mathbf{u}}\cdot\mathbf{r})[1-\cos(-\theta)] - \hat{\mathbf{u}}\times\mathbf{r}\sin(-\theta) \\ &= \mathbf{r}\cos(\theta) + \hat{\mathbf{u}}(\hat{\mathbf{u}}\cdot\mathbf{r})[1-\cos(\theta)] + \hat{\mathbf{u}}\times\mathbf{r}\sin(\theta) \\ &= R(\theta,\hat{\mathbf{u}})\mathbf{r}. \end{split}$$

For the picture see Figure 1c).





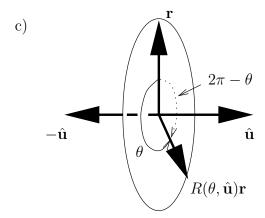


FIGURE 1