MATH 728A, BIOMOLECULAR GEOMETRY, HOMEWORK #8

Problem 1 (Identities). Prove the following identities involving the matrices defined in homework 7.3. $T_0(l)^{-1} = T_0(l), T_1(c)^{-1} = T_1(c), T_2(z)^{-1} = T_2(\bar{z}), \text{ and } T_2(z)T_0(l) = T_0(l)T_2(\bar{z}).$

Problem 2 (Spherical coordinates via coordinate transformations). Consider a wedge $w = \{t, t'\}$, where $t = \{A, A', A''\}$, $t' = \{A', A'', A'''\}$, $b = \{A, A'\}$, and $b' = \{A', A''\}$. Show that $pose(A, b, t)T_0(l)T_1(c)T_2(z) = pose(A', b', t')$, where l is the bond length of $b, c = cos(\theta)$ and θ is the bond angle of $\{b, b'\}$, and $z = e^{i\phi}$ where ϕ is the wedge angle for the wedge w with respect to the orientation [A, A', A'']. Use this relation to compute the coordinates of the atom A in pose(A', b', t'). Explain the relation of this with spherical coordinates.

Problem 3 (Spherical Trigonometry: Law of Cosines). Use the notation of problem 2. Let $c' = \cos \theta'$, where θ' is the bond angle for $\{\{A', A''\}, \{A', A'''\}\}$. Use the notation $\operatorname{pose}(A, b, t) = \operatorname{pose}(A, A', A'')$, since the 3-tuples (A, b, t) and (A, A', A'') contain exactly the same information. Show that $\operatorname{pose}(A', A, A'')T_1(c)T_2(z)T_1(c') = \operatorname{pose}(A', A''', A'')$. Let τ denote the bond angle of $\{\{A, A'\}, \{A', A'''\}\}$. Note that $\cos \tau$ is the dot product of the \mathbf{e}_3 vector of $\operatorname{pose}(A', A, A'')$ with the \mathbf{e}_3 vector of $\operatorname{pose}(A', A, A'')$. Using the matrix product $T_1(c)T_2(z)T_1(c')$ verify the *law of cosines* from spherical trigonometry: $\cos \tau = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos \phi$.

Problem 4 (Spherical Trigonometry: Law of Sines). Use the notation of problems 2 and 3. Compute the spherical coordinates of the point $\mathcal{X}(A)$ in the pose(A', A''', A''). Verify the *law of sines* from spherical trigonometry: $\frac{\sin \psi}{\sin \theta} = \frac{\sin \phi}{\sin \tau}$, where pose $(A', A''', A) = \text{pose}(A', A'', A'')T_2(e^{i\psi})$. Show that ψ is the wedge angle for $\{\{A', A'', A'''\}, \{A, A', A'''\}\}$ with respect to the same orientation as in problem 2.

Problem 5 (Tetrahedronometry). Use the notation of problem 2. Compute the rectangular and spherical coordinates of the point $\mathcal{X}(A)$ in the pose(A''', A'', A') in terms of the bond lengths of $b = \{A, A'\}, b' = \{A', A''\}, b'' = \{A'', A'''\}$, and the bond angles of $\{b, b'\}$ and $\{b', b''\}$.