MATH 728A, BIOMOLECULAR GEOMETRY, HOMEWORK #14

Problem 1 (Transformations between peptide unit poses). Compute $M(\mathbf{b}, A)$ such that $pose(C_i^{\alpha}, C'_i, N_{i+1}) = pose(C_{i-1}^{\alpha}, C'_{i-1}, N_i)M(\mathbf{b}, A)$. You may leave A in the form of a product of rotation matrices. Give a geometric interpretation of the vector **b**. Do not make any simplifying assumptions concerning bond lengths, bond angles, or wedge angles.

Problem 2 (Peptide helix parameters). Assume an ideal peptide unit (i.e. $\omega = \pi$, $l(\{C_{i-1}^{\alpha}, C_{i-1}'\}) = l(\{N_i, C_i^{\alpha}\}) = l$, 120° angles at C_{i-1}' and N_i , and 109.47° angle at C_i^{α}) and compute $(e^{i\theta}, \mathbf{u})$ such that $A = R(e^{i\theta}, \mathbf{u})$, where A is the rotation matrix from problem 1. (*Hint:* Use quaternions.) Express your answer in terms of the angles $\phi_i + \psi_i$ and $\phi_i - \psi_i$. The angle θ is called the *twist angle* of the helix. Evaluate $(e^{i\theta}, \mathbf{u})$ in the example of the ideal β sheet: $\phi = -\psi = -144.7^\circ = -\cos^{-1}(-\sqrt{2/3})$. Compute a vector \mathbf{r} from C_{i-1}' to the nearest point on the axis of the helix for this example, the radius $\|\mathbf{r}\|$ of the helix, and the *rise* $|\mathbf{b} \cdot \mathbf{u}|$. Draw a diagram illustrating these quantities in this example.

Problem 3 (3₁₀ helix). Consider a chain of three ideal peptide units spanning residues numbered 1 through 4. Assume $\phi_2 = \phi_3 = \phi$ and $\psi_2 = \psi_3 = \psi$ are the unknown independent variables. Write down two equations in the two unknowns expressing the geometric relation that the three atoms O_1 , N_4 , and HN_4 are collinear. Solve these two equations (numerically if necessary) for ϕ and ψ . For this particular (idealized) 3₁₀ helix compute the $\{O_1, HN_4\}$ hydrogen bond length, the helix axis vector **u**, the twist angle, the rise, and the helix radius (as in problem 2). Make a Z-system of your 3₁₀ helix in IMIMOL and print out a labelled stereo picture of it using RASMOL.

Problem 4 (Endocyclic torsion angles for the chair conformation). Consider an ideal chair conformation of an equilateral hexagon with equal endocyclic bond angles of 109.47°. Recall that from our discussion in class this conformation had $\phi = -\phi' = 60^{\circ}$ and $\psi = 180^{\circ}$. Compute all the other endocyclic torsion angles for this conformation.