
MATH 728B, WATER MOLECULE, HOMEWORK III

Review of Notation. Consider a system ofN particles with massesMa and positionsRa,

a = 1; : : : ; N , relative to the inertial frame (ê1; ê2; ê3). The position of the center of mass is

given by �R = M�1
tot

PN

a=1MaRa, whereMtot =
PN

a=1Ma is the total mass. The total linear

momentum �tot =
PN

a=1Ma
_Ra can be written as Mtot

_�R. Newton's Laws dictate that this

momentum must evolve according to the equation _�tot = Ftot, where Ftot is the vector sum

of all the (external and internal) forces acting on the system. If Ftot = 0 then �tot = Mtot
_�R

is independent of time, and hence �R(t) = �R(0)+ t�tot=Mtot. The total angular momentum

�tot =
PN

a=1Ra�Ma
_Ra can be written as �tot = �R��tot+

PN

a=1(Ra� �R)�Ma( _Ra�
_�R).

Another consequence of Newton's Laws is that _�tot =
PN

a=1Ra�Fa, where Fa is the total

force (external and internal) exerted on particle a. The quantity
PN

a=1Ra � Fa is called

the total torque. If this is also zero then �tot is independent of time. Since �R � �tot is

independent of time it follows that � =
PN

a=1(Ra � �R) �Ma( _Ra �
_�R) is independent of

time. This quantity is called the total angular momentum relative to the center of mass.

The total kinetic energy is de�ned as Ttot = 1
2

PN

a=1Mak _Rak
2, and can be written as

Ttot =
1
2
Mtotk

_�Rk2 + 1
2

PN

a=1Mak _Ra �
_�Rk2. De�ne the moment of inertia tensor I to be

I=
PN

a=1 Ma[kRa� �Rk21�(Ra� �R)(Ra� �R)T ]. De�ne the spatial angular velocity 
 such

that � = I
. Then 1
2

PN

a=1Mak _Ra�
_�Rk2 = 1

2

��+ 1

2

PN

a=1Mak _Ra�
_�R�
�(Ra� �R)k2 =

Trot+Tint. Even though � is independent of time and � = I
, we generally have that both

I and 
 depend on time. However we can simplify this time dependence as much as possible

by de�ning a body pose whose origin is the center of mass �R and whose coordinate axes

are given by A = (e1; e2; e3), where these axes are attached to the body in some manner.

There are body versions of many spatial quantities: Ra � �R = Ara, � = A�, 
 = A!,

and IA = Ai. If there is no internal vibration, i.e. for a rigid body, i is independent of

time. In general i uctuates slightly as a result of vibrations for semirigid bodies, but may

change drastically for systems which consist of coupled semirigid subunits (like proteins).

But at least it is independent of the overall rotational motion of the body frame (unlike

I). The angular velocity of the body frame ~! is de�ned by the rule _A = A[~! � ]. The

apparent angular momentum in the body frame j is de�ned to be j =
PN

a=1 ra � Ma _ra.

An extremely important relation is that � = i~! + j. These quantities allow us to write

Trot =
1
2
! �� = 1

2
~!�i~!+ 1

2
(i�1j)�j+~! �j and Tint =

1
2

PN

a=1Mak _rak
2� 1

2
(i�1j)�j. The matrix

A containing the body frame can be coordinatized by a vector v 2 R
3 , whose direction gives

the axis of rotation and whose length � = kvk is the angle of rotation in the positive sense

(via the right hand rule). We have A(v) = 1 cos(�) +vvT
1�cos(�)

�2
+ [v� ]

sin(�)

�
. From this

we derive the formula ~! = S(v) _v, where S(v) = 1
sin(�)

�
+vvT 1

�2
(1� sin(�)

�
)+[v� ]

1�cos(�)

�2
,

and S(v)�1 = 1
� sin(�)

2(1�cos(�))
+vvT 1

�2
(1� � sin(�)

2(1�cos(�))
)+[v�] 1

2
. For large biomolecular systems

we usually assume �R = 0 and � = 0, so that Ttot = Tint.



The Kinetic Energy. The vectors ra, and the moment of inertia tensor

i =

NX
a=1

Ma[krak
21� rar

T
a ];

can be expressed as functions of the internal coordinates q = hq1; : : : ; q3N�6i. The

time derivatives _ra =
P3N�6

j=1
@ra
@qj

_qj are functions of q and their time derivatives _q =

h _q1; : : : ; _q3N�6i since @ra
@qj

is a function of q for each j. Thus the total kinetic energy can

be expressed in terms of the variables �R; _�R;v; _v;q and _q. We have

Ttot =
1

2
Mtotk

_�Rk2 +
1

2
[S(v) _v] � iS(v) _v + [S(v) _v] � j+

1

2

NX
a=1

Mak _rak
2:

The apparent angular momentum can be expressed in terms of _q: j =
PN

a=1 ra �Ma _ra =P3N�6

j=1 (
PN

a=1 ra�Ma
@ra
@qj

) _qj . The vectorsAj(q) = i�1(
PN

a=1 ra�Ma
@ra
@qj

), j = 1; : : : ; 3N�

6, comprise what is called the mechanical connection 1-form. It is convenient to de�ne a

3� (3N�6) matrix A(q) whose jth column vector is Aj(q). Thus j =
P3N�6

j=1 iAj(q) _q
j =

iA(q) _q.

The internal kinetic energy Tint = 1
2

PN

a=1Mak _rak
2 � 1

2
(i�1j) � j is a function only

of q and _q. In fact there is a (3N � 6) � (3N � 6) symmetric matrix �(q) such that

Tint =
1
2
_qT �(q) _q. Explicitly we have

�(q)jl =

NX
a=1

Ma

@ra

@qj
�
@ra

@ql
�Aj(q) � iAl(q):

The symmetric matrix �(q)jl is called the Riemannian metric on shape space.

The total kinetic energy now becomes

Ttot =
1

2
Mtotk

_�Rk2 +
1

2
[S(v) _v] � iS(v) _v + [S(v) _v] � iA(q) _q+ _qT [�(q) +A(q)T iA(q)] _q:

The momentum conjugate to qj is pj = @Ttot
@ _qj

= � � Aj(q) + [�(q) _q]j , where � = i~! +

j = i[S(v) _v + A(q) _q]. Let p = hp1; : : : ; p3N�6i. Therefore p = A(q)T� + �(q) _q. The

momentum conjugate to the ith component of v is �i =
@Ttot
@ _vi

= [S(v)]i � �. Thus ��� =

h�1; �2; �3i = S(v)T�. We can use these quantities to eliminate _q and _v:

_q = �(q)�1[p�A(q)TS(v)�T���];

_v = S(v)�1f[i�1 +A(q)�(q)�1A(q)T ]S(v)�T��� �A(q)�(q)�1pg:

The total kinetic energy can be expressed in terms of these variables.

Ttot =
1

2Mtot

k�totk
2 +

1

2
[i(q)�1S(v)�T���] � S(v)�T���

+
1

2
[p�A(q)TS(v)�T���] � �(q)�1[p�A(q)TS(v)�T���]:



This expression leads directly to Hamiltonian equations of motion for a rotating and vi-

brating system, where the Hamiltonian is h = Ttot + V (q). An advantage of this form

of the equations of motion is that the vector v is found along with the other quantities.

One disadvantage is that the e�ect of conservation of angular momentum is hidden. This

is reected in the fact that the Hamiltonian depends on v only through the quantity

� = S(v)�T���. It is possible to write equations of motion only involving the variables

�;q;p. The Hamiltonian is

~h(�;q;p) =
1

2Mtot

k�totk
2 +

1

2
[i(q)�1�] � �

+
1

2
[p�A(q)T�] � �(q)�1[p�A(q)T�] + V (q):

It follows that �tot and � are conserved. The �rst term is the energy of translational

motion, the second is the energy of rotational motion, and the last is the residual kinetic

energy. The Hamiltonian (Poisson) equation of motion for � is the familiar _� = �� ~!:

_� = �� f[i(q)�1 +A(q)�(q)�1A(q)T ]��A(q)�(q)�1pg:

The quantity k�k2 is conserved, so one can coordinatize this sphere (say using stereographic
coordinates u and v) and eliminate the radial degree of freedom. Numerical integration of

the resulting minimal (symplectic!) system in the variables u; v;q;p would automatically

conserve numerically both linear and angular momentum, whereas using the above (Poisson

but not symplectic) equation for � will not necessarily conserve k�k2 numerically. But

it is not always worthwhile to go to such lengths to accomplish such exact momentum

conservation. The Hamiltonian equation for q is

_q = �(q)�1[p�A(q)T�]:

The Hamiltonian equation for p is (l = 1; : : : ; 3N � 6)

_pl = �
1

2
� �

@[i(q)�1]

@ql
��

1

2
[p�A(q)T�] �

@[�(q)�1]

@ql
[p�A(q)T�]

+
@[A(q)T ]

@ql
� � �(q)�1[p�A(q)T�]�

@V (q)

@ql

The �rst term on the right is usually associated with centripetal forces. The third term on

the right is associated with Coriolis forces. These two terms vanish when � = 0.

If these equations are solved for �;q;p as functions of t then v can be found by solving

_v = S(v)�1f[i(q)�1 +A(q)�(q)�1A(q)T ]��A(q)�(q)�1pg:

Then the positions of the particles can be found from the equations Ra = �R+A(v)ra(q).

Another question concerns initial conditions. Suppose we want to choose initial condi-

tions so that the system has linear momentum �tot and angular momentum �tot. We may

choose �R(0);v(0);q(0);p(0) arbitrarily. These choices correspond to chosing the initial

positions to be Ra(0) = �R(0) + A(v(0))ra(q(0)). Then we de�ne �(0) = A(v(0))T�tot.



The initial total energy is ~h(�(0);q(0);p(0)), and it needs to be in a physically reasonable

range. To determine the corresponding choice of initial velocities use the formulae

_q(0) = �(q(0))�1[p(0)�A(q(0))T�(0)];

~!(0) = i(q(0))�1�(0)�A(q(0)) _q(0);

_Ra(0) =
�tot

Mtot

+A(v(0))

8<
:~!(0)� ra(q(0)) +

3N�6X
j=1

@ra

@qj
(q(0)) _qj(0)

9=
; :

Speci�cs for a Water molecule. For a water molecule we have hydrogen atoms at

R1; R2 and an oxygen atom at R3, and internal coordinates l1; l2; �. The body frame has

its z axis pointing from the oxygen to the �rst hydrogen, and its x axis perpendicular to

this in the half plane containing the second hydrogen. We compute that

r1 =

0
@

�M2l2 sin�
Mtot

0
(M2+M3)l1�M2l2 cos�

Mtot

1
A; r2 =

0
@

(M1+M3)l2 sin�

Mtot

0
�M1l1+(M1+M3)l2 cos�

Mtot

1
A; r3 =

0
@

�M2l2 sin�
Mtot

0

�M1l1+M2l2 cos�
Mtot

1
A

The moment of inertia tensor is i = 1
Mtot

0
@
a 0 b

0 c 0

b 0 d

1
A where

a = M2(M1 +M3)l
2
2 cos

2 �� 2M1M2l1l2 cos�+M1(M2 +M3)l
2
1;

b = �M2l2 sin�[(M1 +M3)l2 cos��M1l1];

c = M1(M2 +M3)l
2
1 � 2M1M2l1l2 cos�+M2(M1 +M3)l

2
2;

d = (M1 +M3)M2l
2
2 sin

2 �:

Its inverse is

i�1 =

0
B@

M1+M3

M1M3l
2

1

0 � [(M1+M3)l2 cos��M1l1]

M1M3l
2

1
l2 sin�

0 Mtot

c
0

� [(M1+M3)l2 cos��M1l1]

M1M3l
2

1
l2 sin�

0 c
M1M1M3l

2

1
l2
2
sin2 �

� M1+M3

M1M3l
2

1

1
CA :

Also the apparent angular momentum j =
P3

a=1 ra �Ma _ra in the body frame is

j =

0
@

0

� M2

Mtot
[M1 sin�(l1 _l2 � l2 _l1) + (M1l1l2 cos�� (M1 +M3)l

2
2) _�]

0

1
A :

In class we derived a complicated expression for � , but as one can see we only need ��1:

�(q)�1 =

0
B@

1
M3

+ 1
M1

cos�
M3

� sin�
M3l2

cos�
M3

1
M3

+ 1
M2

� sin�
M3l1

� sin�
M3l2

� sin�
M3l1

c
M1M2M3l

2

1
l2
2

1
CA :

For the water molecule a simple potential energy is

V (l1; l2; �) = k1(l1 � l01)
2 + k2(l2 � l02)

2 + k�(�� �0)
2:

For the parameter values see Water Molecule, Homework I.



Final Computation Project, Due Friday, Dec. 14. Use Maple to �nd the matrix

A(q) for the water molecule. Use Maple to explicitly derive the 9 di�erential equations of

motion for the variables �;q;p. Also explicitly �nd the 3 di�erential equations for v given

�;q;p as functions of t (see the discussion above).

Assume �tot = 0, and �R = 0 for all time. Write a Matlab function that computes
~h(�;q;p). Assume v(0) = 0, so that �(0) = �tot. By trial and error �nd a choice of

�(0);q(0);p(0) so that E = ~h(�(0);q(0);p(0)) is between 1 � 10�3 and 2 � 10�3 � amu �
angstrom2 � fs�2. Compute the corresponding initial positions and velocities of all the

atoms.

Write a Matlab function which accepts v; �;q;p as arguments and computes the right-

hand-sides of the 12 di�erential equations for these quantities that you found above using

Maple. Solve your system of ordinary di�erential equations on Matlab using ode45 with

the choice of initial conditions you found by trial and error. Recover from the numerical

solution of this system the actual positions of the atoms as functions of time.

Use NAMD to solve for the motion of a water molecule with the initial positions and

velocities you found above. Compare the �nal positions and velocities to those that you

computed using Matlab (after solving the system). For how many fs do they basically

agree? Use VMD to watch the movie of your rotating and vibrating water molecule.

Turn in copies of your Matlab functions, and a written account of your results.


