MATH 728B, WATER MOLECULE, HOMEWORK PROBLEMS II

Rigid water molecule. If a system of particles has zero linear momentum and angular
momentum A = A\ then we have computed its total energy to be:
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where i is the moment of inertia tensor in the body frame. w = i~ is the angular velocity
vector in the body frame. Since A = 0 we have that A = —AT AN = —@ x A = A x &. Since
we have also seen that A\ = iw = i@ + j we have that A = A x i~1(\ — 7).

An important simplifying assumption which is often made in the simulation of water
molecules (especially when there are many of them) is that the geometry ¢ is constrained
to be equal to the equilibrium geometry qo. The effect of this assumption is that nothing
moves in the body frame and hence 7, = 0 and 7 = 0. Hence the total energy is given by
E = i7'X- A Show that if A = A x i71\ then both E and ||A||? are conserved on any
trajectory.
Principal Axes. Since i is a symmetric matrix it can be diagonalized via an orthogonal
matrix: iP = P§, where PPT = PTP = I and ¢ is a diagonal matrix. If the water
molecules has the equilibrium geometry ¢y then compute the matrix P and the diagonal
matrix d; assume that d17 > d29 > d33. The columns of P are called principal axes. Draw
a diagram of the water molecule with the principal axes labeled.

Let A = PX. Show that E = %5‘15\-5\, and ||A||2 = ||A||2. The constant energy surface is

an ellipsoid in \ space. Show that A = A x 6t \. These are called Euler’s equations of rigid
body motion. Trajectories of these equations lie on the intersection between the constant
energy ellipsoid and the sphere ||A]|2 = ||A||2. This fact can be used to geometrically
classify the trajectories. Use Maple to integrate Euler’s equations with initial conditions
of the form _
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(Choose a finite set of values of A satisfying the above inequality.) Plot these trajectories
on a three dimensional plot. They will all lie on the same energy ellipsoid, but different
trajectories will have different values of ||A||2. Classify and describe these trajectories.
Identify the critical values of A1 where the qualitative features of the trajectories change.

Recovering the rotational motion. The above description of rigid body motion is
entirely from the standpoint of the body frame, i.e. we find out how A(t) = PA(t) evolves,
but we have not yet discovered how the water molecule rotates relative to the inertial
frame. We know that @ = i '[A(t) — j(t)], and [@ x | = A(t) 'A(t), where A(t) is a time-
dependent rotation matrix relating the body and inertial frames. Thus we can find A(t)



by solving the differential equation A = A[@ x| = A[i~{\(t) —j(t)} x ]. This assumes we
have already found A(¢) and j(¢) in a previous step. In the case of a rigid water molecule
j(t) = 0 and A(t) is found by solving Euler’s equations as above.

Thus our task is to solve the system of differential equations A = A[i~'A(t) x |. If
A is represented as 3 X 3 matrix this is a coupled system of 9 equations in 9 unknowns;

straightforward but messy to solve numerically. However we know that it is possible to
write A = R(u,e?). Define v = uf. Show that
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R(u,e?) = Ry(v) = 1cos(VvTv) + va[

Notice that the functions (1 — cosf)/6? and (sin @) /6 are well-behaved functions of § near
9 = 0. Using Maple compute A = VyR; - v and derive 3 ODEs for the components of
v. Use Maple to solve this system numerically using two of the different types of A(t)
trajectories computed earlier.



