MATH 728B, WATER MOLECULE, HOMEWORK PROBLEMS I

Normal Modes. From the CHARMM?22 all hydrogen force field we find that the potential
energy for a single water molecule is

V(l1,l2,0) = ki, (Ih — 19) + kiy (I — 19) + ke (6 — 6°),

where ki, = ki, = 450 kcal/mole/angstrom?, 19 = I3 = 0.9572 angstrom, kg = 55
kcal/mole/radian?, and 6, = 104.52°. Also, in regard to the kinetic energy of a wa-
ter molecule with zero linear momentum and zero angular momentum we have that

T = 5p"7(q)"'p, where g = (I1,12,6),4 = (i1, l2,6) = 7(¢)~'p, and where
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In the above we use the abbreviation [2, = 2 + [2 — 2lyl5 cosf. From the CHARMM?22
all hydrogen topology file we find M; = M, = 1.008 amu (atomic mass unit), and My =
15.9994 amu. From standard chemistry references we find that 1 amu = 1.66054 - 1027
kilogram, 1 angstrom = 1071Y meter, and 1 kcal/mole = 4.184 kJ/(6.02214 - 10?3), where
1J = 1kg m? sec™®. Show that 1 kJ/mole = 10~* amu angstrom? fs=2, where 1 fs =
10~ 1%second (fs stands for femtosecond).

Define
2k, 0 0
K = 0 2k, O
0 0 2kg

Find a matrix B and a diagonal matrix g ! such that BTKB = K and BT7(qq) 'B =
p~1, being careful about units. Here qo = (19,19,6). Hint: Diagonalize the matrix
K~27(qy)~'K~1/? using an orthogonal matrix.

Approximate the Hamiltonian h = %pTT(q)_lp + %(q — q0)TK(q — qo) by the qua-
dratic hamiltonian ho(p,q — qo) = %pTT(qo)_lp + %(q — q0)TK(q — qv). Define G,p by
the relations ¢ — qo = Bq,p = Bp, where B was found in the previous paragraph. Define
ho(q,p) = 30" = 'p+5q" Kq, where !
graph. Write down Hamilton’s equations of motion for the Hamiltonian ho and solve them
explicitly (since they are uncoupled). Solutions of these equations with two of the three
components of ¢, p equal to zero are called normal modes. Give a geometric description of
the three different normal modes for the water molecule.

is the diagonal matrix found in the previous para-

Symmetric Water Molecules. Show that if ¢(¢), p(t) are solutions of Hamilton’s equa-
tions ¢ = Vyh,p = —V,h and if ¢'(0) = ¢*(0) and p1(0) = p2(0) then the equalities
ql(t) = q2(t) and pl(t) = pZ(t) hold for all ¢. Define h’s(laoaplapg) = h(lalaeaplaplapg) to



be the Hamiltonian restricted to this type of trajectory. Compute the normal modes of hg
(i.e. symmetric normal modes) around the equilibrium values Iy = (9, 6 as in the previous
section. Relate the symmetric normal modes computed here to the general normal modes
computed before.

Consider the three dimensional manifold hs(l,0,p;,pg) = E in the four dimensional
space whose coordinates are ([,6,p;,pg). If a trajectory of Hamilton’s equations for hg
starts on this manifold, it stays on this manifold for all time. Note that if the three
quantities [, 0, p; are given, then the two possible values of py can be determined by solving
a quadratic equation. One way to visualize how the trajectories of Hamilton’s equations
move around in this three dimensional space is to use a Poincaré surface of section, i.e.
we look at the intersections of a single trajectory with the two dimensional surface 8 = 6
lying in the three dimensional constant energy manifold. Such pictures can be generated
in Maple using DEtools,poincare. Using your explicit formulae for the symmetric normal
modes describe what a Poincaré diagram for a symmetric normal mode looks like. Then
use Maple to plot some Poincaré diagrams for the Hamiltonian h,; with different values
of the energy E. Can you detect any differences between the normal mode case and the
actual case? Describe them.



