MATH 728B, TRANSLATIONAL AND ROTATIONAL INVARIANCE

Suppose $A \in SO(3)$ is a rotation matrix and $\mathbf{b} \in \mathbb{R}^3$ is a translation vector. Together these determine a *rigid motion* which transforms $(\mathbf{R}_1, \ldots, \mathbf{R}_M)$ into $(A\mathbf{R}_1 + \mathbf{b}, \ldots, A\mathbf{R}_M + \mathbf{b})$. Suppose ψ is a ground state electronic wavefunction "uniquely" determined by the requirements that its $\mathcal{H}(\mathbf{R}_1, \ldots, \mathbf{R}_M)$ eigenvalue is $E = V(\mathbf{R}_1, \ldots, \mathbf{R}_M)$, its S^2 eigenvalue is $S(S+1)\hbar^2$, and its S_3 eigenvalue is $\hbar(S-\sigma)$ for some chosen integer $0 \leq \sigma \leq 2S$. What would be the corresponding electronic state for the molecule whose nuclei have been subjected to the rigid motion determined by (\mathbf{b}, A) ? If we could neglect the spin variables the answer would be $\tilde{\psi}(\tilde{\mathbf{r}}_1, \ldots, \tilde{\mathbf{r}}_N) = \psi(A^T(\tilde{\mathbf{r}}_1 - \mathbf{b}), \ldots, A^T(\tilde{\mathbf{r}}_N - \mathbf{b}))$. However, in order to obtain the corresponding electronic state for the rotated molecule we must reproduce its spin characteristics relative to a rotated apparatus for measuring spin related quantities. Thus we need to discuss spin in a little more detail.

If $s: \{0,1\} \to \mathbb{C}$ is a function, then we can represent it using a column vector in \mathbb{C}^2 : $\binom{s(0)}{s(1)}$. Let $\boldsymbol{\alpha}_0$ denote the function of this type represented by $\binom{1}{0}$, and $\boldsymbol{\alpha}_1$ the function of this type represented by $\binom{0}{1}$. In quantum chemistry books $\boldsymbol{\alpha}_0$ and $\boldsymbol{\alpha}_1$ are usually called $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, or *spin up* and *spin down*. This is because

$$\frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Thus if $\boldsymbol{\alpha}_0$ is the spin state of a single electron then the value of the 3rd component of the spin (represented by the matrix $\hbar \boldsymbol{\sigma}_3/2$) is $\hbar/2$. The ordered basis ($\boldsymbol{\alpha}_0, \boldsymbol{\alpha}_1$) is a basis of eigenvectors of the operator $\hbar \boldsymbol{\sigma}_3/2$, called the *spin frame*. When the apparatus for measuring spin is rotated, then the spin frame is also rotated.

To understand the relation between rotations in \mathbb{R}^3 and rotations of the spin frame we introduce some notation. Define $X(\mathbf{x}) = \boldsymbol{\sigma}_1 x_1 + \boldsymbol{\sigma}_2 x_2 + \boldsymbol{\sigma}_3 x_3$, where $\boldsymbol{\sigma}_j$, j = 1, 2, 3, are the Pauli spin matrices, and $\mathbf{x} = \langle x_1, x_2, x_3 \rangle = (x_1, x_2, x_3)^T$. $\frac{\hbar}{2} X(\mathbf{x})$ is the spin operator associated to measuring the spin (of a single electron) about an axis \mathbf{x} . Define $H(e^{i\theta}, \mathbf{u}) = \boldsymbol{\sigma}_0 \cos \theta - i X(\mathbf{u}) \sin \theta$, where $\theta \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^3$ is a unit vector. Define also

$$R(e^{i\theta}, \mathbf{u}) = \mathbf{u}\mathbf{u}^T + (I - \mathbf{u}\mathbf{u}^T)\cos\theta + [\mathbf{u} \times]\sin\theta, \qquad [\mathbf{u} \times] = \begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix},$$

where $\theta \in \mathbb{R}$ and $\mathbf{u} = \langle u_1, u_2, u_3 \rangle \in \mathbb{R}^3$ is a unit vector. The following result shows how to compute the spin operator about a rotated axis.

Fact. For all $\mathbf{x} \in \mathbb{R}^3$ we have $X(R(e^{i\theta}, \mathbf{u})\mathbf{x}) = H(e^{i\theta/2}, \mathbf{u})X(\mathbf{x})H(e^{i\theta/2}, \mathbf{u})^{\dagger}$, where H^{\dagger} is the complex conjugate transpose of the 2 × 2 complex matrix H.

The matrix $R(e^{i\theta}, \mathbf{u})$ is in the group SO(3) of all rotation matrices, and represents the rotation about the axis \mathbf{u} through an angle θ (using the right-hand rule). The matrix $H(e^{i\theta/2}, \mathbf{u})$ is in the group SU(2) of all 2×2 complex matrices H such that $H^{\dagger}H = I$ and det H = 1. Notice that the above fact allows us to define a mapping SU(2) \rightarrow SO(3): $H(e^{i\theta/2}, \mathbf{u}) \mapsto R(e^{i\theta}, \mathbf{u})$, but this mapping is not invertible. In fact both $H(e^{i\theta/2}, \mathbf{u})$ and $-H(e^{i\theta/2}, \mathbf{u}) = H(e^{i(\theta+2\pi)/2}, \mathbf{u})$ get mapped to the same $R(e^{i\theta}, \mathbf{u})$. Technical comments for the mathematicians. Both SO(3) and SU(2) are compact topological groups, and the mapping SU(2) \rightarrow SO(3) is a continuous group homomorphism, which is a covering map. The group SU(2) is simply connected whereas the fundamental group of SO(3) is \mathbb{Z}_2 . Thus SU(2) is the universal covering group of SO(3). In fact $H(e^{i\theta/2}, \mathbf{u})$ can be identified with the homotopy class of the continuous path in SO(3) connecting I with $R(e^{i\theta}, \mathbf{u})$, i.e. $[0, 1] \rightarrow$ SO(3): $t \mapsto R(e^{it\theta}, \mathbf{u})$. The loop associated to $H(e^{i\pi}, \mathbf{u})$ can be taken as the (single) generator of the fundamental group of SO(3), whereas the loop associated to $H(e^{i2\pi}, \mathbf{u}) = H(e^{i0}, \mathbf{u})$ is homotopic to the trivial loop (which remains at I for all $t \in [0, 1]$). (End of technical comments.)

The two column vectors $(H(e^{i\theta/2}, \mathbf{u})\boldsymbol{\alpha}_0, H(e^{i\theta/2}, \mathbf{u})\boldsymbol{\alpha}_1)$ of the matrix $H(e^{i\theta/2}, \mathbf{u})$ are the rotated spin frame if the rotation in \mathbb{R}^3 is given by $A = R(e^{i\theta}, \mathbf{u})$. For example, if we rotate molecule and the apparatus by $\theta = \pi/2$ about the y-axis $\mathbf{u} = \langle 0, 1, 0 \rangle$, then a measurement of the spin (of the original molecule) along the z-axis $\mathbf{x} = \langle 0, 0, 1 \rangle$ should correspond in the rotated molecule to a measurement of the spin along the x-axis $R(e^{i\pi/2}, \mathbf{u})\mathbf{x} = \langle 1, 0, 0 \rangle$. $X(\mathbf{x}) = \boldsymbol{\sigma}_3$ and $X(R(e^{i\pi/2}, \mathbf{u})\mathbf{x}) = \boldsymbol{\sigma}_1$. Then the above Fact becomes

$$\frac{\hbar}{2}\boldsymbol{\sigma}_1 H(e^{i\pi/4},\mathbf{u}) = H(e^{i\pi/4},\mathbf{u})\frac{\hbar}{2}\boldsymbol{\sigma}_3,$$

i.e. the two column vectors of $H(e^{i\pi/4}, \mathbf{u})$ are the two eigenvectors of $\frac{\hbar}{2}\boldsymbol{\sigma}_1$ with eigenvalues $\hbar/2$ and $-\hbar/2$ respectively. More generally, if we rotate the molecule and apparatus by θ about some axis \mathbf{u} perpendicular to $\mathbf{x} = \langle 0, 0, 1 \rangle$ then $\frac{\hbar}{2}X(R(e^{i\pi/2}, \mathbf{u})\mathbf{x})$ is the spin operator which is measured by the rotated apparatus, assuming originally it was set up to measure the z-component of spin: $\frac{\hbar}{2}X(\mathbf{x}) = \frac{\hbar}{2}\boldsymbol{\sigma}_3$. The above Fact is then a restatement of the topic sentence of this paragraph. (End of example.) Thus if the spin characteristics of the original molecule are described by the spin function $s = \boldsymbol{\alpha}_0 s(0) + \boldsymbol{\alpha}_1 s(1)$, then the rotated molecule should have the spin characteristics contained in the function $H(e^{i\theta/2}, \mathbf{u})\boldsymbol{\alpha}_0 s(0) + H(e^{i\theta/2}, \mathbf{u})\boldsymbol{\alpha}_1 s(1)$, which is just the matrix $H(e^{i\theta/2}, \mathbf{u})$ multiplied by the column vector $\begin{pmatrix} s(0) \\ s(1) \end{pmatrix}$.

N-electron wavefunctions are functions of *N* spin variables; such functions can be thought of as tensors in $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ (*N* times). If $s \colon \{0,1\}^N \to \mathbb{C}$ is a spin function then we can always write

$$s = \sum_{\sigma_1=0}^1 \cdots \sum_{\sigma_N=0}^1 s(\sigma_1, \ldots, \sigma_N) \boldsymbol{\alpha}_{\sigma_1} \otimes \cdots \otimes \boldsymbol{\alpha}_{\sigma_N},$$

where $(\boldsymbol{\gamma}_1 \otimes \cdots \otimes \boldsymbol{\gamma}_N)(\sigma'_1, \ldots, \sigma'_N) = \boldsymbol{\gamma}_1(\sigma'_1) \cdot \ldots \cdot \boldsymbol{\gamma}_N(\sigma'_N)$, for all $(\sigma'_1, \ldots, \sigma'_N) \in \{0, 1\}^N$, where $\boldsymbol{\gamma}_j \colon \{0, 1\} \to \mathbb{C}$ are any functions, $j = 1, \ldots, N$. If $U_j \colon \mathbb{C}^2 \to \mathbb{C}^2$ are linear transformations (i.e. 2×2 matrices), $j = 1, \ldots, N$, then define the linear transformation $U_1 \otimes \cdots \otimes U_N \colon \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \to \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ by the rule: $(U_1 \otimes \cdots \otimes U_N)(\boldsymbol{\gamma}_1 \otimes \cdots \otimes \boldsymbol{\gamma}_N) =$ $(U_1 \boldsymbol{\gamma}_1) \otimes \cdots \otimes (U_N \boldsymbol{\gamma}_N)$, extended by linearity. Recall we defined the operator $\mathcal{S}_k(j)$ to be the matrix $\frac{\hbar}{2}\sigma_k$ acting in the *j*th spin variable. In the above notation, this definition is expressed as

$$\mathcal{S}_k(j)s = \sum_{\sigma_1=0}^1 \cdots \sum_{\sigma_N=0}^1 s(\sigma_1, \ldots, \sigma_N) \boldsymbol{\alpha}_{\sigma_1} \otimes \cdots \otimes \frac{\hbar}{2} \boldsymbol{\sigma}_k \boldsymbol{\alpha}_{\sigma_j} \otimes \cdots \otimes \boldsymbol{\alpha}_{\sigma_N},$$

i.e. $S_k(j) = I \otimes \cdots \otimes \frac{\hbar}{2} \sigma_k \otimes \cdots \otimes I$, where $\frac{\hbar}{2} \sigma_k$ replaces the *j*th copy of *I*. Now we are prepared to state the following.

Lemma. Suppose the spin function s is an eigenfunction of S^2 with eigenvalue $\hbar^2 S(S+1)$ (where $S \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...\}$) and is also an eigenfunction of S_3 with eigenvalue $\hbar(S-\sigma)$ (where $0 \le \sigma \le 2S$). Define \tilde{s} by the rule:

$$\tilde{s} = \sum_{\sigma_1=0}^1 \cdots \sum_{\sigma_N=0}^1 s(\sigma_1, \dots, \sigma_N) H(e^{i\theta/2}, \mathbf{u}) \boldsymbol{\alpha}_{\sigma_1} \otimes \cdots \otimes H(e^{i\theta/2}, \mathbf{u}) \boldsymbol{\alpha}_{\sigma_N},$$

where $\theta \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^3$ is a unit vector. If $\mathbf{x} = \langle 0, 0, 1 \rangle$ and $\mathbf{y} = R(e^{i\theta}, \mathbf{u})\mathbf{x} = \langle y_1, y_2, y_3 \rangle$ then define the rotated multi-electron spin operator by $\frac{\hbar}{2}\mathcal{X}(\mathbf{y}) = \mathcal{S}_1y_1 + \mathcal{S}_2y_2 + \mathcal{S}_3y_3$, where $\mathcal{S}_k = \sum_{j=1}^N \mathcal{S}_k(j), \ k = 1, 2, 3$. Then \tilde{s} is an eigenfunction of \mathcal{S}^2 with the same eigenvalue as s, and \tilde{s} is an eigenfunction of $\frac{\hbar}{2}\mathcal{X}(\mathbf{y})$ with eigenvalue $\hbar(S - \sigma)$.

Proof. See class notes.

Define $\mathfrak{h} = H(e^{i\theta/2}, \mathbf{u}) \otimes \cdots \otimes H(e^{i\theta/2}, \mathbf{u})$ (*N* times). Then the rotated and translated electronic wavefunction corresponding to ψ is $\tilde{\psi}$, defined by

$$\begin{split} \tilde{\psi}(\tilde{\mathbf{r}}_1,\ldots,\tilde{\mathbf{r}}_N,\tilde{\sigma}_1,\ldots,\tilde{\sigma}_N) \\ &= \sum_{\sigma_1=0}^1 \cdots \sum_{\sigma_N=0}^1 \psi(A^T(\tilde{\mathbf{r}}_1-\mathbf{b}),\ldots,A^T(\tilde{\mathbf{r}}_N-\mathbf{b}),\sigma_1,\ldots,\sigma_N) \cdot \\ &\quad \cdot \left\{ [H(e^{i\theta/2},\mathbf{u})\boldsymbol{\alpha}_{\sigma_1}] \otimes \cdots \otimes [H(e^{i\theta/2},\mathbf{u})\boldsymbol{\alpha}_{\sigma_N}] \right\} (\tilde{\sigma}_1,\ldots,\tilde{\sigma}_N). \end{split}$$