
MATH 728B, TRANSLATIONAL AND ROTATIONAL INVARIANCE

Suppose A 2 SO(3) is a rotation matrix and b 2 R
3 is a translation vector. Together

these determine a rigid motion which transforms (R1; : : : ;RM ) into (AR1+b; : : : ; ARM+

b). Suppose  is a ground state electronic wavefunction \uniquely" determined by the

requirements that its H(R1; : : : ;RM ) eigenvalue is E = V (R1; : : : ;RM ), its S2 eigenvalue

is S(S + 1)~2, and its S3 eigenvalue is ~(S � �) for some chosen integer 0 � � � 2S.

What would be the corresponding electronic state for the molecule whose nuclei have been

subjected to the rigid motion determined by (b; A)? If we could neglect the spin variables

the answer would be ~ (~r1; : : : ; ~rN ) =  (AT (~r1�b); : : : ; A
T (~rN�b)). However, in order to

obtain the corresponding electronic state for the rotated molecule we must reproduce its

spin characteristics relative to a rotated apparatus for measuring spin related quantities.

Thus we need to discuss spin in a little more detail.

If s : f0; 1g ! C is a function, then we can represent it using a column vector in C
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Thus if ���0 is the spin state of a single electron then the value of the 3rd component of

the spin (represented by the matrix ~���3=2) is ~=2. The ordered basis (���0;���1) is a basis

of eigenvectors of the operator ~���3=2, called the spin frame. When the apparatus for

measuring spin is rotated, then the spin frame is also rotated.

To understand the relation between rotations in R
3 and rotations of the spin frame

we introduce some notation. De�ne X(x) = ���1x1 + ���2x2 + ���3x3, where ���j , j = 1; 2; 3,

are the Pauli spin matrices, and x = hx1; x2; x3i = (x1; x2; x3)
T . ~

2
X(x) is the spin

operator associated to measuring the spin (of a single electron) about an axis x. De�ne

H(ei�;u) = ���0 cos � � iX(u) sin �, where � 2 R and u 2 R
3 is a unit vector. De�ne also

R(ei�;u) = uuT + (I � uuT ) cos � + [u� ] sin �; [u� ] =

0
@ 0 �u3 u2

u3 0 �u1
�u2 u1 0

1
A ;

where � 2 R and u = hu1; u2; u3i 2 R
3 is a unit vector. The following result shows how to

compute the spin operator about a rotated axis.

Fact. For all x 2 R
3 we have X(R(ei�;u)x) = H(ei�=2;u)X(x)H(ei�=2;u)y, where Hy is

the complex conjugate transpose of the 2� 2 complex matrix H.

The matrix R(ei�;u) is in the group SO(3) of all rotation matrices, and represents

the rotation about the axis u through an angle � (using the right-hand rule). The



matrix H(ei�=2;u) is in the group SU(2) of all 2 � 2 complex matrices H such that

HyH = I and detH = 1. Notice that the above fact allows us to de�ne a mapping

SU(2) ! SO(3) : H(ei�=2;u) 7! R(ei�;u), but this mapping is not invertible. In fact both

H(ei�=2;u) and �H(ei�=2;u) = H(ei(�+2�)=2;u) get mapped to the same R(ei�;u). Tech-

nical comments for the mathematicians. Both SO(3) and SU(2) are compact topological

groups, and the mapping SU(2) ! SO(3) is a continuous group homomorphism, which

is a covering map. The group SU(2) is simply connected whereas the fundamental group

of SO(3) is Z2 . Thus SU(2) is the universal covering group of SO(3). In fact H(ei�=2;u)

can be identi�ed with the homotopy class of the continuous path in SO(3) connecting I

with R(ei�;u), i.e. [0; 1] ! SO(3) : t 7! R(eit�;u). The loop associated to H(ei�;u) can

be taken as the (single) generator of the fundamental group of SO(3), whereas the loop

associated to H(ei2�;u) = H(ei0;u) is homotopic to the trivial loop (which remains at I

for all t 2 [0; 1]). (End of technical comments.)

The two column vectors (H(ei�=2;u)���0;H(ei�=2;u)���1) of the matrix H(ei�=2;u) are the

rotated spin frame if the rotation in R
3 is given by A = R(ei�;u). For example, if we rotate

molecule and the apparatus by � = �=2 about the y-axis u = h0; 1; 0i, then a measurement

of the spin (of the original molecule) along the z-axis x = h0; 0; 1i should correspond in the

rotated molecule to a measurement of the spin along the x-axis R(ei�=2;u)x = h1; 0; 0i.

X(x) = ���3 and X(R(ei�=2;u)x) = ���1. Then the above Fact becomes

~

2
���1H(ei�=4;u) = H(ei�=4;u)

~

2
���3;

i.e. the two column vectors of H(ei�=4;u) are the two eigenvectors of ~

2
���1 with eigenvalues

~=2 and �~=2 respectively. More generally, if we rotate the molecule and apparatus by �

about some axis u perpendicular to x = h0; 0; 1i then ~

2
X(R(ei�=2;u)x) is the spin operator

which is measured by the rotated apparatus, assuming originally it was set up to measure

the z-component of spin: ~

2
X(x) = ~

2
���3. The above Fact is then a restatement of the

topic sentence of this paragraph. (End of example.) Thus if the spin characteristics of the

original molecule are described by the spin function s = ���0s(0) +���1s(1), then the rotated

molecule should have the spin characteristics contained in the function H(ei�=2;u)���0s(0)+

H(ei�=2;u)���1s(1), which is just the matrix H(ei�=2;u) multiplied by the column vector�
s(0)

s(1)

�
.

N -electron wavefunctions are functions of N spin variables; such functions can be

thought of as tensors in C
2 
� � �
 C

2 (N times). If s : f0; 1gN ! C is a spin function then

we can always write
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where 


j : f0; 1g ! C are any functions, j = 1; : : : ; N . If Uj : C
2 ! C

2 are linear trans-

formations (i.e. 2 � 2 matrices), j = 1; : : : ; N , then de�ne the linear transformation

U1
� � �
UN : C 2 
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2 ! C
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2 by the rule: (U1
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UN )(
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N ), extended by linearity. Recall we de�ned the operator Sk(j) to be



the matrix ~

2
���k acting in the jth spin variable. In the above notation, this de�nition is

expressed as

Sk(j)s =

1X
�1=0

� � �

1X
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i.e. Sk(j) = I 
 � � � 
 ~

2
���k 
 � � � 
 I, where ~

2
���k replaces the jth copy of I. Now we are

prepared to state the following.

Lemma. Suppose the spin function s is an eigenfunction of S2 with eigenvalue ~2S(S+1)

(where S 2 f0; 1
2
; 1; 3

2
; 2; : : : g) and is also an eigenfunction of S3 with eigenvalue ~(S � �)

(where 0 � � � 2S). De�ne ~s by the rule:

~s =

1X
�1=0

� � �

1X
�N=0

s(�1; : : : ; �N )H(ei�=2;u)����1 
 � � � 
H(ei�=2;u)����N ;

where � 2 R and u 2 R
3 is a unit vector. If x = h0; 0; 1i and y = R(ei�;u)x = hy1; y2; y3i

then de�ne the rotated multi-electron spin operator by ~

2
X (y) = S1y1+S2y2+S3y3, where

Sk =
PN

j=1 Sk(j), k = 1; 2; 3. Then ~s is an eigenfunction of S2 with the same eigenvalue

as s, and ~s is an eigenfunction of ~

2
X (y) with eigenvalue ~(S � �).

Proof. See class notes.

De�ne h = H(ei�=2;u) 
 � � � 
H(ei�=2;u) (N times). Then the rotated and translated

electronic wavefunction corresponding to  is ~ , de�ned by

~ (~r1; : : : ; ~rN ; ~�1; : : : ; ~�N )

=
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 (AT (~r1 � b); : : : ; A
T (~rN � b); �1; : : : ; �N )�

�
n
[H(ei�=2;u)����1 ]
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 [H(ei�=2;u)����N ]

o
(~�1; : : : ; ~�N ):


