MATH 728B, MORE ON CONICAL SINGULARITIES

Recall we defined X = X(R4,...,Ry) to be the set of all electronic state functions at
which the Rayleigh quotient
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assumes its minimum value £ = V(Ry,...,Rys). X is the eigenspace of the self-adjoint
operator H with eigenvalue E; this eigenspace is finite dimensional. In class we spoke briefly
about the cases M = 1,2, which have special symmetry; but clearly for biomolecules M > 3
and the vectors Rq,...,Rjs do not lie on the same line. In this case the spin operators
S? and S3 are the only known observables which commute with H and each other.

The significance of this can be understood provided certain aspects of the quantum
formalism are kept in mind. First of all, in quantum mechanics observable quantities con-
cerning the electrons are represented by (possibly unbounded) self-adjoint linear operators
on the Hilbert space

H = {¢: (R* x {0,1})Y — C |¢ is measurable, square integrable, and satisfies the

anti-symmetry condition (Pauli exclusion principle)}.

Associate to any closed linear subspace S of H the orthogonal projection operator Pg
whose range is that subspace. If Pg, and Ps, are two such projection operators then we
write Ps, L Pg, if and only if for every pair of vectors ¢; € S; and 93 € S2 we have
{(Y1,49) = 0, i.e. Sy L Se. If F is such an observable then the spectral theorem of
functional analysis implies that there is a projection-valued measure dF' defined on the
Borel subsets of R satisfying;:
(1) dF(0) =0, dF(R) = 1.
(2) If A; and A, are any two Borel subsets of R such that A3 N Ay = () then dF (A1) L
dF(As2).
(3) If {A;}32, is a family of Borel subsets of R such that A; N Ay = () whenever j # k
then dF(U;)ilAJ) == Z;il dF(AJ)
(4) For every ¢ € D(F) and every ¢’ € H we have (¢, F)) = [*° A (¢, dF(A\)¢).

If the molecule has the electronic state 1) and a measurement is made of the observable
quantity represented by F' then the predicted probability distribution of the measured val-
ues is the probability measure A — W, where A is a Borel subset of R. Thus in
general quantum mechanics can predict o’nly that the measured values of the quantity F'
will be randomly distributed according to the above distribution. If in a single such mea-
surement the outcome is the value fy with instrumental uncertainty ¢ f, then the electronic
state function immediately after the measurement is defined to be dF ([fo —df, fo+f)).
This is the statement of the famous projection postulate in quantum measurement the-
ory. If X is the only eigenvalue of the operator F in the interval [fy — df, fo + df) then
dF ([fo—6f, fo+df))Y = dF({\})y will be an eigenfunction of F' with eigenvalue A.



Measurements can be used to force a molecular system into a particular quantum
state. If operators Fi, Fs,...,F; pairwise commute, then all of their spectral projec-
tions dFy(A),dF5(A),...,dF;(A) commute as well, and simultaneous measurements of
these quantities will result in a molecular system where the electronic state (immediately
after the measurement time) is simultaneously an eigenfunction of each of the opera-
tors Fy, F,...,F;. Suppose the observed values of Fy, F5,..., F; are f1, fo,..., fi respec-
tively (assumed to be isolated eigenvalues), and that the intersection of the eigenspaces
N(F, — fil) NN (Fy — foI) N - NN (F, — fi) is one dimensional. Then the state func-
tion after this simultaneous observation is uniquely determined up to a nonzero complex
multiple. This the the standard method of preparing a molecular system with a particular
electronic state function.

It seems to be true that for a generic nuclear configuration (Rq,...,Rys) the vector
space X is contained entirely in an eigenspace of S? and the intersection of X with each
of the eigenspaces of S3 is one dimensional. Thus for almost every (Ry,...,Ry) every
® € X is an eigenvector of S? with the same eigenvalue S(S + 1)h*>—thus S is a locally
constant function of (Ry,...,Ry/)—and we can identify a particular electronic ground
state function (as always, uniquely up to nonzero complex multiple) by specifying a par-
ticular eigenvalue h(S — o), 0 = 0,1,...,2S, of S3. Thus X is a 25 + 1 dimensional
space. If (Rq,...,Ry/) is a nuclear configuration where it is not true that the above as-
sertions hold for all sufficiently nearby configurations, then we say that (Rq,...,Ryy) is
on a conical singularity. The rigorous mathematical study of such singularities is quite
undeveloped. It has been pursued by the mathematician George Hagedorn. See especially
his monograph: Molecular propagation through electron energy level crossings, Memoirs of
the American Mathematical Society, 111, (1994), no. 536. A theorem in the folklore of
this field is that the Born-Oppenheimer potential V(Ry,...,Rj/) is an analytic function
of (Rq,...,Ry) away from conical singularities. A proof of such a theorem (even if I
knew how to give it) is beyond the scope of this course. Most physical chemists assert
strongly (but without hint of mathematical justification) that conical singularities only
occur at configurations whose energies are much higher than the energies of configurations
occurring in normal biological contexts. For example, if (R;, R2, R3) is on a conical sin-
gularity of the water molecule, and (R}, R3,R3) is an equilibrium configuration of the
water molecule then V(Ry, Rz, R3) — V(RY, RY, RY) is about 5 electron volts, or about
8 - 10719 Joule. This means that in a solution of water at room temperature a water
“molecule” in the configuration (R, Rz, R3) is 73 times as likely to occur as a water
molecule in the standard equilibrium configuration (R, RS, R). Thus it is an assumption
in biomolecular dynamics that the Born-Oppenheimer potential is a smooth function for
all the nuclear configurations of interest. It is safe to say that precisely stated and proved
theorems concerning the above topics are open research problems.



