
MATH 728B, MORE ON CONICAL SINGULARITIES

Recall we de�ned X = X(R1; : : : ;RM ) to be the set of all electronic state functions at

which the Rayleigh quotient
hh ;H(R1; : : : ;RM ) ii

hh ; ii

assumes its minimum value E = V (R1; : : : ;RM ). X is the eigenspace of the self-adjoint

operatorH with eigenvalueE; this eigenspace is �nite dimensional. In class we spoke brie
y

about the casesM = 1; 2, which have special symmetry; but clearly for biomoleculesM � 3

and the vectors R1; : : : ;RM do not lie on the same line. In this case the spin operators

S2 and S3 are the only known observables which commute with H and each other.

The signi�cance of this can be understood provided certain aspects of the quantum

formalism are kept in mind. First of all, in quantum mechanics observable quantities con-

cerning the electrons are represented by (possibly unbounded) self-adjoint linear operators

on the Hilbert space

H = f : (R 3 � f0; 1g)N ! C j is measurable, square integrable, and satis�es the

anti-symmetry condition (Pauli exclusion principle)g:

Associate to any closed linear subspace S of H the orthogonal projection operator PS
whose range is that subspace. If PS1 and PS2 are two such projection operators then we

write PS1 ? PS2 if and only if for every pair of vectors  1 2 S1 and  2 2 S2 we have

hh 1;  2ii = 0, i.e. S1 ? S2. If F is such an observable then the spectral theorem of

functional analysis implies that there is a projection-valued measure dF de�ned on the

Borel subsets of R satisfying:

(1) dF (;) = 0, dF (R ) = 1.

(2) If A1 and A2 are any two Borel subsets of R such that A1 \A2 = ; then dF (A1) ?
dF (A2).

(3) If fAjg1j=1 is a family of Borel subsets of R such that Aj \Ak = ; whenever j 6= k

then dF ([1j=1Aj) =
P

1

j=1 dF (Aj).

(4) For every  2 D(F ) and every  0 2 H we have hh 0; F ii =
R
1

�1
� hh 0; dF (�) ii.

If the molecule has the electronic state  and a measurement is made of the observable

quantity represented by F then the predicted probability distribution of the measured val-

ues is the probability measure A 7! hh ;dF (A) ii

hh ; ii
, where A is a Borel subset of R . Thus in

general quantum mechanics can predict only that the measured values of the quantity F

will be randomly distributed according to the above distribution. If in a single such mea-

surement the outcome is the value f0 with instrumental uncertainty Æf , then the electronic

state function immediately after the measurement is de�ned to be dF ([f0� Æf; f0+ Æf)) .
This is the statement of the famous projection postulate in quantum measurement the-

ory. If � is the only eigenvalue of the operator F in the interval [f0 � Æf; f0 + Æf) then

dF ([f0 � Æf; f0 + Æf)) = dF (f�g) will be an eigenfunction of F with eigenvalue �.



Measurements can be used to force a molecular system into a particular quantum

state. If operators F1; F2; : : : ; Fl pairwise commute, then all of their spectral projec-

tions dF1(A); dF2(A); : : : ; dFl(A) commute as well, and simultaneous measurements of

these quantities will result in a molecular system where the electronic state (immediately

after the measurement time) is simultaneously an eigenfunction of each of the opera-

tors F1; F2; : : : ; Fl. Suppose the observed values of F1; F2; : : : ; Fl are f1; f2; : : : ; fl respec-

tively (assumed to be isolated eigenvalues), and that the intersection of the eigenspaces

N (F1 � f1I) \ N (F2 � f2I) \ � � � \ N (Fl � flI) is one dimensional. Then the state func-

tion after this simultaneous observation is uniquely determined up to a nonzero complex

multiple. This the the standard method of preparing a molecular system with a particular

electronic state function.

It seems to be true that for a generic nuclear con�guration (R1; : : : ;RM ) the vector

space X is contained entirely in an eigenspace of S2 and the intersection of X with each

of the eigenspaces of S3 is one dimensional. Thus for almost every (R1; : : : ;RM ) every

 2 X is an eigenvector of S2 with the same eigenvalue S(S + 1)~2|thus S is a locally

constant function of (R1; : : : ;RM )|and we can identify a particular electronic ground

state function (as always, uniquely up to nonzero complex multiple) by specifying a par-

ticular eigenvalue ~(S � �), � = 0; 1; : : : ; 2S, of S3. Thus X is a 2S + 1 dimensional

space. If (R1; : : : ;RM ) is a nuclear con�guration where it is not true that the above as-

sertions hold for all suÆciently nearby con�gurations, then we say that (R1; : : : ;RM ) is

on a conical singularity. The rigorous mathematical study of such singularities is quite

undeveloped. It has been pursued by the mathematician George Hagedorn. See especially

his monograph: Molecular propagation through electron energy level crossings, Memoirs of

the American Mathematical Society, 111, (1994), no. 536. A theorem in the folklore of

this �eld is that the Born-Oppenheimer potential V (R1; : : : ;RM ) is an analytic function

of (R1; : : : ;RM ) away from conical singularities. A proof of such a theorem (even if I

knew how to give it) is beyond the scope of this course. Most physical chemists assert

strongly (but without hint of mathematical justi�cation) that conical singularities only

occur at con�gurations whose energies are much higher than the energies of con�gurations

occurring in normal biological contexts. For example, if (R1;R2;R3) is on a conical sin-

gularity of the water molecule, and (R0
1;R

0
2;R

0
3) is an equilibrium con�guration of the

water molecule then V (R1;R2;R3) � V (R0
1;R

0
2;R

0
3) is about 5 electron volts, or about

8 � 10�19 Joule. This means that in a solution of water at room temperature a water

\molecule" in the con�guration (R1;R2;R3) is e
�39 times as likely to occur as a water

molecule in the standard equilibrium con�guration (R0
1;R

0
2;R

0
3). Thus it is an assumption

in biomolecular dynamics that the Born-Oppenheimer potential is a smooth function for

all the nuclear con�gurations of interest. It is safe to say that precisely stated and proved

theorems concerning the above topics are open research problems.


