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1. Introduction

Molecular biology is currently one of the most exciting and challenging applica-
tion frontiers for practitioners of applied mathematics. Mathematical models have
for a long time and successfully been developed for complex biological systems at
the cellular, organismal, and population levels [34]. And recently there has been the
realization that engineering principles governing complex systems of human origin
are applicable to various subsystems of the cell, which has resulted in a quest for
a systems biology [4]. Physicists have long asserted that the underlying laws gov-
erning the motions and arrangements of atoms and molecules are known, and yet
the well-known difficulty of using these mathematical laws to derive the behavior
of complex systems together with the conviction that the emergent “self-organizing
principles” will be largely independent of the atomic details has lead many to aban-
don the “reductionistic” approach, and even to deny the existence of a deductive
link between the known laws and the postulated organizing principles [21]. In some
cases organizing principles have been deduced from the underlying theory, such as
the derivation of hydrodynamics as an asymptotic limit of molecular dynamics [5].
Rigorously deducing asymptotic limits of complex dynamical theories is the work
of mathematicians, and though the work is hard we are not yet willing to give up.
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We are interested in such limits as are important for the behavior of large biomolec-
ular systems. Since our ability to directly observe this “mesoscopic” realm is quite
limited [22], the “reductionistic” approach to understanding, especially using com-
putational tools to manage the increasing complexity, seems to be competitive, even
promising.

This proposal is concerned with the effort to construct a mathematical and
computational modeling environment which connects all the levels of organization
from atomic level structure to biological function. It will by no means provide all
the components needed to achieve this worthy goal. Our approach is basically to
start at the structural level and work upwards toward the cellular level. We highly
value the efforts of those who can contribute insight through experiment, empirical
law, and other nonreductionistic approaches [22].

We present three types of proposals. First we discuss mathematical concepts
which are useful to model structures and assemblies of biomolecules. At this stage
it is extremely challenging to formulate complete well-posed and tractable math-
ematical models with important and experimentally correct predictions. In many
cases the “correct” mathematical concepts still need to be defined so that the main
problems can be stated as mathematics problems. Often the resulting mathematics
problems appear to be very difficult to solve, but this does not mean that the def-
initions were not helpful. A “correct” definition is one which matches reality well
and yet also possesses mathematical elegance. We will first describe a very natural
mathematical theory of biomolecular structure, thereby laying a firm foundation
at that level. We will also describe some subsidiary concepts which build on this
foundation, and point out some concepts which yet await definition.

Secondly we propose certain mathematical and computational problems which
seem to be necessary to solve if our grander aims are to be achieved. In some
cases the exact biologically relevant formulation is still not clear, and we propose
to collaborate with molecular biologists to resolve the ambiguities.

Thirdly, we propose certain software development projects which are closely
related to our mathematical concepts and are guided by our larger aims. Soft-
ware allows human beings to extend their ability to comprehend complex systems
through graphical interfaces, hierarchy, and detail hiding. A relevant example is the
software systems used by computer chip designers. We view the software in a sup-
porting role as facilitating exploration of the geometry and motions of biomolecular
systems, leading to new mathematical concepts and to a greater understanding of
modeling concepts at higher levels of organization.

The proposed research will significantly enhance the mathematical infrastruc-
ture of molecular biology, and hence it participates in the broader impacts of that
discipline on health and biotechnology.

2. Definitions of Mathematical Concepts

2.1. Generalized Z-systems. GZ-systems are combinatorial structures useful for
biomolecular geometry description. The theory of n-dimensional Z-systems and all
the basic geometric concepts surrounding them is developed in [6]. Earlier related
work is [3], [7], [47]. Here we will describe a useful generalization, but in the 3-
dimensional case, which will form the foundation of our approach to biomolecular
geometry.
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Suppose N is the set of the atom names for all the atoms in a molecular system.
We suppose N has N ≥ 3 elements. If k ≥ 0 then let

( N
k+1

)
denote the set of all

k + 1 element subsets of N . Each element of
( N
k+1

)
will be called an (abstract)

k-simplex. If Γ ⊂ P(N ) and C ⊂ N then let Γk
C denote the set of all abstract

k-simplices in Γ which are subsets of C; abbreviate Γk
N by Γk and ∪∞

k=0Γ
k
C by ΓC .

Γ ⊂ ∪3
k=0

( N
k+1

)
is called a unoriented generalized Z-system (GZ-system) on N if

the following conditions hold.

(1) Γ0 =
(N

1

)
.

(2) If e ∈ Γk, k ≥ 1, then |Γk−1
e | = 2. (We may think of e ∈ Γk as an edge

incident on the two vertices v1, v2 ∈ Γk−1, where Γk−1
e = {v1, v2}.)

(3) (Γ0,Γ1) is an acyclic graph.
(4) If C ⊂ N is such that (Γ0

C ,Γ1
C) is a connected component of (Γ0,Γ1) then

(Γ1
C ,Γ2

C) and (Γ2
C ,Γ3

C) are (possibly empty) trees. (C is called a component.)
(5) Γ2 6= ∅.
(6) If v1, v2 ∈ Γ2 and v1 ∪ v2 ∈ Γ3 then v1 ∩ v2 ∈ Γ1.

If (Γ0,Γ1) is also connected then we say Γ is an unoriented Z-system. If w =
{A0, A1, A2, A3} ∈ Γ3 then define oriented 3-simplices to be equivalence classes

[A0, A1, A2, A3] = {(Aπ(0), . . . , Aπ(3)) | π is an even permutation of {0, 1, 2, 3}}.

Let υ map oriented 3-simplices to their underlying 3-simplices, i.e. υ(w∗) = w.
Let Γ3

∗ be a collection of oriented 3-simplices such that υ : Γ3
∗ → Γ3 is a bijec-

tion. (Γ1,Γ2,Γ3
∗) is called simply a (G)Z-system. If C is a component of Γ with

|C| ≥ 3 then ΓC is a Z-system; ΓC is called monatomic (resp. diatomic) if |C| = 1
(resp. |C| = 2). Elements of Γ0,Γ1,Γ2,Γ3

∗, are called atoms, bonds, angles, and
wedges respectively. Components typically describe covalently bound molecules (or
monatomic ions); a system will typically consist of many components. A pictorial
view of a Z-system for the molecule methanol is in figure 1. If we keep in mind
that edges e ∈ Γk in the graph (Γk−1,Γk) become vertices of the graph (Γk,Γk+1)
then we have another view of the same Z-system in figure 2. The orientation of a
3-simplex can be chosen canonically when the bonds involved form a chain (dihe-
dral case), but can be indicated by an arrow when the bonds share a common atom
(improper case).

If Γ is a Z-system we can specify a particular geometry of the molecule described
by Γ by defining three mappings: L : Γ1 → (0,∞), C : Γ2 → (−1, 1), and Z : Γ3

∗ →
S1. If R ∈ (R3)N is a molecular configuration (giving the position of each of the
atoms) and b ∈ Γ1 then Lb(R) is the distance between the two atoms of the bond
(bond length) in the configuration R. If a ∈ Γ2 is the angle incident on the two
bonds b1, b2 ∈ Γ1, bj = {Aj , A}, j = 1, 2, then

Ca(R) =
RA1 − RA

‖RA1 − RA‖
· RA2 − RA

‖RA2 − RA‖

is the cosine of the geometrical angle (bond angle) between these two bonds in the
configuration R. If w∗ = [A0, A1, A2, A3] ∈ Γ3

∗, where {A0, A1, A2}, {A0, A1, A3} ∈
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[C,O,H1,H3]

Figure 1. A 3-dimensional Z-system Γ for Methanol. The set
N = {C,H1,H2,H3, O,H} contains the atom names. The tree for
(Γk−1,Γk), k = 1, 2, 3, is indicated on the part labeled Γk−1, where
the edges are indicated by heavier lines of various styles. Above
each such line is the element of Γk which is the edge, and it is
connected to its two vertices by lighter lines of the same style.

Γ2, then define

Zw∗(R) = v · w + iu · v × w, where u =
RA1 − RA0

‖RA1 − RA0‖
,

v =
(1 − uuT )(RA2 − RA0)
‖(1 − uuT )(RA2 − RA0)‖

, w =
(1 − uuT )(RA3 − RA0)

‖(1 − uuT )(RA3 − RA0)‖
.
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H1

H2

H3
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H

Figure 2. The iterated line graph form (used by IMIMOL) of the
same Z-system Γ for Methanol as in Figure 1. Bonds (1-simplices)
are indicated by solid lines. Angles (2-simplices) are indicated
by dashed lines from one vertex bond to the other. Wedges (3-
simplices) are indicated by curved or straight dotted lines from
one vertex angle to the other.

There are four permutations (Aπ(0), . . . , Aπ(3)) of w = {A0, A1, A2, A3} ∈ Γ3 such
that {Aπ(0), Aπ(1), Aπ(2)}, {Aπ(0), Aπ(1), Aπ(3)} ∈ Γ2, namely

(A0, A1, A2, A3) (A1, A0, A2, A3)
(A1, A0, A3, A2) (A0, A1, A3, A2).

The two in the first column are in the same equivalence class and determine the
same number Zw∗(R) (since u′ = −u, v′ = w, w′ = v) whereas the two in the sec-
ond column yield the complex conjugate of Zw∗(R). Thus Zw∗(R) = eiϕ determines
a signed angle (wedge angle) between the half-plane containing {RA0 ,RA1 ,RA2}
and the half-plane containing {RA0 ,RA1 ,RA3}, the common boundary of the
half-planes being the line containing {RA0 ,RA1}. The sign of ϕ and the ori-
entation of w∗ are related by the right-hand rule, as the above formulae show.
These definitions of Lb(R), Ca(R), and Zw∗(R) make sense and fall in the ranges
(0,∞), (−1, 1), and S1, respectively provided the configuration R is such that for
every {A0, A1, A2} ∈ Γ2 the points RA0 ,RA1 ,RA2 are not collinear in R

3. This
set of molecular configurations is invariant under rigid motions. An orbit in this
set of configurations with respect to the action of the group of rigid motions will
be called a conformation of Γ; Lb(R), Ca(R), and Zw∗(R) are constant on orbits.
These definitions establish a diffeomorphism between the manifold of conforma-
tions of Γ and the manifold (of labelled Z-systems) (0,∞)Γ

1 × (−1, 1)Γ
2 × (S1)Γ

3
∗ .

This diffeomorphism is called the polyspherical coordinate chart associated to the
Z-system (Γ1,Γ2,Γ3

∗).
In order to specify the conformation of a system of molecules described by a

GZ-system Γ we make the following definitions. A site is a set r = {s0, . . . , sk}
of elements of Γ, linearly ordered by inclusion s0 ⊂ · · · ⊂ sk, which is maximal in
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Γ \Γ3. Thus s0 ∈ Γ0, . . . , sk ∈ Γk; the value of k depends on the site; we call r a k-
site. Each site r is associated with a component C of Γ where r ⊂ ΓC . Monatomics
have 0-sites, diatomics have 1-sites, and Z-systems have 2-sites. Let DC(Γ) denote
the set of all configurations R ∈ (R3)N such that the geometric simplex Re ⊂ R

3

corresponding to every maximal element e of Γ \ Γ3 is geometrically independent.
If R ∈ DC(Γ) and r is a k-site of Γ then define Er(R) = (e0, . . . , e2k−1) to be
a 3 × 2k matrix, where e0 = RA0 , e1 = RA1−RA0

‖RA1−RA0‖ (when k ≥ 1), and e2 =
(1−e1e

T
1 )(RA2−RA0 )

‖(1−e1eT
1 )(RA2−RA0 )‖ and e3 = e1 × e2 (when k = 2). Er(R) is called the k-pose

at r conformed to the configuration R. If r is a 2-site and r′ is a k-site of Γ, then
there exists a unique 4× 2k matrix A(r,r′)(R), whose first row is (1, 0, . . . , 0), such
that Er′(R) = Er(R)A(r,r′)(R). We have that

A(r,r′)(R) k=2=
(

1 θT

b A

)
, A(r,r′)(R) k=1=

(
1 0
b u

)
, A(r,r′)(R) k=0=

(
1
b

)

where b ∈ R
3, A ∈ SO(3), u ∈ S2 ⊂ R

3. If sites r and r′ are associated with
different components of Γ, then the matrix A(r,r′)(R) specifies the relative position
(and orientation) of the two components in the configuration R, and is invariant
with respect to rigid motions on R.

To fix the conformation of the entire system we introduce another graph S whose
vertices are the components of Γ and whose oriented edges are ordered pairs (r, r′),
where r is a 2-site in one component C and r′ is a k-site in another component C′.
We require that the graph S be a tree. The conformation of the system is fixed
when one is given mappings L : Γ1 → (0,∞), C : Γ2 → (−1, 1), Z : Γ3

∗ → S1, and
an assignment A of a matrix (satisfying the above restrictions) to each pair in S.

Z-systems and their associated polyspherical coordinates are very similar to Z-
matrix, or valence internal coordinates used by chemists for many years, although
without the formal structure and rigor exhibited here. However Z-matrices [12], [30]
can be understood as being Z-systems with additional structure added [6]. This
additional structure imposes an ordering on the atoms and also defines a preferred
Cartesian coordinate system fixed to the molecule. Also Z-matrices are well-suited
to serving as a file format for storing molecular conformations in a computer. But
Z-matrices for two molecules cannot easily be combined to form a Z-matrix for the
result of a chemical combination of the two molecules. This can now be understood
as resulting from the imposition of the extra structure, because Z-systems can be
cleanly glued to yield the Z-system of the chemical product. This gluing operation
on Z-systems is very much like the manipulations one performs on plastic models
of molecules. Also it is possible to tether any component to a Z-system, forming a
single component out of the two. The details are straightforward, and can be found
in [6].

2.2. Hierarchical Structure. Although it would be theoretically possible to study
a biomolecular system in the form that is present in one specific species, it would not
be advisable because so much information can be obtained more easily by compar-
ison of the different forms which are present in different species. One of the main
differences in form of a biomolecular system between species is in the monomer
sequences of the biopolymers in the system. Hence we need to add more struc-
ture to our system description formalism so that such differences can be naturally
discussed. We have been assuming that distinct atoms have distinct names, and
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the simplest way to accomplish this is to name the atoms hierarchically, much like
the full path name of a file in a file/directory hierarchy. Hierarchy seems to be
a universal method of dealing with complexity, and it applies well enough to the
complexity of biomolecular systems. Hierarchy implies the existence of a rooted
tree T , where we assume the root vertex is not a leaf. The set of leaf vertices of T
will be in one-to-one correspondence with the set N of all the atom names in the
system. Vertices of T will be called nodes. Each non-root node has a parent node
(the next node on the path connecting it to the root node) and a set of children
nodes; a node is the parent node of each of its children. Each node has a label; the
labels of each of the children of a given node must be distinct from each other. The
path name of a node is given by concatenating the node labels (separated by dots)
along the unique path connecting that node to the root node. Each node X of T
can be assigned the set CX ⊂ N of all leaf nodes which are descendants of X. If X
is the root node then CX = N . For each component C there will be a node X such
that CX = C. If C describes a biopolymer then it is natural that T should contain
nodes corresponding to each of the monomers comprising C. For linear polymers
like proteins one might have the children of C labeled with the numbers 1, 2, . . . , M ,
where M is the number of amino acids in the protein. Then under the node k one
might have a single child labeled with the name of one of the 20 types of amino
acids. Thus the hierarchy contains species specific information in a form which
is also useful when addressing higher levels of organization (such as complexes of
proteins, functional units, organelles, etc.).

Biomolecular systems usually consist of multiple biopolymers together with suffi-
cient solvent (water) molecules to fill the spatial domain to the appropriate density
or pressure. Thus T will contain a node, labeled “solvent”, which will have many
children, each child representing a water molecule. In the case of systems con-
taining nucleic acids we will also have a node labeled “counterions”, whose many
children will be monotomic positive ions (Mg2+) to neutralize the strong negative
charge of the phosphate groups along the backbone. If the spatial domain is not a 3
dimensional torus T will contain a node, labeled “cage”, which will usually consist
of a rigid cage of partially charged centers statically simulating a surrounding body
of liquid water. It could have a “hydrophobic band” if one wanted to include part
of a lipid bilayer in the system. This cage will be impermeable to water molecules
or monatomic ions, so it will confine the other contents of the system to the inte-
rior of the cage. The most interesting nodes will be multi-protein complexes and
assemblies, which will vary from example to example.

2.3. Dynamical and Energetic Aspects. Let q = (L,C,Z,A) be a conforma-
tion of a GZ-system. There is a real-valued function Vqm(q) which gives the quan-
tum mechanical potential energy of the conformation q. It is not difficult to define
precisely but to save space we will not do so. Using Vqm yields a very accurate
physical model, but for large systems Vqm is very difficult to compute accurately.
Alternatively one can approximate Vqm(q) by Vmm(q), a molecular mechanics ex-
pression which is much easier to compute but makes covalent chemistry impossible
and may not treat electronic polarization effects accurately. Let V (q) denote a po-
tential energy function which we will assume is accurate enough for our purposes.

If the atom names in N are numbered from 1 to N then let the configuration R
be represented by a 3 × N matrix whose jth column vector is the position vector
Rj of the jth atom. Let M be an N × N diagonal matrix whose jth diagonal
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entry is the mass mj of the jth atom. Let m = tr M and let R̄ = 1
m

∑N
j=1 mjRj

denote the center of mass. The total kinetic energy is T = 1
2 tr (ṘMṘT ), where

Ṙ denotes the time derivative of R. Let r denote a distinguished 2-site in Γ and
let Er(R) = (e0, e1, e2, e3), where B = (e1, e2, e3) ∈ SO(3) denotes a set of basis
vectors “attached” to the molecule (component) containing the site r. Let r be the
3 × N matrix whose jth column vector rj satisfies Rj = Brj + R̄. the 6 degrees
of freedom of (R̄, B) determine the overall position and orientation of the system.
r is a function of the (3N − 6) × 1 column vector q of internal coordinates. Let
∇qrj denote the 3 × (3N − 6) matrix whose kth column vector is ∂rj

∂qk
. Define

i = tr (rMrT )1 − rMrT to be the 3 × 3 moment of inertia matrix. For v ∈
R

3 let [v×] denote the 3 × 3 antisymmetric matrix such that [v×]w = v × w
for all w ∈ R

3. Let A denote the 3 × (3N − 6) matrix, called the mechanical
connection 1-form, A = i−1

∑N
j=1 mj [rj×]∇qrj [24]. Define τ(q) to be the (3N −

6)×(3N−6) symmetric matrix
∑N

j=1 mj(∇qrj)T∇qrj−AT iA, which will be called
the Riemannian metric on conformation space. It is possible to restrict attention to
motions where

∑N
j=1 mjṘj = 0 and

∑N
j=1 Rj × mjṘj = 0 and for which initially

we have (R̄, B) = (0,1). (We cannot impose vanishing angular momentum in
the case of periodic spatial boundary conditions, but there are modifications of
this discussion to cover that case.) It follows that R̄ = 0 for all time and the
evolution of (q, q̇) is uncoupled from the evolution of B. There is no kinetic energy
of overall translational or rotational motion, and we have T = 1

2 q̇
T τ(q)q̇. If B(v) =

1 cos(θ)+vvT 1−cos(θ)
θ2 +[v×] sin(θ)

θ , where v ∈ R
3, θ = ‖v‖, then one can show that

d
dtB(v) = B(v)[{S(v)v̇}×], where S(v) = 1 sin(θ)

θ +vvT 1
θ2 (1− sin(θ)

θ )+[v×] 1−cos(θ)
θ2

and S(v)−1 = 1 θ/2
tan(θ/2) + vvT 1

θ2 (1− θ/2
tan(θ/2) ) + [v×] 12 . Thus after the evolution of

(q, q̇) is determined B(v) may be found by solving the equation v̇ = S(v)−1A(q)q̇.
The set of all conformations q is a smooth Riemannian manifold (Q, τ), and

the phase space for the dynamics is the cotangent space T ∗Q. The generalized
momentum conjugate to q is p = τ(q)q̇. The metric τ(q)−1 on the vector bundle
T ∗Q → Q is naturally associated to the metric τ(q) on TQ → Q. Adding the ki-
netic and potential energies H(q,p) = 1

2p
T τ(q)−1p + V (q) gives the Hamiltonian

H : T ∗Q → R, which determines the dynamics on T ∗Q. We will restrict attention
to dynamics on a level set X = {(q,p) ∈ T ∗Q | H(q,p) = E}, where E is cho-
sen so that X is a compact smooth manifold. T ∗Q is equipped with the standard
symplectic volume form which can be “divided by” the 1-form dH to yield a vol-
ume form on X, which after normalization makes (X,µ) into a probability space.
µ is the microcanonical equilibrium state of the system (assuming the measure µ
is ergodic with respect to the flow). For reasons of efficiency most molecular dy-
namics programs (such as CHARMM, or NAMD [35]) do not compute trajectories
in the q variables (see however [28]). Here we are defining this dynamical sys-
tem for theoretical purposes; the system clearly would not be ergodic in Cartesian
coordinates.

Most questions in molecular biology, such as “Is the protein folded?” or “Are
subunits A and B stably associated?” or “Is the ligand bound in the active site?”,
concern the conformations of specific macromolecules and small molecules of in-
terest, but not the conformations of the solvent, ions, or other components not of
interest. Let y denote a typical list of only the conformational variables of interest,
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and let Y denote the space of all such y and ρ : X → Y the projection mapping. Let
dy denote Lebesgue measure in the conformational variables y. If the projection
ρ∗µ of the probability µ on X down to Y is absolutely continuous with respect to dy
and d(ρ∗µ) = e−F (y) dy then the function F : Y → R could be called the conforma-
tional free energy associated to ρ and E (it also depends implicitly on the volume
of the spatial domain and the composition of the system). So if y0 represents a
conformation of biochemical interest, like a folded protein or an assembled complex
of proteins, then at equilibrium we expect the system phase point x = (q,p) to
be such that ρ(x) is near y0 if the thermodynamic variables (E, volume of spatial
domain, number of water molecules, number of ions, etc.) are such that F (y) is
minimized when y = y0. F defines the “energy landscape” of the system, and many
biological mysteries are hidden in this mathematical object.

The above dynamical formalism is inadequate to treat nonequilibrium processes
such as the conversion of glucose to ATP and pyruvate via glycolysis. The challenge
which is outstanding is to formulate an atomistic model which allows the situation
of constant flux through this system to be studied as a time independent state.

2.4. Ramachandran Spaces. GZ-systems provide standard internal coordinates
for the description of the geometry of the system. But the biologically interesting
geometries form a small subset of the set of all possible geometries. One of the main
virtues of GZ-system internal coordinates is that they simplify the description of
this subset (more or less) as much as possible. Since approximations are inevitable,
it is fortunate that certain reasonable ones are geometrically natural and fairly
easy to describe. All bond lengths, all bond angles (except in furanose rings in
nucleic acids), all improper wedge angles, and all dihedral wedge angles spanning
bonds which are part of rigid five or six membered covalently bound rings we
may assume to hold fixed constant values in all low energy conformations. All
biologically relevant motion (excluding covalent chemistry processes) takes place
in the remaining dihedral wedge angles and in the coordinates relating different
components. However, not all combinations of values of these active coordinates
make chemical sense. One source of restrictions is the presence of larger (more than
six chemical bonds) covalently bound rings, such as in proteins with disulfide bonds.
But the most important source of restrictions is the fact that any two atoms A and
A′ in Γ0 such that the path in (Γ0,Γ1) from A to A′ is four or more edges long
cannot be allowed to be too close to each other in any reasonable conformation. This
restriction is called steric exclusion. We will call the set of the active coordinates
satisfying the various ring constraints and all steric exclusions the Ramachandran
space (or R-space) R(Γ) ⊂ Q of the system. We can interpret the R-space as
a subset of Q such that as q ∈ Q moves away from R(Γ) the potential energy
V (q) increases drastically. R(Γ) is a rough approximation of the image of X under
the projection mapping T ∗Q → Q. R-spaces have extremely intricate structure
which is difficult to analyze. But they are a natural mathematical home for many
questions in molecular biology.

3. Mathematical and Computational Problems

3.1. Computing Points in Ramachandran Spaces. A common task is to com-
pute points in an R-space which satisfy certain constraints. For example, consider
the R-set for a segment of duplex DNA, described by a GZ-system Γ. It is desir-
able to compute points q ∈ R(Γ) that describe regular double helix structures with
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standard base pair geometry [36], [23], standard helical parameter (rise, twist, incli-
nation, and propeller twist) values for B-form DNA [23], ring parameter (Cremer-
Pople puckering amplitude and phase, Marzec-Day elongation amplitude and phase)
values for a 2′-endo furanose ring [27], and standard bond lengths and angles [9].
The primary remaining degrees of flexibility are described by the χ torsion angle
between the furanose ring and the base, and the torsion angles α, β, γ, ε, ζ [26] along
the backbone (δ is fixed by the ring parameters and bond angles). If we require
these torsion angles to be the same for all the nucleotides (insuring regularity of the
helix) then none of these are independently variable, i.e. they are constrained by
something analogous to the presence of a covalently bound ring [10]; we will give
an abstract formulation below. Furthermore we are only interested in the values
(χ, α, β, γ, ε, ζ) which also satisfy all the steric constraints. These constraints are
essentially geometric in nature.

The usual way this problem is addressed by biochemists and crystallographers
is to perform an energy minimization where certain coordinates have constrained
values and others are variable subject to an “energy” function which penalizes
deviations from ideal bond lengths and angles. The starting conformation for the
energy minimization is arbitrary. Unfortunately this minimization procedure may
result in a local minimum where the bond lengths and angles do not assume their
ideal values. Multiple attempts at minimization are needed to find the global
minima and to feel confident that all the important minima have been found. An
alternate approach, which we prefer, sets up and solves the constraint equations
exactly, finding all the solutions, and then selects those which also satisfy the steric
constraints. We propose to utilize GZ-systems to provide a systematic way to do
this, so that new software need not be written for every individual case.

We have applied such a systematic procedure to the above problem of computing
regular B-form DNA conformations by means of the following “bridging” algorithm.
Other “bridging” algorithms were applied to this same problem in [44], [31], [48].
Suppose the 2-sites r = {{A1}, {A1, A2}, {A1, A2, A3}} = (A1, A2, A3) and r′ =
(A′

1, A
′
2, A

′
3) are in the GZ-system Γ. Let A(r,r′)(χ) be the 4× 4 matrix of the form

described in section 2.1 such that Er′(R) = Er(R)A(r,r′)(χ) for all configurations
R ∈ DC(Γ). This matrix is a function of the adjustable parameter χ and can
be computed explicitly and automatically because of the GZ-system formalism (see
section 4.2). We wish to build a bridge between r and r′ by adding atoms {A0}, {A′

0}
such that the bond lengths of {A1, A0}, {A0, A

′
0}, {A′

0, A
′
1} are given and the bond

angles associated to the bond pairs

{{A2, A1}, {A1, A0}} = τ1,

{{A1, A0}, {A0, A
′
0}} = τ0,

{{A0, A
′
0}, {A′

0, A
′
1}} = τ ′

0,

{{A′
0, A

′
1}, {A′

1, A
′
2}} = τ ′

1

are also given (see figure 3). With χ and the given data fixed the triangle {A1, A0, A
′
1}

is determined up to congruence, and if it is rotated about the line through A1 and
A′

1 then {A0} can occupy at most two positions relative to Er(R) because of the
constraint on the measure of τ1 (assuming the angle {{A2, A1}, {A1, A

′
1}} is neither

0 nor π). Let I ⊂ S1 denote the set of χ values where {A0} can occupy exactly
two positions. For χ ∈ I let the two positions of {A0} be indexed by σ ∈ {1,−1}.
Similarly {A′

0} will occupy two positions indexed by σ′ ∈ {1,−1} for all χ ∈ I ′.
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τ ′
1τ0

τ ′
0τ1
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A′
3
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1
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0
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Figure 3. Bridging between 2-sites r = (A1, A2, A3) and r′ =
(A′

1, A
′
2, A

′
3). Atoms {A0} and {A′

0} are added with distance
constraints shown as darker dashed lines. Constrained angles
τ1, τ0, τ

′
0, τ

′
1 are also shown.

By imposing the constraint on the distance between {A0} and {A′
0} one obtains

four equations in the one unknown χ ∈ I ∩ I ′ indexed by (σ, σ′) ∈ {1,−1}2. All
solutions in I ∩ I ′ of each of these four equations can easily be found, and they
determine all of the solutions of the the bridging problem.

In the case of backbone conformations of regular B-form DNA double helices the
2-sites are r = (O3′.1, C3′.1, C4′.1) and r′ = (C5′.2, C4′.2, C3′.2) and the bridging
atoms are A0 = P.2 and A′

0 = O5′.2 (a suffix .j on these atom names indicates
that they are part of nucleotide j, j = 1, 2). We propose to continue this study
by allowing both χ and the Cremer-Pople pseudorotation phase angle P to vary,
and to map the solution curves in (χ, P ) space, together with the boundaries of the
R-space. The parameters χ and P both have multimodal distributions with large
variance in statistical studies of DNA crystals [9].

This approach and extensions of it can be applied in many situations. For exam-
ple it is easy to use this bridging algorithm to map the space of ring conformations
for covalently bound rings with six, seven and eight bonds [3], [2], [8]. One can also
compute protein secondary structural elements (α, π and 310 helices, parallel and
antiparallel β-sheets, γ and β turns, etc. [1]) and could attempt to compute RNA
tertiary structural motifs (such as U-turns, tetraloops, cross-strand purine stacks,
bulged G, A-platforms, ribose zippers, etc. [32]). This mathematical approach to
biomolecular structure teaches us much more than if we simply receive structures
from crystallographers or molecular simulations.

3.2. Computing Geodesics in Ramachandran Spaces. R-spaces are equipped
with a well-defined Riemannian metric which it inherits from being a subspace of Q.
We propose to devise an algorithm to compute this metric (and related quantities,
such as ∂[τ(q)−1]

∂ql
, which appears in the equation of motion for pl) in terms of a

general GZ-system. Expressions using a special internal coordinate system were
derived in [29], and might be useful as a starting point.

One application is to be able to compute geodesic curves of this metric starting
at any given point of the unit (co)tangent bundle of R-space. Geodesics of this
metric are “inertial motions”, i.e. solutions of Hamilton’s equations with the inertial
Hamiltonian H = T. We are interested in finding those directions in the unit
(co)tangent space at q ∈ R(Γ) for which the resulting geodesic curve stays in R(Γ)
for a long time, since these correspond to large “cooperative” motions of the system.
We propose to study the hinge motions of the protein T4 lysosyme to see if they
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are well described by such geodesics. We intend to consult with David and Jane
Richardson (Duke University, Biochemistry) on this project.

Another use for this Riemannian metric is to define a distance d between any
two points in R-space. This distance could be used to define a notion of an “aver-
age conformation”. Suppose one is given a finite set of conformations {q1, . . . ,qL}
which are not too spread out in R(Γ). These could be crystal structures of the
same system from different experiments. Rather than averaging each conforma-
tional variable (which is the usual procedure) it seems better to define the average
conformation to be the element q̄ of R(Γ) such that

∑L
l=1 d(ql, q̄)2 is minimized.

This will insure that the conformational coordinates of the “average structure” to-
gether satisfy all the usual bond length, bond angle, and steric constraints required
of any reasonable structure. We propose to develop algorithms for computing q̄
from the sample q1, . . . ,qL. We intend to consult with Ralph Howard (University
of South Carolina, mathematics) on the question of the uniqueness of q̄, which is
related to strict convexity [11].

4. Software Development Projects

4.1. Building Large Systems. As indicated in the introduction we propose to
develop software systems to allow the user to create, organize, manipulate, simulate,
and otherwise analyze very large systems of biomolecules. Our purpose is not to
reproduce in freeware expensive proprietary software systems like INSIGHT II [17],
or SCULPT [45], but to go far beyond them with an extendable mathematically
integrated system designed to connect cell level modeling with atomic level struc-
tural details. The software is to be a means of learning the new and appropriate
mathematical ideas needed for molecular biology.

We see a benefit in combining two types of user interfaces. A two dimensional
(2D) interface is for system creation, editing and organization. A three dimensional
(3D) interface is for visualization and manipulation. IMIMOL [15] is a free program
we have developed, together with graphics programmer Scott Johnson (funding
from the Industrial Mathematics Institute at the University of South Carolina),
with a 2D interface. Visual Molecular Dynamics (VMD) [46] is a free program for
all sorts of 3D visualization of molecular systems, including movies of molecular
dynamics (MD) trajectories. It is produced and supported by the Theoretical
Biophysics Group at the University of Illinois Urbana-Champaign with the intention
that it be extended in various ways. We propose to extend and integrate both of
these programs (see the next two subsections for details).

An essential test to any software system of the type we are proposing is to apply
it to actual large and complex biomolecular systems. Currently a Masters-level
mathematics graduate student, Haruna Katayama, is using IMIMOL and RASMOL
[40] to build the Light Harvesting Complex II (LH2) from the purple bacterium
Rhodobacter Sphaeroides [43], [14], [13]. A more or less complete model of the
entire Photosynthetic Unit (PSU), which includes multiple copies of LH2, from
that species has been built in the lab of Klaus Schulten, and pictures of it are
available on his web site [20]. However the details of the structure are available for
investigation only to a relatively few members of his lab or collaborators.

LH2, which functions (and looks like) an antennae, is composed of a ring formed
from 9 identical subcomplexes (called heterodimers). Each heterodimer has two
large surfaces, which we will call a and b. The a surface of one heterodimer is
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closely complementary in shape to the b surface of the next heterodimer. Two
heterodimers fit together along these surfaces. When 9 heterodimers are put to-
gether in this manner they form a continuous ring. Each heterodimer is composed
of two (approximately 50 amino acid) protein chains, the alpha chain and the beta
chain. These assume primarily alpha helix secondary structure which is aligned
roughly perpendicular to the membrane, and roughly parallel to the central axis of
the LH2 ring. To each alpha chain is associated two bacteriochlorphyll molecules,
which are (roughly planar) porphrin macrocycles. The beta chain is associated
with an additional bacteriochlorophyll. Between the alpha and beta chains lies a
long carotenoid molecule, spheroidene. Another carotenoid is loosely anchored to
the beta chain and one of the bacteriochlorophylls. Photons are absorbed by the
bacteriochlorophylls and carotenoids. The arrangement of these elements in the
species Rhodopseudomonas acidophila can be seen in the file 1KZU.pdb (in the
Protein DataBase [38]; use RASMOL). It is difficult to imagine how these flexible
molecules assemble themselves in such a beautiful and intricate geometric relation-
ship.

The PSU is mostly a static system (unless one wonders how it assembles) but
we must eventually face the complexity of dynamic systems, such as the ribosome.
Recently crystal structures have become available [33], [25]. We propose to build
an all-atom model of the ribosome as a means of challenging our software and
our mathematical descriptions. For this project especially we will need the help
of talented undergraduate and graduate students, the support for which we have
requested in the budget. These projects will of course enhance their education,
which is another type of broader impact of the research. We will also seek the
advice of David and Jane Richardson, as well as other structural and molecular
biologists.

4.2. IMIMOL. As can be seen in figure 1 we do not wish to write down the
mathematical components of larger Z-systems. The graphical notation of figure 2
allows calculations (gluings) to be done with larger Z-systems, but this can eas-
ily become cumbersome on paper. IMIMOL was created to perform all sorts of
Z-system calculations. There is a canvas where atoms can be placed by clicking,
and bonds between them can be defined by dragging. The geometry on the canvas
is completely adjustable, and has no intrinsic relation to the geometry in space
of the molecule described. One must omit bonds from covalently bound rings so
that one obtains a tree. The program automatically generates the line graph of the
atom/bond tree, and the user selects certain edges of this line graph to be deleted
so that one obtains the bond/angle tree. The line graph of this tree is automat-
ically generated as well, and the user again selects the edges of the line graph to
be deleted so that one obtains the angle/wedge tree. The orientations of improper
wedges can be switched from the default. Various levels of detail can be displayed
or hidden. The atom names are hierarchical: “O.His.129.A” might be the name of
the Oxygen attached to the backbone in the residue Histidine 129 in the A chain
of some protein. Gluing can be accomplished in a “merge” mode in two steps by
dragging and dropping A1 onto the leaf atom B0, which it will replace, and then
by dragging and dropping B1 onto A0. The new wedge must be added to the tree
by double clicking on its ghost. To assign coordinates one clicks on a bond, angle,
or wedge, and edits the value (of type ‘string’) in the property box. A root site can
be defined by clicking on an atom, a bond containing it, and an angle containing
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it. Z-systems can be exported in an IMIMOL readable (ascii) format which can
then be imported into other Z-systems. A rooted Z-system can be exported as a
Z-matrix and viewed using various molecular visualization programs, such as RAS-
MOL. Various facilities for building large Z-systems are included such as panning
(translating the Z-system on the canvas), zooming in or out, focussing on a part of a
Z-system, recentering the molecule, rotating, reflecting, etc. XYZ coordinates from
structure files available on the internet can be imposed on a Z-system for the same
molecule, essentially accomplishing a conversion from Cartesian to (user defined!)
internal coordinates. Likewise the XYZ coordinates of a (numerically) labeled and
rooted Z-system can be exported to a file, and then imposed on a new Z-system
for the same molecule, accomplishing a conversion from one internal coordinate
system to another. One can also define an alternate site (besides the root site) and
export a MAPLE procedure file which computes symbolically the 4× 4 coordinate
transformation matrix from the root system to the alternate system. This feature
is extremely useful for studying complex geometric questions about molecular con-
formations (see subsection 3.1). The WINDOWS executable is available free of
charge on the proposer’s web site. A UNIX version is also avilable. As the program
is still under development, only a sketch of documentation is included in the help
menu. A console window displays error and other messages. This program makes
Z-systems practically useful.

We propose to extend IMIMOL to fully implement the GZ-system formalism. In
particular we want to facilitate building, editing, and visualization (in 2D) of the
hierarchy T (see subsection 2.2), as well as the component tree S (see subsection
2.1). We intend to allow easy gluing or tethering of components, so that large
complex systems can be easily built and organized in a 2D map.

The hierarchical structure of LH2 has motivated the introduction of the tree T .
However other modeling features are also suggested which go beyond the organiza-
tion of nodes in a tree structure. Individual nodes usually have specific patches of
their molecular surfaces which serve as functional interfaces with other nodes. For
example the a surface patch of one heterodimer and the b surface patch of another
heterodimer. The chlorophyll molecules are in contact with one another and this
allows electronic excitation to propagate as electric current in wires. These func-
tional relationships should be able to be mapped out using a 2D graphical interface
similar to the tools used by silicon chip designers to design computer circuitry. We
propose, in collaboration with James Davis (a specialist in chip design software),
to extend IMIMOL to allow the mapping out of these physical interfaces and their
connections. Eventually we intend to integrate IMIMOL with qualitative modeling
environments, such as the one described in [39].

4.3. VMD. VMD already can already read molecular structures in most of the
common file formats, such as pdb or Z-matrix, but we have extended it to be able
to read Z-system specifications written by IMIMOL. This work was done by an
undergraduate student Matthew Hielsberg. This extension of VMD does not simply
compute the Cartesian coordinates of the atoms and then discard the bonds, angles
and wedges; rather these become new data structures within VMD. This gives the
user the ability to specify and use a particular internal coordinate system.

VMD has the ability to display a molecular system using a CAVE, which is a
sophisticated set of screens with polarized light projectors, polarized sunglasses,
a light-weight headset which tells the computer where the viewer is and in which
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direction he or she is looking, as well as a six-dimensional mouse able to point at
and select objects in three dimensions. The two types of polarized light convey
the two distinct images to be viewed by the left and right eyes of the viewer,
thereby conveying a strong three dimensional image responsive in a natural way
to movements of the headset. The Industrial Mathematics Institute (IMI) in the
Mathematics Department of the University of South Carolina has a CAVE and
has VMD running in CAVE mode and producing this sort of interface. VMD is
being further extended to allow selecting and full editing of internal coordinate
values for bonds, angles and wedges defined in IMIMOL. One uses the 6D mouse to
point (in 3D) to a region of the molecule and the selectable items are highlighted.
Once an item (such as a wedge) is selected then the coordinate can be continuously
varied using mouse buttons and the effect of this change is immediately fed back
to the viewer in real time. One can edit A matrices by selecting a component and
positioning it by hand.

We propose to continue enhancing VMD to provide more advanced features to
be made freely available to researchers through the VMD website. One desirable
feature is visual feedback of steric clashes such as in the program PROBE [42]
produced in the lab of David and Jane Richardson. PROBE is designed to work
with their visualization program MAGE [41], but we propose to incorporate it into
VMD.

Another feature concerns the animation of biomolecular motions. VMD can
already visualize MD trajectories, but we propose to enhance it to allow the visu-
alization of user specified geodesics in the Rammachandran space of the system.
We are interested in hinge motions, but also more complex motions such as those
involved in the ribosome during protein synthesis.

The standard means of maneuvering in a 3D scene in VMD is not adequate
for dealing with a truly large biomolecular system such as a ribosome. Thus we
propose to extend VMD to allow “fly through” of the scene to be displayed, similar
to the VRML viewer [16]. The objects in the field of view should change their mode
of representation depending on the distance from the viewer. Molecules which are
close by could have an all atom representation (if desired) whereas molecules much
further away could be given an abbreviated polyhedral representation.

Another proposed enhancement involves the computation and display of the
complete hydrogen bonding network in a biomolecular system. INSIGHT II can do
this, and even the freeware RASMOL [40] can do this for pdb files of proteins. We
are interested in applying graph theoretical rigidity tests as in [19]. This display
could be used to score and evaluate points of the Rammachandran set as a substitute
for attempting to compute the conformational free energy. Taken together the
enhanced VMD system would become a powerful tool for “by hand” folding and
manipulating biomolecules.
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