Abstract Let B denote the unit ball in \mathbb{R}^n, $n \geq 2$, with hyperbolic metric $ds^2 = 4(1 - |x|^2)^{-2}|dx|^2$. The Laplacian Δ_h with regard to the hyperbolic metric is given by

$$\Delta_h f(x) = (1 - |x|^2)^2 \Delta f(x) + 2(n - 2)(1 - |x|^2) \langle x, \nabla f(x) \rangle,$$

where Δf denotes the ordinary Laplacian of f and ∇f is the gradient of f. For $\zeta \in \partial B$, $\alpha > 1$, $\Gamma_\alpha(\zeta)$ denotes the nontangential approach region

$$\Gamma_\alpha(\zeta) = \{ x \in B : |x - \zeta| < \alpha(1 - |x|) \}.$$

Also, for $E \subset \partial B$ and $\alpha > 1$, let $\Omega(E, \alpha) = \bigcup_{\zeta \in E} \Gamma_\alpha(\zeta)$. In the seminar we will prove the following local Fatou theorem.

Theorem If $E \subset \partial B$ is measurable, $\alpha > 1$, and U is a bounded function on $\Omega(E, \alpha)$ such that $\Delta_h U = 0$. Then

$$\lim_{x \to \zeta} U(x) \text{ exists for a.e. } \zeta \in \partial E \text{ and } \beta > 1.$$