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Abstract. J. Elton proved that for δ ∈ (0, 1] there exists K(δ) <∞ such

that every normalized weakly null sequence in a Banach space admits a sub-

sequence (xi) with the following property: if ai ∈ [−1, 1] for all i ∈ N and

E ⊂ {i ∈ N : |ai| ≥ δ}, then ‖
∑
i∈E aixi‖ ≤K(δ)‖

∑
i aixi‖. It is unknown

if supδ>0K(δ) <∞. This problem turns out to be closely related to the

question whether every infinite-dimensional Banach space contains a quasi-

greedy basic sequence. The notion of a quasi-greedy basic sequence was

introduced recently by S. V. Konyagin and V. N. Temlyakov. We present

an extension of Elton’s result which includes Schreier unconditionality. The

proof involves a basic framework which we show can be also employed to

prove other partial unconditionality results including that of convex uncon-

ditionality due to Argyros, Mercourakis and Tsarpalias. Various constants

of partial unconditionality are defined and we investigate the relationships

between them. We also explore the combinatorial problem underlying the

supδ>0K(δ)<∞ problem and show that supδ>0K(δ)≥5/4.
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6. Convex-unconditionality and duality 34
7. Unconditionality in C(S) spaces and duality 39
8. The combinatorics of patterns and resolutions 46
References 60

1. Introduction

Given a weakly null, normalized sequence in a Banach space, can we pass to
a subsequence that is a basic sequence and is in some sense close to being un-
conditional? There are various ways in which one can make this vague question
precise, and in many situations one has a positive answer. There are important
cases, however, for which the corresponding question is still open. In this paper
we will study such questions and provide some partial answers. We will also re-
visit known results and discuss the relationship (e.g. duality) between the various
notions of partial unconditionality.

As usual, we denote by c00 the space of scalar sequences that are eventually
zero. Given a basic sequence (xi) in a Banach space and δ∈ (0, 1], we say (xi) is
δ-near-unconditional with constant C if its basis constant is at most C and

(1)
∥∥∥∑
i∈E

aixi

∥∥∥ ≤ C∥∥∥ ∞∑
i=1

aixi

∥∥∥
for all (ai)∈c00 with |ai|≤1 for all i∈N, and for all E⊂{i∈N : |ai|≥δ}. Roughly
speaking, this says that we are allowed to project vectors onto sets of co-ordinates
with “large” coefficients. A basic sequence is called δ-near-unconditional if for
some C it is δ-near-unconditional with constant C; it is called near-unconditional
if it is δ-near-unconditional for all δ∈(0, 1]. The following result is due to J. Elton.

Theorem 1.1 (Elton [9]). For each δ ∈ (0, 1], every normalized, weakly null
sequence has a δ-near-unconditional subsequence. In particular, every normalized,
weakly null sequence has a near-unconditional subsequence.

For each δ∈(0, 1] letK(δ) be the infimum of the set of real numbersK such that
every normalized, weakly null sequence has a δ-near-unconditional subsequence
with constant K. An upper bound of order log

(
1/δ
)

for K(δ) follows from the
proof of Theorem 1.1 presented in [20]. This was first pointed out by Dilworth,
Kalton and Kutzarova [10]. It is unknown whether there is in fact a uniform
upper bound.

Problem 1.2. Let K be the function defined above. Is supδ>0K(δ)<∞?
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Additional motivation for this problem comes from approximation theory. A
positive answer to Problem 1.2 would imply the existence of a quasi-greedy basic
sequence in every infinite-dimensional Banach space. A basic sequence (xi) in
a Banach space is called quasi-greedy if there exists a constant C such that for
all δ > 0 and for all (ai) ∈ c00, (1) above holds with E = {i ∈ N : |ai| ≥ δ}. In
other words, we can project with a uniform constant onto sets consisting of all
co-ordinates with “large” coefficients. This concept was introduced by Konyagin
and Temlyakov [16]. One of the main results in this paper, Theorem 2.1, gives a
positive answer to Problem 1.2 under some additional assumptions on the sets of
co-ordinates onto which we can project.

We will now place the above notions in a wider context. We will explain
the term ‘partial unconditionality’ and discuss further examples. Let (xi) be a
sequence of non-zero vectors in a Banach space. Then (xi) is a basic sequence with
constant C if and only if (1) holds for all (ai)∈ c00 and whenever E={1, . . . , n}
for some n∈N. Moreover, (xi) is an unconditional basic sequence if and only if (1)
holds for all (ai)∈c00 and for all finite subsets E of N. Thus for a basic sequence
we can uniformly project onto initial segments of N, whereas for an unconditional
sequence we can uniformly project onto all finite (or indeed infinite) subsets of N.
By partial unconditionality we mean a property of a sequence of non-zero vectors
in a Banach space that lies between these two extremes. We next describe one
way in which this idea can be formalized.

Let F be a collection of finite subsets of N. Given a sequence (xi) of non-zero
vectors in a Banach space, we say that (xi) is F-unconditional with constant C
if (1) holds for all (ai)∈ c00 and for all finite sets E such that either E∈F or E
is an initial segment of N. Our opening question can now be made precise: Does
every normalized, weakly null sequence have an F-unconditional subsequence?

If F=∅, then (xi) is F-unconditional with constant C if and only if it is a basic
sequence with constant C. It is well known that for any ε> 0 every normalized,
weakly null sequence has a subsequence that is a basic sequence with constant
1+ε. On the other hand if F is the set of all finite subsets of N, then (xi) is F-
unconditional with constant C if and only if it is an unconditional sequence with
constant C. In this case our question has a negative answer: in 1974 Maurey and
Rosenthal constructed a Banach space with a normalized, weakly null basis which
has no unconditional subsequence. Note that by Rosenthal’s `1-theorem [24], if
a space contains no normalized, weakly null sequence, then it contains `1 and, in
particular, an unconditional basic sequence. Thus, given a collection F of finite
subsets of N, a more general question would be to ask if every infinite-dimensional
Banach space contains an F-unconditional sequence. For unconditional sequences
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it was not until 1993 that the more general question was also answered in the
negative by Gowers and Maurey [14]. They constructed a Banach space that
contains no unconditional basic sequence.

Because of the Maurey-Rosenthal and Gowers-Maurey counterexamples it is an
interesting problem to search for non-trivial examples of partial unconditionality
that lead to positive answers to the questions we raised above. As it happens such
examples occur naturally in various contexts. We give two examples which are
relevant in the study of spreading models and asymptotic structures in Banach
space theory. A finite subset E of N is a Schreier set if |E|≤minE. The collection
of all Schreier sets is denoted by S1. A sequence of non-zero vectors in a Banach
space is called Schreier-unconditional if it is S1-unconditional. The following
result was announced in [18], a proof is given in [21].

Theorem 1.3. For each ε>0, every normalized weakly null sequence in a Banach
space has a Schreier-unconditional subsequence with constant 2+ε.

One could generalize Schreier-unconditionality by considering higher-order
Schreier families that were introduced by Alspach and Odell [2] and by Alspach
and Argyros [1]. For example S2 can be defined as the collection of disjoint
unions

⋃n
i=1 Fi of Schreier sets F1, . . . , Fn with {minF1, . . . ,minFn}∈S1. Unfor-

tunately, the questions corresponding to S2 already have negative answers: the
basis in the example of Maurey and Rosenthal has no S2-unconditional subse-
quence, and the space of Gowers and Maurey contains no S2-unconditional basic
sequence. However, it is worth mentioning two positive results here. Let α be a
countable ordinal and let Sα denote the Schreier family of order α. It is shown
in [3] that if the normalized weakly null sequence (xi) is an `α1 -spreading model,
then (xi) admits an Sα-unconditional subsequence. Moreover, in [12] it is shown
that an Sα-unconditional normalized weakly null sequence in C(Sα) admits an
unconditional subsequence.

The next example is about projecting onto “`1-subsets”. Before giving it we
need a definition. Let X and Y be Banach spaces, and let (xi) and (yi) be
sequences in X and in Y , respectively (either both infinite, or both finite of the
same length). For C > 0 we say that (xi) and (yi) are C-equivalent, written
(xi)

C∼ (yi) if there exist constants A>0 and B>0 with B/A≤C such that

A
∥∥∥∑

i

aixi

∥∥∥ ≤ ∥∥∥∑
i

aiyi

∥∥∥ ≤ B∥∥∥∑
i

aixi

∥∥∥
for all (ai)∈c00. If only the second inequality holds, then we say (xi) B-dominates

(yi), and write (yi)
B

. (xi). Let (ei) be the unit vector basis of `1. Given a real
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number δ > 0 and a sequence (xi) in a Banach space, set F
(
δ, (xi)

)
=
{
E ∈

[N]<ω : (xi)i∈E
1/δ∼ (ei)

|E|
i=1

}
. In Section 6 we will present a result due to Argyros,

Mercourakis, Tsarpalias [5] of which the following is an immediate consequence.

Theorem 1.4. For each δ ∈ (0, 1] there exists a constant C such that ev-
ery normalized, weakly null sequence has a subsequence (xi) that is F

(
δ, (xi)

)
-

unconditional with constant C. Moreover, C≤16 log2

(
1/δ
)

for δ<1/4.

As we shall later see, finding the best constant C in the above result is closely
related to Problem 1.2. Indeed, if Problem 1.2 has a positive answer, then the
above theorem is valid with a constant C not depending on δ. Another prob-
lem of interest (although we shall not address it in this paper) is to determine
which symmetric bases could replace the unit vector basis of `1 in the definition
of F

(
δ, (xi)

)
. We note that projecting onto “c0-subsets” can always be done:

every basic sequence dominates the unit vector basis of c0. In fact, by Theo-
rem 3.1 below, for every ε>0 every normalized, weakly null sequence has a basic
subsequence that (1+ε)-dominates the unit vector basis of c0.

We now describe a different scheme for defining partial unconditionality from
the one above. We will denote by [N]<ω the set of all finite subsets of N. Let F
be a subset of c00× [N]<ω. We say that the sequence (xi) is F-unconditional with
constant C if

(2)
∥∥∥∑
i∈E

aixi

∥∥∥ ≤ C∥∥∥ ∞∑
i=1

aixi

∥∥∥
holds whenever a = (ai) ∈ c00, and either (a, E) ∈ F or a is arbitrary and E is
an initial segment of N. Observe that such a sequence is a basic sequence with
constant C, i.e. we can uniformly project onto initial segments with constant C.
However, in general, for a given finite set E⊂N we can only project certain vectors
onto E with uniform constant; namely the vectors

∑
i aixi for which the pair(

(ai), E
)

belongs to F . So this kind of partial unconditionality is of a non-linear
nature. Both δ-near-unconditionality and the quasi-greedy property are examples
of this. If we let F to be the set of all pairs (a, E) such that a = (ai)∈ c00 and
E={i∈N : |ai|≥δ} for some δ>0, then (xi) is F-unconditional if and only if it
is quasi-greedy. If for a fixed δ ∈ (0, 1) we let Fδ be the set of pairs (a, E) such
that a = (ai) ∈ c00, |ai| ≤ 1 for all i ∈N, and E ⊂ {i ∈N : |ai| ≥ δ}, then (xi) is
Fδ-unconditional if and only if it is δ-near-unconditional.

Problem 1.5. Does every normalized, weakly null sequence have a quasi-greedy
subsequence, or more generally, does every infinite-dimensional Banach space con-
tain a quasi-greedy basic sequence?



6 DILWORTH, ODELL, SCHLUMPRECHT ZSÁK

Dilworth, Kalton and Kutzarova [10, Theorem 5.4] proved that if a normalized,
weakly null sequence (xi) has a spreading model not equivalent to the unit vector
basis of c0, then for any ε > 0 there is a quasi-greedy subsequence of (xi) with
constant 3+ε. This is not too surprising: if we are in some sense far from c0,
then we expect a uniform bound on the number of large coefficients in a norm-
1 vector, from which the result follows by Schreier-unconditionality. We shall
spell out this argument later which will also show (using a version of Schreier-
unconditionality, Theorem 3.1 below) that if (xi) is a normalized, weakly null
sequence with spreading model not equivalent to the unit vector basis of c0, then
for any ε>0 and for any δ∈ (0, 1) there is a δ-near-unconditional subsequence of
(xi) with constant 1+ε.

Thus Problems 1.2 and 1.5 have positive answers if we are “far” from c0.
However, they are still open in general. What we do know is that one cannot
hope to find for any ε>0 subsequences of normalized, weakly null sequences that
are δ-near-unconditional or quasi-greedy with constant 1+ ε. We are going to
prove this in Section 8 (Example 8.7). We will also show in Section 3 that a
positive answer to Problem 1.2 implies a positive answer to Problem 1.5.

One could be forgiven for thinking that a positive answer to Problem 1.2 would
easily imply that every normalized, weakly null sequence has an unconditional
subsequence. It is certainly true that in a δ-near-unconditional sequence we can
project onto any subset of the co-ordinates with ‘large’ coefficients (unlike in a
quasi-greedy sequence). However, there are two restrictions. First, there is a
normalization: |ai|≤1 for all i∈N whenever (a, E)∈Fδ (where Fδ is defined just
before the statement of Problem 1.5). Without this condition, for any pair (a, E),
there would exist a positive real number r such that (ra, E)∈Fδ, and hence a δ-
near-unconditional sequence would indeed be unconditional. Second, even if there
is a constant K such that K(δ)<K for all δ>0, the subsequence that is δ-near-
unconditional with constantK, and that we can find in a given normalized, weakly
null sequence may very well depend on δ. In other words there is no obvious reason
why a positive answer to Problem 1.2 would find, in every normalized weakly null
sequence, a subsequence that is δ-near-unconditional with constant K for all δ>0
(which again would be unconditional). Note that the standard diagonal argument
would give a subsequence that is δ-near-unconditional with constant N(δ)+2K
for all δ>0, where N is an integer-valued function with limδ→0N(δ)=∞.

This paper will be organized as follows. In the next section we introduce the
concept of a bounded-oscillation-unconditional basic sequence, which is a new
type of partial unconditionality. We then prove our main result (Theorem 2.1)
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that states that every normalized, weakly null sequence has a bounded-oscillation-
unconditional subsequence. The combinatorial machinery that we set up in order
to prove our main result will be subsequently employed to prove other partial
unconditionality results. We will use it in Section 3 to give a new proof of Schreier
unconditionality. Here we will also deduce Elton’s theorem from our main result,
Theorem 2.1. We will then prove that a positive answer to Problem 1.2 implies
a positive answer to Problem 1.5. When we are “far” from c0, these problems do
have positive solutions as mentioned above. We present a proof of this fact at the
end of Section 3.

In Section 4 we introduce various constants similar to the constant K(δ) defined
above. These will allow us to quantify the relationships between various notions
of partial unconditionality. We will also show that for solving Problem 1.2 one
can restrict attention to the Banach spaces of continuous functions on countable,
compact, Hausdorff spaces. In Section 5 we raise the question whether there is a
uniform constant C such that every sequence equivalent to the unit vector basis of
c0 has an unconditional subsequence with constant C. This turns out to be closely
related to Problem 1.2. The proof will again use our combinatorial machinery.

In the following two sections we revisit convex unconditionality of Argyros,
Mercourakis, Tsarpalias [5], and unconditionality of certain sequences in spaces
of continuous functions. Using our approach we give new proofs of known results
and establish a duality between them and near-unconditionality. One small ad-
vantage is that we obtain, in some cases, better constants (although, these can
also be obtained by very simple modifications of the original proofs). More impor-
tantly, connecting many different results by a unified approach and by establishing
equivalences between them, we increase the possibility of tackling Problem 1.2 and
hence obtain solutions to many other problems. The use of our combinatorial ma-
chinery also suggests a way of producing a counterexample in case Problem 1.2
has a negative answer. This is discussed in the last section of the paper.

In the final section we will have a closer look at our combinatorial machinery.
We give a necessary and sufficient condition for a positive answer to Problem 1.2
(c.f. Proposition 8.1). To decide if this condition can be satisfied in general
one is lead to consider certain combinatorial data attached to subsequences of
a normalized, weakly null sequence. We will study this data on its own right
as a purely combinatorial object. Our results will be used at the end to give
an example that among other things shows that supδ>0K(δ) is strictly greater
than 1.
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2. Main results

Given a sequence a=(ai) of real numbers, we define its support to be the set
supp(a) ={i∈N : ai 6= 0}. If this set is finite we call a finitely supported. Recall
that c00 denotes the space of finitely supported sequences of real numbers. Given
a = (ai)∈ c00 and a subset E of N we define the oscillation osc(a, E) of a over
E as

osc(a, E) = sup
{
|ai|
|aj |

: i, j ∈ E, aj 6= 0
}
.

For subsets E and F of N we write E<F if m<n for all m∈E and for all n∈F .
We say that a sequence E1, . . . , En of subsets of N is successive if E1<. . .<En. A
decomposition E=

⋃n
j=1Ej of a finite set E will be called a Schreier decomposition

if E1<. . .<En is a successive sequence of non-empty sets such that n≤minE1,
i.e. the set {minE1 . . .minEn} belongs to S1.

We now come to the main definition. Let C,D, d∈ [1,∞). We say that a basic
sequence (xi) in a Banach space X is (D, d)-bounded-oscillation-unconditional
with constant C if for every a = (ai) ∈ c00, and for every finite set E ⊂N with
osc(a, E)≤D, we have ∥∥∥∑

i∈E
aixi

∥∥∥ ≤ C∥∥∥ ∞∑
i=1

aixi

∥∥∥
provided E has a Schreier decomposition E =

⋃n
j=1Ej such that osc(a, Ej)≤ d

for each j = 1, . . . , n. Note that without this proviso the sequence (xi) would be
a 1/D-near-unconditional sequence.

Our main theorem is the following.

Theorem 2.1. For all d ∈ [1,∞), there is a constant C ≤ 8d such that for
all D ∈ [1,∞) and for any ε > 0 every normalized, weakly null sequence has a
subsequence that is a (D, d)-bounded-oscillation-unconditional basic sequence with
constant C+ε.

Note that if a=(ai)∈c00, E∈ [N]<ω and osc(a, E)≤D, then we can write E as
the disjoint union of n≤

⌊
log2

(
D
)⌋

+1 sets E1, . . . , En such that osc(a, Ej)≤2 for
each j=1, . . . , n. So without the assumption that the sets in a Schreier decompo-
sition are successive the above result would be a positive answer to Problem 1.2.

A key ingredient in the proof of Theorem 2.1 is a purely combinatorial result
which we call the Matching Lemma (Theorem 2.2). In its proof and in much
of this paper we will be making heavy use of infinite Ramsey theory. For this
reason we now recall some notation and results from the subject. For a subset
M of N we denote by [M ]<ω the set of all finite subsets of M and by [M ]ω
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the set of all infinite subsets of M . The power-set 2N of N is equipped with the
product topology, and all subspaces will carry the subspace topology. A collection
U ⊂ [N]ω is said to be Ramsey if for all L∈ [N]ω there exists M ∈ [L]ω such that
either [M ]ω⊂U or [M ]ω⊂U{, where U{ = [N]ω\U denotes the complement of U .
One example of an infinite Ramsey theorem, due to Galvin and Prikry [11], states
that every Borel subset U of [N]ω is Ramsey. More generally, whenever [N]ω is
partitioned into finitely many Borel sets, every infinite subset L of N has an infinite
subset M such that [M ]ω is contained in one of the Borel sets of the partition.
The strongest result of this type was proved by Ellentuck [8]; his result concerns
topological characterizations of Ramsey sets. In all our applications (and indeed
in most applications to Banach space theory) it will suffice to know that open sets
(and hence closed sets) are Ramsey. This was first proved by Nash-Williams [19].
Following tradition we will often talk about colourings instead of partitions. This
and other pieces of terminology will be introduced as we go along. For a very good
introduction to infinite Ramsey theory see [7]. An extensive account is presented
in [13].

Because of the importance of Theorem 2.2 we shall write out the proof in detail
including the fairly technical parts that could otherwise be left as exercise. There
will also be several remarks pointing out the main ideas of the argument.

We need one final piece of notation before stating Theorem 2.2. For subsets
A,B of N we write A ≺ B if A is an initial segment of B.

Theorem 2.2 (Matching Lemma). Let n ∈ N. Assume that for every infinite
subset M of N we are given a successive sequence

FM1 < · · · < FMn

of non-empty, finite subsets of M . Further assume that for each j = 1, . . . , n the
function Fj : [N]ω → [N]<ω, M 7→ FMj , is continuous. Then for all N ∈ [N]ω there
exist L,M ∈ [N ]ω such that

(i) for each j = 1, . . . , n either FLj ≺ FMj or FMj ≺ FLj , and

(ii) L ∩M =
n⋃
j=1

FLj ∩ FMj .

Proof. We begin by setting up some notation. Let FL =
⋃n
j=1 F

L
j for each

L∈ [N]ω . We are going to define a finite colouring c of pairs (L, l), where L is an
infinite subset of N and l ∈L. In other words we are going to define a function
c on the set of all such pairs taking values in some finite set whose elements will
be referred to as colours. So fix L∈ [N]ω and l∈L. If l∈FLi for some i=1, . . . , n,
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then we set c(L, l)= i. If l /∈FL, and the minimum of {l′∈L : l′>l} ∩ FL belongs
to FLi , then we set c(L, l) = i+. Finally, if l >maxFL, then we set c(L, l) = +.
Clearly there exists l0∈L with c(L, l0)=+, and for such an l0 we have c(L, l)=+
for all l∈L with l≥ l0.

We now prove a preliminary result.

Claim. For all pairs (F,X), where F ∈ [N]<ω and X∈ [N]ω, there exist Y ∈ [X]ω

and a colour λ such that F <Y and c(F ∪ V,minV )=λ for all V ∈ [Y ]ω.

This result says that we can predict the colour of the next point, i.e. no matter
how we extend F to an infinite set, the colour of the next point will always be
the same (provided the extension is inside Y ).

To see the Claim define a finite colouring d of [N]ω by setting d(V ) = c(F ∪
V,minV ) for every V ∈ [N]ω. It follows from the continuity of the maps Fj that
if λ is a colour other than +, the corresponding colour-class, i.e. the collection
{V ∈ [N]ω : d(V )=λ} is an open subset of [N]ω. It follows that the colour-class of
+ is closed. Since open sets and closed sets are Ramsey, it follows that there is an
infinite subset Y of X all whose infinite subsets have the same colour. Replacing
Y by a smaller set if necessary we may clearly assume that F <Y .

We now turn to the proof of Theorem 2.2. Fix N ∈ [N]ω. We shall build infinite
subsets L and M of N from recursively constructed sequences l1≤ l2≤ . . . , m1≤
m2 ≤ . . . of positive integers in N . Along the way we shall also construct a
sequence P0⊃P1⊃P2⊃ . . . of infinite subsets of N , and sequences (λk)∞k=0 and
(µk)∞k=0 of colours. To do this we shall repeatedly apply the Claim to predict
the colour of the next points in L and M . Depending on these colours, we either
match or disjointify (i.e. we choose the next points of L and M to be the same
or distinct, respectively) in a way to be explained.

To start the construction apply the Claim with F =∅ and X=N . This yields
an infinite subset Y of X and a colour λ such that c(V,minV )=λ for all V ∈ [Y ]ω.
Let us set P0 =Y and λ0 =µ0 =λ.

For the recursive step suppose that k ≥ 0 and that lr, mr for 1 ≤ r ≤ k

and Pr, λr, µr for 0 ≤ r ≤ k have been chosen. We also assume that setting
Ak={lr : 1≤r≤k} and Bk = {mr : 1≤r≤k} the following hold.

(3) Ak < Pk and Bk < Pk,

(4) c(Ak ∪Q,minQ)=λk, c(Bk ∪Q,minQ)=µk for all Q∈ [Pk]ω.

Note that when k = 0 these assumptions are satisfied by the choice of P0. To
choose lk+1 and mk+1 we consider four cases (to be followed by an explanation
of each case).
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Case 1. If λk =µk = i for some i∈{1, . . . , n}, then we choose lk+1 =mk+1 to be
an arbitrary element of Pk.

Case 2. If one of

(a) neither λk nor µk belongs to {1, . . . , n},
(b) {λk, µk}={i, j+} for some 1≤ i<j, or
(c) at least one of λk and µk is +

holds, then we choose lk+1 and mk+1 to be distinct elements of Pk.
Case 3. If λk= i and either µk=j for some 1≤j<i or µk=j+ for some 1≤j≤ i,

then we set lk+1 = lk and choose mk+1 to be an arbitrary element of Pk.
Case 4. If µk= i and either λk=j for some 1≤j<i or λk=j+ for some 1≤j≤ i,

then we set mk+1 =mk and choose lk+1 to be an arbitrary element of Pk.

In Case 1 the predicted colours λk and µk are both i, i.e. the next points of L and
M belong to FLi and FMi , respectively. In order to satisfy (i) in the statement of
the theorem we need to match, i.e. we need to choose the next points of L and
M to be the same. In Case 3 the predicted colours, λk and µk tell us that the
next point of L will belong to FLi , whereas the next point of M will not be in
FMi but there will be later points of M that do belong to FMi . So to satisfy (i)
we put the construction of L on hold (we don’t choose the next point of L yet).
Case 4 is similar. Finally, Case 2 covers the remaining possibilities, when in order
to satisfy (ii) we disjointify, i.e. choose the next points of L and M to be distinct.

Note that when k=0 only Cases 1 and 2 can arise, since λ0 =µ0. When k≥1
we have lk ≤ lk+1 and mk ≤mk+1 in all the cases, as required. Let us at this
point set l0 = m0 = 0 in order to avoid having to consider the first step of the
construction separately from the recursive steps. Observe that for any k ≥ 0, if
lk+1>lk, then lk+1∈Pk. Similarly, if mk+1>mk, then mk+1∈Pk.

To complete the recursive step we need to choose Pk+1, λk+1 and µk+1. First
set Ak+1 =Ak ∪ {lk+1} and Bk+1 =Bk ∪ {mk+1}. Then apply the Claim with
F = Ak+1 and X = Pk to obtain an infinite subset P̃ of Pk and a colour λk+1

such that Ak+1<P̃ and c(Ak+1 ∪ Q,minQ) =λk+1 for all Q∈ [P̃ ]
ω

. Now apply
the Claim again with F =Bk+1 and X = P̃ to obtain an infinite subset Pk+1 of
P̃ and a colour µk+1 such that Bk+1 <Pk+1 and c(Bk+1 ∪ Q,minQ) =µk+1 for
all Q∈ [Pk+1]ω. With these choices it is clear that the assumptions for the next
recursive step (i.e. (3) and (4) with k replaced by k+1) are satisfied. Observe
that if lk+1 = lk, then λk+1 =λk, and if mk+1 =mk, then µk+1 =µk.

Having completed the recursive construction let us put L= {lr : r ∈N} and
M = {mr : r ∈ N}. Notice that for any k ≥ 0, if lk+1 > lk, then Lk = {lr :
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r > k} is a subset of Pk. Indeed, for r > k we have lr = ls+1 > ls for some s

with k ≤ s < r, and hence lr ∈ Ps ⊂ Pk. So if in addition L is infinite, then
c(L, lk+1) = c(Ak ∪ Lk,minLk) =λk. Similarly, for any k≥ 0 if mk+1>mk, then
Mk={mr : r>k} is a subset of Pk, and if in addition M is infinite, then we have
c(M,mk+1)=c(Bk ∪Mk,minMk)=µk.

We will now verify that L and M are indeed infinite sets. We argue by con-
tradiction. Assume, for example, that L is finite. Then for some k0 ∈ N we
have lk+1 = lk for all k≥ k0. It follows that for every k≥ k0 we applied Case 3
in the kth step of the recursion. Hence for every k ≥ k0 we have mk+1 > mk

and c(M,mk+1) = µk 6= +. This contradiction shows that L is infinite. Similar
reasoning gives that M must also be infinite.

Next let us fix i ∈ {1, . . . , n}. We need to show that either FLi ≺ FMi or
FMi ≺ FLi . We argue by contradiction. Suppose that there exist l ∈ FLi and
m∈FMi such that

(5) l 6= m and {l′ ∈ FLi : l′ < l} = {m′ ∈ FMi : m′ < m}.

For some k ≥ 0 and k′ ≥ 0 we have l = lk+1 > lk and m = mk′+1 > mk′ . Then
λk = c(L, l) = i and µk′ = c(M,m) = i. From now on assume that k≤k′ (the case
k≥k′ is similar). There exists k′′ with k≤k′′≤k′ such that mk =mk′′ <mk′′+1,
and so µk=µk′′=c(M,mk′′+1). From mk′′+1≤m and c(M,m)= i we deduce that
the colour µk is either j or j+ for some j with 1≤j≤ i. Hence in the kth recursive
step we applied either Case 1 or Case 3. Case 1 leads to l= lk+1 =mk+1 ∈FMi
and l≤m which contradicts (5), whereas Case 3 gives lk+1 = lk contradicting the
choice of k.

We are left to show that L ∩M ⊂
⋃n
i=1 F

L
i ∩ FMi (the reverse inclusion being

obvious). Let l belong to L∩M . There exist k≥0 and k′≥0 such that l= lk+1 =
mk′+1 and lk+1 > lk, mk′+1 >mk′ . Then l ∈ Pk\Pk+1 and l ∈ Pk′\Pk′+1, from
which we get k= k′. So we have l= lk+1 =mk+1 and lk+1 > lk, mk+1 >mk. It
follows immediately that in the kth step of the recursion we must have been in
Case 1. Hence for some i= 1, . . . , n we have c(L, l) =λk = i and c(M, l) =µk = i,
i.e. l∈FLi ∩ FMi , as required. This completes the proof of Theorem 2.2. �

Some minor modifications of the proof and a simple diagonalization procedure
yields a corollary that we shall refer to as the Schreier version of the Matching
Lemma. The diagonalization process will be used later on, so we state it sepa-
rately as an abstract principle. A family A of finite subsets of N is thin if no
element of A is the proper initial segment of another element of A. The following
result was proved by Nash-Williams [19]: if a thin family A is finitely coloured,



PARTIAL UNCONDITIONALITY 13

then for all L ∈ [N]ω there exists M ∈ [L]ω such that [M ]<ω ∩ A is monochro-
matic. To see this, simply give an infinite set L the colour of its unique initial
segment in A (introducing a new colour for infinite sets with no initial segment
in A). Clearly, each colour-class is either open or closed, so the result follows. An
easy diagonalization argument then gives the following result. (A much stronger
statement is given by Pudlák and Rödl [23].)

Proposition 2.3. Let A⊂ [N]<ω be a thin family. For each k ∈ N let Sk be a
finite set, and let c : A →

⋃∞
k=1 Sk be a colouring of A so that for all F ∈A we

have c(F )∈Sk, where k=minF . Then for all L∈ [N]ω there exists M ∈ [L]ω such
that if A,B∈ [M ]<ω ∩ A and minA=minB, then c(A)=c(B). �

We are now ready to state and prove the promised corollary to (the proof of)
Theorem 2.2.

Corollary 2.4 (Schreier version of the Matching Lemma). Assume that for each
M ∈ [N]ω we have a positive integer nM and non-empty finite subsets AM , FM1 <

. . .<FMnM
of M such that

nM⋃
j=1

FMj ⊂ AM and nM ≤ minFM1 = minAM .

Further assume that the function M 7→ AM : [N]ω → [N]<ω is continuous, that
the family A={AM : M ∈ [N]ω} is thin, and that for all L,M ∈ [N]ω if AL=AM ,
then nL =nM and FLj =FMj for each j= 1, . . . , nL. Then for all N ∈ [N]ω there
exists L,M ∈ [N ]ω with nL=nM such that

(i) for each j=1, . . . , nL either FLj ≺ FMj , or FMj ≺ FLj , and

(ii) L ∩M =
nL⋃
j=1

FLj ∩ FMj .

Proof. We first define a colouring of A by giving each AM , M ∈ [N]ω, the colour
nM . This is well-defined by the assumptions. By Proposition 2.3 there exists
N1∈ [N ]ω such that for all L,M ∈ [N1]ω if minFL1 =minFM1 , then nL=nM .

We now follow the proof of Theorem 2.2. We define the colouring c on pairs
(L, l) as before. Although this time c is a possibly infinite colouring, the colour-
ing d used in the proof of the Claim is finite, so the Claim remains valid. We
then carry out the recursive construction that produces the sets L and M . The
only changes we need is to work inside N1 (rather than N), and to replace in
Cases 1–4 each occurence of {1, . . . , n} by N. The verification that L and M are
infinite is the same as before.
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At this point we need to insert the observation that minFL1 =minFM1 . To see
this choose k≥0 and k′≥0 such that minFL1 = lk+1>lk and minFM1 =mk′+1>

mk′ so that λk = µk′ = 1. Assume that k≤ k′ (the case k′ ≤ k is similar). Then
mk≤mk′ <mk′+1, and so µk is either 1 or 1+. It follows that in the kth step of
the recursion we were either in Case 1, in which case we have mk+1 = lk+1 (and
k=k′), as required, or we were in Case 3, in which case we obtain lk= lk+1, which
contradicts the choice of k.

We now have nL=nM by our initial application of Proposition 2.3. To finish
the proof we verify properties (i) and (ii) exactly as in the proof Theorem 2.2
(letting n in the proof stand for nL). �

Applications of the Matching Lemma and of its Schreier version will require two
further lemmas. To motivate the first one of these we now give a preview of the
type of argument that will follow. Consider the general problem of starting with
a normalized, weakly null sequence (xi) and seeking a subsequence with a certain
desired property. Arguing by contradiction, we assume that for all M ∈ [N]ω

we have a witness wM to the lack of the desired property in the subsequence
(xi)i∈M . The witness wM will then give rise in a very natural way to finitely
many subsets FM1 < FM2 < . . . of M . Lemma 2.5 below will allow us to choose
wM from the set of all possible witnesses for M in a “continuous” way so that
among other things the assumptions of the Matching Lemma or its corollary
are satisfied. In typical examples a witness wM has as a constituent part some
functional x∗M . A priori we will not be able to assume that the support of x∗M ,
i.e. the set supp(x∗M )={i∈N : x∗M (xi) 6=0} is contained in M , precisely because
we lack unconditionality. In Lemma 2.6 we show that we can stabilize, i.e. we can
pass to some infinite set with respect to which the property supp(x∗M )⊂M can
be assumed (provided the choice of x∗M had already been made in a “continuous”
manner).

Lemma 2.5. Let Ω =
⋃∞
r=1 Ωr be an arbitrary set written as the union of a

countably infinite collection of its subsets. Let

Φ: [N]ω → 2Ω\{∅}

be a function into the set of non-empty subsets of Ω. Assume that for all r ∈N
and for all L,M ∈ [N]ω we have

L ∩ {1, . . . , r} = M ∩ {1, . . . , r} =⇒ Φ(L) ∩ Ωr = Φ(M) ∩ Ωr.

Then there is a function
φ : [N]ω → Ω
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such that

(i) φ(M)∈Φ(M) for all M ∈ [N]ω, and
(ii) φ is continuous if Ω is given the discrete topology.

Proof. Fix a well-ordering of Ω. For M ∈ [N]ω let

r(M) = min{r ∈ N : Φ(M) ∩ Ωr 6= ∅}.

Define φ(M) to be the least element of Φ(M)∩Ωr(M) in our chosen well-ordering.
We claim that φ : [N]ω → Ω has the required properties.

Clearly φ(M)∈Φ(M) for all infinite subsets M of N. To verify continuity fix
M ∈ [N]ω and set r=r(M). Let [r]={1, . . . , r}. If L∈ [N]ω satisfies L∩[r]=M∩[r],
then for each 1≤ r′ ≤ r we have Φ(L) ∩ Ωr′ = Φ(M) ∩ Ωr′ , which is the empty
set for r′ < r and is not empty for r′ = r. It follows that r(L) = r(M), which
in turn implies that φ(L) = φ(M). This shows that φ maps the neighbourhood
{L∈ [N]ω : L ∩ [r]=M ∩ [r]} of M onto φ(M). �

Lemma 2.6. Let c0 be equipped with the topology of pointwise convergence on N.
Let f : [N]ω → c0, M 7→ fM , be a continuous function such that every sequence
in the image of f has a cluster point in c0. Then for every ε > 0 and for every
M ∈ [N]ω there exists N ∈ [M ]ω such that for all P ∈ [N ]ω we have∑

i∈N\P

|fP (i)| ≤ ε,

i.e. the support supp(fP ) = {i ∈ N : fP (i) 6= 0} of fP relative to the set N is
contained in P up to a small perturbation.

Proof. For L∈ [N]ω let us write L′ as a temporary notation for L\{minL}. For
F ∈ [N]<ω and δ > 0 let UF,δ be the collection of all infinite subsets L of N for
which we have

|fF∪L′(minL)| < δ.

As a preliminary step we first prove the following claim. Given F ∈ [N]<ω and
L ∈ [N]ω, there exists L̃ ∈ [L]ω such that [L̃]

ω ⊂ UF,δ. Indeed, the continuity of
f implies that UF,δ is an open set, and hence it is Ramsey. Thus there exists
L̃ ∈ [L]ω such that either [L̃]

ω ⊂ UF,δ or [L̃]
ω ⊂ U{

F,δ. So to prove the claim
we need to exclude the second alternative. We argue by contradiction. Assume
that [L̃]

ω ⊂ U{
F,δ. Let l1 < l2 < . . . be an enumeration of L̃, and for n ∈ N let

Ln={li : i>n}. Then Ln ∪ {li}∈U{
F,δ, and hence

|fF∪Ln(li)| ≥ δ whenever 1 ≤ i ≤ n.



16 DILWORTH, ODELL, SCHLUMPRECHT ZSÁK

Let x∈c0 be a cluster point of the sequence (fF∪Ln
)∞n=1. From the above we have

|x(li)| ≥ δ for all i∈N contradicting that x is an element of c0. This completes
the proof of the claim.

To prove Lemma 2.6 let us fix ε > 0 and M ∈ [N]ω. Choose real numbers
εi > 0, i= 1, 2, . . . , such that

∑∞
i=1 εi < ε. We shall now recursively construct a

sequence n1 < n2 < . . . of positive integers, and a sequence L0 ⊃ L1 ⊃ L2 ⊃ . . .
of infinite subsets of N as follows. To start with, set L0 = M . Assume that
for some k ≥ 1 we have chosen ni for 1 ≤ i < k and Li for 0 ≤ i < k. Let
F1, . . . , FK be an enumeration of the power-set of {n1, . . . , nk−1}. Then choose
a chain Lk−1 = L̃0⊃ L̃1⊃ . . .⊃ L̃K of infinite sets such that for each j= 1, . . . ,K
we have [L̃j ]

ω ⊂ UFj ,εk . This can be done by our preliminary claim. Now set
nk=min L̃K and Lk= L̃K\{nk}. Note that nk∈Lk−1, Lk⊂Lk−1, nk<Lk and

(6) |fF∪Q(nk)| < εk for all F ⊂ {n1, . . . , nk−1}, and Q ∈ [Lk]ω.

Having completed the recursive construction, set N = {n1, n2, . . . }. It is clear
that N ∈ [M ]ω. Given any P ∈ [N ]ω, if k∈N with nk /∈P , then P =F ∪Q, where

F = P ∩ {n1, . . . , nk−1}, and Q = P\F ∈ [Lk]ω.

Hence from (6) we have |fP (nk)|<εk. It follows that∑
n∈N\P

|fP (n)| <
∞∑
k=1

εk < ε,

as required. �

We are now ready to present a proof for Theorem 2.1. It will be convenient to
use the following definition of an ε-net F for a subset S of Rd, where ε > 0 and
d∈N: for every (αj)dj=1∈S there exists (βj)dj=1∈F such that βj≤αj≤βj+ε for
each j=1, . . . , d.

Proof of Theorem 2.1. Fix C,D, d ∈ [1,∞). Assume that (xi) is a normal-
ized, weakly null sequence no subsequence of which is (D, d)-bounded-oscillation-
unconditional basic sequence with constant C. We shall deduce that C ≤ 8d.
Fix ε ∈ (0, 1) and then choose an increasing function γ : N → N such that
lim
k→∞

γ(k)=∞ and

(7) γ(k) +Dk ≤ (1 + ε)γ(k − 1) for all k ≥ 2.

For example, we can take γ(k) =k2 for k≥k0 and γ(k) =k2
0 for k<k0, where k0

is sufficiently large.
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After passing to a subsequence we may assume that (xi) is a basic sequence
with constant 1+ε. Then in particular for all a=(ai)∈c00 we have

(8) ‖a‖`∞ ≤ 2(1 + ε)
∥∥∥ ∞∑
i=1

aixi

∥∥∥ ≤ 4
∥∥∥ ∞∑
i=1

aixi

∥∥∥.
We now show that for every infinite subset M of N there exists a triple (a, x∗, F ),
which we shall call a witness for M , with the following properties.

(9) a = (ai)∈c00, x∗∈BX∗ and F ∈ [N]<ω;
(10) F ⊂A⊂M and minF =minA, where A = supp(a);

(11) F has a Schreier decomposition F =
n⋃
j=1

Fj such that

osc(a, Fj) ≤ d for each j = 1, . . . , n;
(12) 1 ≤ ai ≤ D and x∗(xi) > 0 for all i ∈ F ;

(13)
C

2(1 + ε)(2 + ε)
‖x‖ <

∑
i∈F

aix
∗(xi) ≤ γ(k) +D, where

k = minF, and x =
∑
i∈M

aixi.

To see this let us fix M ∈ [N]ω. Since (xi)i∈M is not (D, d)-bounded-oscillation-
unconditional with constant C, there exist b = (bi)∈ c00 with supp(b)⊂M , and
a finite subset E of M with a Schreier decomposition E =

⋃n
j=1Ej such that

osc(b, E)≤D, osc(b, Ej)≤d for each j=1, . . . , n, and∥∥∥∑
i∈E

bixi

∥∥∥ > C‖y‖,

where y=
∑
i∈M bixi. We may then choose x∗∈BX∗ such that∑

i∈E
bix
∗(xi) > C‖y‖.

Replacing b and x∗ by −b and −x∗ if necessary, we may assume that if we let
E′={i∈E : bi>0, x∗(xi)>0}, then we still have∑

i∈E′
bix
∗(xi) >

C

2
‖y‖.

By homogeneity, we may also assume that min{bi : i ∈ E′} = 1, and hence
1≤bi≤D for all i∈E′. Finally, let k′≥minE′ be minimal so that∑

i∈E′
i>k′

bix
∗(xi) ≤ γ(k′).
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Then we have ∑
i∈E′

bix
∗(xi) ≤ (1 + ε)

∑
i∈E′
i≥k′

bix
∗(xi).

Indeed, this is clear when k′=minE′, whereas if k′>minE′, then by the triangle-
inequality, by (7) and by the choice of k′ we have∑

i∈E′
bix
∗(xi) ≤ Dk′ + γ(k′) ≤ (1 + ε)γ(k′ − 1)

≤ (1 + ε)
∑
i∈E′
i≥k′

bix
∗(xi),

as claimed. Set F = {i∈E′ : i≥ k′}. For each i∈N set ai = bi when i≥minF
and ai = 0 when i<minF , and let a = (ai)i∈M . It is now routine to verify that
(a, x∗, F ) is a witness for M as defined above.

The next step is to select witnesses in a continuous manner using Lemma 2.5.
Let Ω be the set of all witnesses of all infinite subsets of N, and for each M ∈ [N]ω

let Φ(M) be the (non-empty) set of all witnesses for M . For each r ∈N let Ωr
be the set of elements (a, x∗, F ) of Ω that satisfy max supp(a)≤ r. It is easy to
verify that the conditions of Lemma 2.5 are satisfied. It follows that there exists
a function φ : [N]ω → Ω such that φ(M)∈Φ(M), i.e. φ(M) is a witness for M for
all M ∈ [N]ω, and φ is continuous if Ω is given the discrete topology. For each
M ∈ [N]ω let φ(M)=(aM , x∗M , FM ), and let nM be the positive integer such that
FM has a Schreier decomposition FM =

⋃nM

j=1 F
M
j with osc(aM , FMj )≤d for each

j=1, . . . , nM . We will also use the notation

aM = (aMi ), xM =
∑
i∈M

aMi xi, and AM = supp(aM ).

By the proof of Lemma 2.5 we may assume that for each M ∈ [N]ω there is an r∈N
such that Φ(M) ∩ Ωs=∅ if 1≤s<r and φ(M) is the least element of Φ(M) ∩ Ωr
with respect to some fixed well-ordering of Ω. It follows that for L,M ∈ [N]ω if
AL is an initial segment of AM , then we must have φ(L)=φ(M). In particular

A = {A ∈ [N]<ω : A = AM for some M ∈ [N]ω}

is a thin family, and we are in the situation of Corollary 2.4.
We shall now select infinite subsets N1 ⊃ N2 ⊃ N3 of N stabilizing various

parameters. To select N1 we use Lemma 2.6. Let f : [N]ω → c0 be the function
mapping M ∈ [N]ω to

(
x∗M (xi)

)
∈ c0. Note that this is the only place, where

we use the weakly null property of the sequence (xi). It follows easily from the
continuity of φ and from the w∗-compactness of BX∗ that f is continuous with



PARTIAL UNCONDITIONALITY 19

respect to the topology of pointwise convergence on c0, and that the image of f
has compact closure. Hence, by Lemma 2.6, there exists an infinite subset N1 of
N such that for all P ∈ [N1]ω we have

(14)
∑

i∈N1\P

|x∗P (xi)| < ε.

We next choose an infinite subset N2 of N1 using infinite Ramsey theory. We
colour A by giving AM , M ∈ [N]ω, colour (rj)nM

j=1∈NnM if

(1 + ε)rj−1 ≤ min{aMi : i ∈ FMj } < (1 + ε)rj for each j = 1, . . . , nM .

This colouring is well-defined, i.e. the colour of A ∈ A does not depend on the
choice of infinite set M with A = AM . Note that for each k ∈ N the family
{A∈A : minA= k} is finitely coloured. An application of Proposition 2.3 now
gives N2∈ [N1]ω such that for all L,M ∈ [N2]ω if minFL=minFM , then nL=nM
and

(15)
aMi
aLi
≥ 1
d(1 + ε)

for all i ∈ FLj ∩ FMj , j = 1, . . . , nL.

For our final stabilization we choose for each k∈N an ε/k-net Sk of [0, γ(k)+D]k

(in the sense defined just before the start of this proof) together with an ordering
of its elements. Given M ∈ [N]ω, let k = minFM and let (wj)kj=1 be the least
element of Sk satisfying

wj ≤
∑
i∈FM

j

aMi x
∗
M (xi) ≤ wj + ε/k for each j = 1, . . . , nM .

We shall refer to (wj)kj=1 as the weight-colour of M . This colouring of [N]ω induces
a colouring of the family A satisfying the assumptions of Proposition 2.3. Hence
there is an infinite subset N3 of N2 so that for all L,M ∈ [N3]ω if minFL=minFM
then L and M have the same weight-colour.

To finish the proof we apply the Schreier version of the Matching Lemma
(Corollary 2.4). As observed earlier, the assumptions of the corollary are satisfied.
So we can find L,M ∈ [N3]ω with nL=nM such that

(i) for each j=1, . . . , nL either FLj ≺ FMj , or FMj ≺ FLj , and

(ii) L ∩M =
nL⋃
j=1

FLj ∩ FMj .
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Note that in particular minFL = minFM , and hence L and M have the same
weight-colour, say (wj)kj=1, where k=minFL. Set

J =
{
j ∈ {1, . . . , nL} : FLj ≺ FMj

}
.

Interchanging L and M and replacing J by {1, . . . , nL}\J if necessary, we may
assume that

(16)
∑
j∈J

wj ≥
1
2

nL∑
j=1

wj .

We now establish a number of inequalities. First we have

‖xM‖ ≥ x∗L(xM ) =
∑
i∈M

aMi x
∗
L(xi) ≥

∑
i∈L∩M

aMi x
∗
L(xi)−

∑
i∈M\L

|aMi | |x∗L(xi)|

≥
∑

i∈L∩M
aMi x

∗
L(xi)− 4ε‖xM‖,

where the last inequality comes from (8) and from (14) applied with P =L. We
now obtain the following sequence of inequalities (the steps are justified below).

(
1 + 4ε

)
‖xM‖ ≥

∑
i∈L∩M

aMi x
∗
L(xi)

≥ 1
d(1 + ε)

nL∑
j=1

∑
i∈FL

j ∩FM
j

aLi x
∗
L(xi)

≥ 1
d(1 + ε)

∑
j∈J

∑
i∈FL

j

aLi x
∗
L(xi)

≥ 1
d(1 + ε)

∑
j∈J

wj ≥
1

2d(1 + ε)

nL∑
j=1

wj

≥ 1
2d(1 + ε)

( nL∑
j=1

∑
i∈FM

j

aMi x
∗
M (xi)− ε

)

≥ 1
2d(1 + ε)

C

2(1 + ε)(2 + ε)
‖xM‖ −

ε

2d(1 + ε)
4‖xM‖.

The second line uses (15) and the third line uses the definition of J . For the next
two lines we use the fact that L and M both have weight-colour (wj)nL

j=1, and
we also use (16). For the last inequality we apply (13) from the definition of a
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witness, and inequality (8) (from (12) we have ‖a‖`∞ ≥1). We have thus shown
that

C ≤ 4d(1 + ε)2(2 + ε)
(

1 + 4ε+
2ε

d(1 + ε)

)
.

Since ε was arbitrary it follows that C≤8d, as claimed. �

3. Schreier- and near-unconditionality

In this section we give new proofs of two results quoted in the Introduction.
We begin with Schreier-unconditionality. It is not difficult to apply Theorem 2.1
with d= 1 and a diagonal process to show that for any ε > 0, every normalized,
weakly null sequence has a Schreier-unconditional subsequence with constant 8+ε.
The better constant claimed in Theorem 1.3 follows by a straightforward diagonal
argument from the statement below. ForM⊂N and n∈N we denote byM (≤n) the
collection of subsets of M of size at most n. So a sequence is N(≤n)-unconditional
if we can uniformly project onto sets of size at most n.

Theorem 3.1. Fix n∈N and ε> 0. Every normalized weakly null sequence has
a N(≤n)-unconditional subsequence with constant 1+ε.

Proof. Let C∈ [1,∞) and assume that (xi) is a normalized weakly null sequence
no subsequence of which is N(≤n)-unconditional with constant C. We need to show
that C≤1.

Let M ∈ [N]ω. By our assumption there exists a triple (a, F, x∗), called a
witness for M , such that

(17) a=(ai)∈c00, F ∈M (≤n) and x∗∈BX∗ ;
(18)

∑
i∈M

aixi ∈ SX ;

(19)
∑
i∈F

aix
∗(xi) > C.

Let Ω be the set of all witnesses of all infinite subsets of N equipped with the
discrete topology. By Lemma 2.5 we obtain a continuous function φ : [N]ω → Ω
such that φ(M) is a witness for M for all M ∈ [N]ω. For each M ∈ [N]ω we write

φ(M) = (aM , FM , x∗M ),

where aM =(aMi ), and we let xM =
∑
i∈M aMi xi.

We will now select infinite subsets N1 ⊃ N2 ⊃ N3 of N. We first choose N1

so that (xi)i∈N1 is a basic sequence with basis constant at most 2, say. Then in
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particular for any M ∈ [N1]ω we have

(20) sup
i∈M
|aMi | ≤ 4

∥∥∥∑
i∈M

aMi xi

∥∥∥ = 4.

We next fix an arbitrary positive real number δ. We then select N2 ∈ [N1]ω so
that for all L,M ∈ [N2]ω we have |FL|= |FM | and

(21)
∥∥(aLi )i∈FL

− (aMi )i∈FM

∥∥
`1
< δ.

This is done by a straightforward use of infinite Ramsey theory. Finally, using
Lemma 2.6 we obtain N3∈ [N2]ω such that for all P ∈ [N3]ω we have

(22)
∑

i∈N3\P

|x∗P (xi)| < δ.

After these stabilizations we apply Theorem 2.2 with n = 1 to obtain infinite
subsets L,M of N3 such that either FL≺FM or FL≺FM , and L∩M=FL ∩FM .
The choice of N2 implies that in fact we have FL=FM =L∩M . We now estimate
x∗L(xM ) to obtain the required inequality. First, we write x∗L(xM ) as

(23)
∑
i∈M

aMi x
∗
L(xi) =

∑
i∈FL

aLi x
∗
L(xi) +

∑
i∈FM

(
aMi − aLi

)
x∗L(xi)

+
∑

i∈M\FM

aMi x
∗
L(xi).

We then estimate the three terms on the right-hand side of (23) as follows. Ap-
plying property (19) of a witness to L gives C as a lower bound on the first term.
Applying (21) to the second term, and (20), (22) to the third term give upper
bounds leading to

1 = ‖xM‖ ≥
∣∣x∗L(xM )

∣∣ ≥ C − δ − 4δ.

Since δ was arbitrary, it follows that C≤1, as claimed. �

Remark. If (xi) is a normalized basic sequence with basis constant C, then for
all (ai)∈c00 we have

|an| =
∥∥∥ n∑
i=1

aixi −
n−1∑
i=1

aixi

∥∥∥ ≤ 2C
∥∥∥ ∞∑
i=1

aixi

∥∥∥ for all n∈N.

We shall often use this to assume after passing to a subsequence (xi) of a given
normalized, weakly null sequence that |an|≤4

∥∥∑∞
i=1 aixi

∥∥, say, for all (ai)∈ c00

and for all n∈N. The constant 4 is often adequate, however, sometimes we will
need to be able to replace 4 by 1+ε for any given ε>0. We can do this by applying
Theorem 3.1 with n=1.
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We now turn to Elton’s theorem on near-unconditional sequences. As mentioned
in the Introduction, it is this result that raises Problem 1.2 — the main focus in
this paper.

Proof of Theorem 1.1. Let δ∈(0, 1] and let (xi) be a normalized, weakly null
sequence in a Banach space. An application of our main result, Theorem 2.1, with
d=D=1/δ gives, for each ε>0, a δ-near-unconditional subsequence of (xi) with
constant 8/δ+ε. As we mentioned in the Introduction, a better constant of order
log
(
1/δ
)

can be obtained as follows. Set d=D=2 and pass to a (D, d)-bounded-
oscillation-unconditional subsequence (yi)⊂ (xi) with constant 17, say. We show
that (yi) is δ-near-unconditional with constant 17k, where k =

⌊
log2

(
1/δ
)⌋

+1.
Indeed, let (ai)∈c00 with |ai|≤1 for all i∈N, and let E⊂{i∈N : |ai|≥δ}. Set

Ej =
{
i ∈ E : 2−j < |ai| ≤ 2−(j−1)

}
, for each j = 1, . . . , k.

Since osc((ai), Ej)≤2 we have∥∥∥ ∑
i∈Ej

aiyi

∥∥∥ ≤ 17
∥∥∥ ∞∑
i=1

aiyi

∥∥∥ for each j = 1, . . . , k.

Hence, by the triangle-inequality we get∥∥∥∑
i∈E

aiyi

∥∥∥ ≤ 17k
∥∥∥ ∞∑
i=1

aiyi

∥∥∥,
as claimed. Note that 17k < 18 log2

(
1/δ
)

if δ is sufficiently small. �

Let us mention that recently Lopez-Abad and Todorcevic [17] also gave new proofs
of Theorems 1.1 and 1.3 based on results on pre-compact families of finite subsets
of N.

We next show that a positive answer to Problem 1.2 implies a positive answer
to Problem 1.5.

Proposition 3.2. If supδ>0K(δ)<∞, then there exists a constant C such that
every normalized, weakly null sequence has a quasi-greedy subsequence with con-
stant C.

Proof. Let C>2 supδ>0K(δ)+1. Fix ε∈ (0, 1), and for each n∈N set δn=ε/n.
Given a normalized, weakly null sequence (xi), we apply a diagonal procedure
to extract a subsequence (yi) such that for each n ∈ N the tail (yi)∞i=n is δn-
near-unconditional with constant K(δn)+ε. Passing to a further subsequence, if
necessary, we may assume that (yi) is a basic sequence with constant 1+ε, and
moreover |an| ≤ (1+ε)

∥∥∑∞
i=1 aiyi

∥∥ for all (ai) ∈ c00 and for all n ∈ N. For the
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latter property we used Theorem 3.1 with n= 1. We will now show that (yi) is
quasi-greedy with constant C provided ε is sufficiently small.

Given (ai)∈c00 and δ∈(0, 1], we need to show that

(24)
∥∥∥∑
i∈E

aiyi

∥∥∥ ≤ C‖x‖,
where E = {i ∈ N : |ai| ≥ δ} and x =

∑∞
i=1 aiyi. We may clearly assume that

supi|ai|= 1, which implies that ‖x‖ ≥ (1+ε)−1 > 1/2. Now choose the smallest
n∈N such that δn≤δ. Note that (n− 1)δ≤ε<2ε‖x‖. Hence∥∥∥ ∑

i∈E, i<n
aiyi

∥∥∥ ≤
∥∥∥ n−1∑
i=1

aiyi

∥∥∥+
∥∥∥ ∑
i/∈E, i<n

aiyi

∥∥∥
≤ (1 + ε)‖x‖+ (n− 1)δ ≤ (1 + 3ε)‖x‖.

On the other hand, since (yi)∞i=n is δn-near-unconditional with constant K(δn)+ε,
we have ∥∥∥ ∑

i∈E, i≥n

aiyi

∥∥∥ ≤ (K(δn)+ε
)∥∥∥ ∞∑

i=n

aiyi

∥∥∥ ≤ (K(δn)+ε
)
(2+ε)‖x‖.

Now (24) follows for suitable ε by the triangle inequality. �

We conclude this section by presenting a positive answer to Problem 1.2 when
we are “far” from c0. As a corollary we obtain a positive answer to Problem 1.5
in this case which was shown in [10]. The argument here follows the proof in [10].

Theorem 3.3. If (xi) is a normalized, weakly null sequence with spreading model
not equivalent to the unit vector basis of c0, then for any ε>0 and for any δ∈(0, 1)
there is a δ-near-unconditional subsequence of (xi) with constant 1+ε.

Proof. Fix δ∈ (0, 1). We will show that after passing to a subsequence of (xi)
there exists N ∈ N such that for all (ai) ∈ c00 if ‖

∑
aixi‖ ≤ 1, then the set

{i∈N : |ai|≥δ} has size at most N . We can then finish the proof as follows. We
first apply Theorem 3.1 to obtain a N(≤N)-unconditional subsequence (yi) of (xi)
with constant 1+ε. This subsequence has the property that for all (ai)∈c00 with
‖
∑
aiyi‖ ≤ 1 and for all E⊂{i∈N : |ai|≥δ}∥∥∥∑

i∈E
aiyi

∥∥∥ ≤ (1 + ε)
∥∥∥ ∞∑
i=1

aiyi

∥∥∥ .
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Since we can do this for every δ∈(0, 1) and for any ε>0, we can use the proof of
Proposition 4.2 below (see also Definition 4.1) to pass to a further subsequence
that is δ-near-unconditional with constant 1+ε.

It remains to show the initial claim. Let (ei) be the spreading model of (xi).
After passing to a subsequence of (xi), we can assume that (xi) is a basic sequence
with constant 2, and for positive integers n≤ k1< . . .< kn and for real numbers
(ai)ni=1 we have ∣∣∣∥∥ n∑

i=1

aixki

∥∥− ∥∥ n∑
i=1

aiei
∥∥∣∣∣ < ∥∥ n∑

i=1

aixki

∥∥ .
Assume that for all n ∈ N there exists (ani )i ∈ c00 such that ‖

∑
i a
n
i xi‖ ≤ 1 and

the set {i ∈ N : |ani | ≥ δ} has size at least 2n. It follows that ‖
∑
i≥n a

n
i xi‖ ≤ 3

and the set {i≥ n : |ani | ≥ δ} has size at least n. Since (ei) is 1-spreading and
1-surpression-unconditional, we deduce that ‖

∑n
i=1 ei‖≤12/δ for all n∈N. From

here, it is easy to show that (ei) is 24/δ-equivalent to the unit vector basis of c0.
This contradiction completes the proof. �

Combining he above theorem with the proof of Proposition 3.2 we obtain

Corollary 3.4 (Dilworth, Kalton and Kutzarova [10]). If (xi) is a normalized,
weakly null sequence with spreading model not equivalent to the unit vector basis
of c0, then for any ε>0 there is a quasi-greedy subsequence of (xi) with constant
3+ε.

4. Variants of near-unconditionality

In the following sections we will be considering various problems that turn out
to be related to the Elton problem. In order to make this relationship precise we
will now introduce some variants of the constant K(δ), and explain the relation-
ships between them. To begin with we recall the definition of K(δ) in a slightly
different way. Given δ ∈ (0, 1] and a normalized, weakly null sequence (xi), let
K((xi), δ) be the least real number C such that (xi) is δ-near-unconditional with
constant C,i.e. for all (ai) ∈ c00 and for all E ⊂ {i ∈N : |ai| ≥ δ} if supi|ai| ≤ 1,
then

∥∥∑
i∈E aixi

∥∥≤C∥∥∑∞i=1 aixi
∥∥. Observe that

K(δ) = sup
(xi)

inf
(yi)⊂(xi)

K((yi), δ),

where the supremum is taken over all normalized, weakly null sequences (xi) and
the infimum over all subsequences (yi) of (xi). Recall that the normalization
supi|ai| ≤ 1 in the definition is essential (see remarks in the Introduction). We
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will now introduce three other constants K ′, L and L′. For K ′ we will use the
normalization

∥∥∑
i aixi

∥∥≤1, whereas in the definition of L,L′ we restrict to vec-
tors all whose non-zero coefficients are “large”. Below we repeated the definition
of K for the convenience of the reader.

Definition 4.1. Let δ∈ (0, 1] and let (xi) be a normalized, weakly null sequence
in a Banach space. Each supremum below is over all normalized, weakly null
sequences (yi) and the infimum is taken over all subsequences (zi) of (yi).

K((xi), δ) = inf
{
C :

∥∥∥∑
i∈E

aixi

∥∥∥≤C∥∥∥ ∞∑
i=1

aixi

∥∥∥ whenever (ai)∈c00,

E⊂{i∈N : |ai|≥δ}, sup
i
|ai|≤1

}

K(δ) = sup
(yi)

inf
(zi)⊂(yi)

K((zi), δ)

K ′((xi), δ) = inf
{
C :

∥∥∥∑
i∈E

aixi

∥∥∥≤C∥∥∥ ∞∑
i=1

aixi

∥∥∥ whenever (ai)∈c00,

E⊂{i∈N : |ai|≥δ},
∥∥∥ ∞∑
i=1

aixi

∥∥∥≤1
}

K ′(δ) = sup
(yi)

inf
(zi)⊂(yi)

K ′((zi), δ)

L((xi), δ) = inf
{
C :

∥∥∥∑
i∈E

aixi

∥∥∥≤C∥∥∥ ∞∑
i=1

aixi

∥∥∥ whenever a=(ai)∈c00,

|ai|≥δ ∀i∈supp(a), E∈ [N]<ω, sup
i
|ai|≤1

}

L(δ) = sup
(yi)

inf
(zi)⊂(yi)

L((zi), δ)
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L′((xi), δ) = inf
{
C :

∥∥∥∑
i∈E

aixi

∥∥∥≤C∥∥∥ ∞∑
i=1

aixi

∥∥∥ whenever a=(ai)∈c00,

|ai|≥δ ∀i∈supp(a), E∈ [N]<ω,
∥∥∥ ∞∑
i=1

aixi

∥∥∥≤1
}

L′(δ) = sup
(yi)

inf
(zi)⊂(yi)

L′((zi), δ)

The following result establishes some relationships between the constants we
just introduced. It shows in particular that for solving Problem 1.2 we are free to
choose the normalization. In many situations it is more convenient to work with
the constants K ′ and L′ instead of K and L.

Proposition 4.2. Let K,K ′, L and L′ be the functions defined above.

(i) If 0<δ1<δ2≤1, then K ′(δ2)≤K(δ1) and L′(δ2)≤L(δ1).
(ii) If 0<δ≤1, then L(δ)≤K(δ) and L′(δ)≤K ′(δ).

In particular we have supδ>0K(δ)=supδ>0K
′(δ)≥supδ>0 L(δ)=supδ>0 L

′(δ).

Proof. (ii) is clear from definition. To see (i) let (xi) be a normalized, weakly
null sequence. By Theorem 3.1 we may assume, after passing to a subsequence if
necessary, that

sup
i
|ai|≤

δ2
δ1

∥∥∥ ∞∑
i=1

aixi

∥∥∥ for all (ai)∈c00.

Now given (ai)∈ c00 with
∥∥∑

i aixi
∥∥≤ 1 and E ⊂{i∈N : |ai| ≥ δ2}, if bi = δ1

δ2
ai

for all i ∈ N, then supi|bi| ≤ 1 and E ⊂ {i ∈ N : |bi| ≥ δ1}. It follows that for
any subsequence (yi) of (xi) we have K ′((yi), δ2)≤K((yi), δ1) and L′((yi), δ2)≤
L((yi), δ1).

It remains to show that supδK(δ)≤supδK ′(δ) and supδ L(δ)≤supδ L′(δ). We
show the second inequality (the proof of the first one is similar). Assume that
L′=supδ L′(δ)<∞, and let δ∈ (0, 1]. We will show that L(δ)≤L′. Let (xi) be a
normalized, weakly null sequence. Fix ε∈(0, 1] and positive real numbers Mn such
that n<ε(Mn−1) for all n∈N. After passing to a subsequence, if necessary, we
may assume that (xi) is a basic sequence with constant 1+ε. Then using a standard
diagonal argument we pass to a subsequence (yi) of (xi) such that for each n∈N
we have L′

(
(yi)i≥n, δ/Mn

)
≤L′+ε. We claim that L((yi), δ)≤(L′+2ε)(1+3ε).
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Given a = (ai) ∈ c00 with δ ≤ |ai| ≤ 1 for all i ∈ supp(a), and E ∈ [N]<ω, set
x=
∑
i aiyi and choose n∈N minimal so that∥∥∥∑

i≥n

aiyi

∥∥∥ ≤Mn.

Note that
∥∥∑

i≥n aiyi
∥∥≥(n−1)/ε. Now by the choice of (yi) we have∥∥∥∑

i∈E
i≥n

aiyi

∥∥∥ ≤ (L′ + ε)
∥∥∥∑
i≥n

aiyi

∥∥∥,
and hence ∥∥∥∑

i∈E
aiyi

∥∥∥ ≤ (n− 1) + (L′ + ε)
∥∥∥∑
i≥n

aiyi

∥∥∥
≤ (L′ + 2ε)

∥∥∥∑
i≥n

aiyi

∥∥∥
≤ (L′ + 2ε)

(
‖x‖+ n−1

)
≤ (L′ + 2ε)(1 + 3ε)‖x‖.

Indeed, n−1≤ε
∥∥∑

i≥n aiyi
∥∥≤ε(2+ε)‖x‖≤3ε‖x‖ since (yi) is a basic sequence with

constant 1+ε. We have thus proved our claim from which L(δ)≤L′ follows. �

To conclude this section we show that the various constants we introduced remain
the same if we restrict to the class of Banach spaces C(S), where S is a countable,
compact metric space. Recall that such a space S is homeomorphic to a countable
successor ordinal in its order topology.

Theorem 4.3. For each δ∈(0, 1], we have

K(δ) = sup
α,(xi)

inf
(yi)⊂(xi)

K((yi), δ),

where the supremum is taken over all countable, successor ordinals α and all
normalized, weakly null sequences (xi) in C(α), and the infimum is taken over all
subsequences (yi) of (xi). The analogous statements for the functions K ′, L and
L′ also hold.

Proof. We prove the result only for K. The argument for the other functions
is similar. Fix ε∈ (0, 1]. By the definition of K(δ) there is a normalized, weakly
null sequence (xi) in some Banach space such that K((yi), δ)>K(δ)−ε for every
subsequence (yi) of (xi). Thus for each M ∈ [N]ω we have a triple (a, E, x∗)
witnessing K((xi)i∈M , δ)>K(δ)−ε, that is
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(25) a=(ai)∈c00, E⊂{i∈M : |ai|≥δ}, x∗∈BX∗ ,
(26) sup

i∈M
|ai|=1,

(27)
∑
i∈E

aix
∗(xi)>(K(δ)−ε)‖x‖, where x=

∑
i∈M

aixi.

We now use Lemma 2.5 to obtain a continuous selection M 7→ (aM , EM , x∗M ) of
witnesses in the usual way. We set aM =(aMi ) and xM =

∑
i∈M aMi xi.

Next we pass to infinite subsets N1⊃N2⊃N3 of N. First, there exists N1∈ [N]ω

such that (xi)i∈N1 is a basic sequence. Then we use Theorem 3.1 with n=1 to find
N2∈ [N1]ω such that supi∈N2

|ai|≤(1+ε)
∥∥∑

i∈N2
aixi

∥∥ for all (ai)∈c00. Note that
in particular we have ‖xM‖≥ (1+ε)−1 for all M ∈ [N2]ω. Finally, by Lemma 2.6
there exists N3∈ [N2]ω such that

∑
i∈N3\P |x

∗
P (xi)|<ε for all P ∈ [N3]ω.

After relabelling, if necessary, we can take N3 =N. Set X=[xi]∞i=1, and let (x∗i )
be the biorthogonal functionals to (xi). Note that ‖x∗i ‖≤1+ε for all i∈N by the
choice of N2. For each i∈N and for t∈ [−1, 1] define ρi(t) = ε

2i

⌊
2it
ε

⌋
∨ (−1), and

note that |ρi(t) − t|≤ ε/2i. Now for each M ∈ [N]ω we have
∑
i∈N\M |x∗M (xi)|<ε

by the choice of N3, and x∗M =
∑∞
i=1 x

∗
M (xi)x∗i in the weak-∗-sense since (xi) is a

basis for X. It follows that

x̃∗M =
∑
i∈M

ρi(x∗M (xi))x∗i ,

converges in the weak-∗ sense, and moreover

∥∥x̃∗M∥∥≤1+2ε(1+ε)≤1+4ε, for all M ∈ [N]ω.

Now define S to be the closure of U=
{
x̃∗M : M ∈ [N]ω

}
∪{x∗i : i∈N} in the weak-∗

topology. Since U is bounded in norm, S is a compact metric space. The conti-
nuity of the choice of witnesses implies that U is countable, and hence, because
of the discretization of coefficients using the functions ρi, S is also countable.

Let T : X → C(S) be the canonical map, i.e. T (x)(y∗) = y∗(x) for all x ∈
X, y∗∈S, and note that ‖T‖≤1+4ε. Set fi=T (xi) for all i∈N, and fM =T (xM )
for all M ∈ [N]ω. Then (fi) is a normalized, weakly null sequence in C(S). We
claim that K((fi)i∈M , δ)≥

(
K(δ)−3ε

)
(1+4ε)−1 for all M ∈ [N]ω, which proves the

assertion of the theorem.
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For M ∈ [N]ω we have fM =
∑
i∈M aMi fi and ‖fM‖ ≤ (1+4ε)‖xM‖. We also

have EM ⊂{i∈M : |aMi |≥δ}, and∥∥∥ ∑
i∈EM

aMi fi

∥∥∥ ≥
∑
i∈EM

aMi fi
(
x̃∗M
)

=
∑
i∈EM

aMi ρi(x
∗
M (xi))

≥
∑
i∈EM

aMi x
∗
M (xi)− ε

> (K(δ)− ε)‖xM‖ − ε ≥ (K(δ)− 3ε)‖xM‖
≥

(
K(δ)−3ε

)
(1+4ε)−1‖fM‖,

as required. �

5. The c0-problem

In this short section we consider the following intriguing question which, to
our knowledge, has not been raised elsewhere.

Problem 5.1. Is there a real number C such that every sequence equivalent to
the unit vector basis of c0 has an unconditional subsequence with constant C?

Let Y be the space c0 or `p for some p ∈ [1,∞), and let (ei) be the unit
vector basis of Y . Let (xi) be a sequence in a Banach space equivalent to (ei).
A well known result of James [15] says that if Y = c0 or Y = `1, then for any
ε > 0 there is a block basis of (xi) that is (1+ ε)-equivalent to (ei), and so in
particular there is a block basis of (xi) that is unconditional with constant (1+ε).
Both these conclusions fail spectacularly if Y = `p for some p ∈ (1,∞): for any
constant C there is an equivalent norm on Y so that it contains no unconditional
basic sequence with constant C. This follows from the solution of the distortion
problem by Odell and Schlumprecht [22]. For c0 and `1 one can go further and
consider subsequences instead of block bases. However, if Y =c0, then for any C
there are easy examples that show that (xi) does not need to have a subsequence
C-equivalent to (ei). If Y = `1, then for any constant C there are easy examples
that show that (xi) does not even need to have an unconditional subsequence with
constant C. The only remaining question in this context is raised in Problem 5.1,
which is still open. Example 8.7 in Section 8 will show (among other things)
that Problem 5.1 cannot have a positive answer with C < 5/4. However, it is
possible that a uniform constant C exists. Indeed, this happens if and only if
supδ>0 L

′(δ)<∞, where L′ is the function given in Definition 4.1. Our aim in
this section is to prove this equivalence.
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For each δ ∈ (0, 1] let us define C(δ) to be the infimum of the set of real
numbers C such that every normalized sequence 1/δ-equivalent to the unit vector
basis of c0 has an unconditional subsequence with constant C. So a positive
answer to Problem 5.1 is equivalent to the statement that supδ>0 C(δ) is finite.

Theorem 5.2. Let δ, δ1∈(0, 1].

(i) If δ1≤δ, then C(δ) ≤ L(δ1) ·
(

1 +
δ1
δ

)
+
δ1
δ

.

(ii) If δ1<
δ

2L′(δ)
, then L′(δ)≤C(δ1).

In particular we have supδ>0 C(δ)=supδ>0 L
′(δ)=supδ>0 L(δ).

Proof. To verify (i) fix ε∈(0, 1], and assume that (xi) is a normalized sequence
1/δ-equivalent to the unit vector basis of c0. So for some constants A > 0 and
B>0 with B/A≤1/δ we have

(28) A sup
i
|ai| ≤

∥∥∥ ∞∑
i=1

aixi

∥∥∥ ≤ B sup
i
|ai|

for all (ai) ∈ c00. After passing to a subsequence, if necessary, we may assume
that L((xi), δ1) ≤ L(δ1) + ε. We claim that under these circumstances (xi) is
unconditional with constant C=

(
L(δ1)+ε

)(
1+ δ1

δ

)
+ δ1

δ , from which (i) follows.

Given (ai) ∈ c00 and A ∈ [N]<ω, we need to show that
∥∥∑

i∈A aixi
∥∥≤ C‖x‖,

where x =
∑
i aixi. We may clearly assume that supi|ai| = 1. Then it follows

from (28) that

Bδ ≤ A = A sup
i
|ai| ≤ ‖x‖,

and hence for every F ⊂N we have

(29)
∥∥∥∑
i∈F

aixi

∥∥∥ ≤ B sup
i∈F
|ai| ≤

‖x‖
δ

sup
i∈F
|ai|.

Set E={i∈N : |ai|≥δ1}. The definition of L((xi), δ1) gives∥∥∥ ∑
i∈A∩E

aixi

∥∥∥ ≤ (L(δ1) + ε
)∥∥∥∑

i∈E
aixi

∥∥∥.
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Then from (29) we get∥∥∥∑
i∈E

aixi

∥∥∥ ≤ ‖x‖+
∥∥∥∑
i/∈E

aixi

∥∥∥ ≤ (1 +
δ1
δ

)
‖x‖,

∥∥∥ ∑
i∈A\E

aixi

∥∥∥ ≤ δ1
δ
‖x‖.

Finally, by the triangle-inequality we obtain∥∥∥∑
i∈A

aixi

∥∥∥ ≤ [(L(δ1)+ε
)(

1+
δ1
δ

)
+
δ1
δ

]
· ‖x‖

as required.
We now prove (ii). Fix ε>0. By the definition of L′(δ) there is a normalized,

weakly null sequence (xi) such that L′((yi), δ)>L′(δ)−ε for all subsequences (yi)
of (xi). So for each M ∈ [N]ω there is a triple (a, E, x∗) that we shall call a witness
for M , where

(30) a=(ai)∈c00, E⊂supp(a)⊂M, x∗∈BX∗ ;
(31) |ai|≥δ for all i∈supp(a), and ‖x‖≤1, where x=

∑
i∈M

aixi;

(32)
∑
i∈E

aix
∗(xi) > L′(δ)− ε.

Let Ω be the set of all witnesses of all infinite subsets of N, and for M ∈ [N]ω let
Φ(M) be the (nonempty) set of all witnesses for M . For r∈N let Ωr be the set
of all triples (a, E, x∗)∈Ω such that max supp(a)≤ r. By Lemma 2.5 there is a
function φ : [N]ω → Ω such that φ(M) is a witness for M for all M ∈ [N]ω, and φ is
continuous when Ω is given the discrete topology. We let φ(M) = (aM , EM , x∗M )
and let

AM = supp(aM ), aM = (aMi ), xM =
∑
i∈M

aMi xi.

By the proof of Lemma 2.5 we can choose φ so that for all M ∈ [N]ω there exists
r∈N such that Φ(M) ∩ Ωs=∅ whenever 1≤s<r, and φ(M) is the least element
of Φ(M)∩Ωr in some well-ordering of Ω fixed in advance. It is then easy to verify
that for all L,M ∈ [N]ω if AM ≺L, then φ(L)=φ(M).

We now pass to infinite subsets N1 ⊃N2 ⊃N3 ⊃N4 of N. Let f : [N]ω → c0

be the function that maps M ∈ [N]ω to fM =
(
x∗M (xi)

)
∈ c0. It follows from the

continuity of φ that f is continuous with respect to the topology of pointwise
convergence on c0 and that its image has compact closure. Hence by Lemma 2.6
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there exists N1∈ [N]ω such that

(33)
∑

i∈N1\P

|x∗P (xi)| < ε for all P ∈ [N1]ω.

Now choose arbitrary N2∈ [N1]ω with N1\N2 of infinite size. Given M ∈ [N2]ω, we
can choose L∈ [N1]ω such that AM ≺L and L\AM ⊂N1\N2. Then φ(L)=φ(M),
and applying (33) with P =L we obtain

(34)
∑

i∈N2\AM

|x∗M (xi)| =
∑

i∈N2\AM

|x∗L(xi)| < ε

since N2\AM ⊂N1\L. In other words, relative to N2 and up to a small error, we
have supp(x∗M )⊂AM for all M ∈ [N2]ω.

By the definition of L′(δ) there exists N3 ∈ [N2]ω such that L′((xi)i∈N3 , δ)≤
L′(δ)+ε. Finally, we apply Theorem 3.1 with n=1 to obtain N4∈ [N3]ω such that
for all M ∈ [N4]ω we have |aMi |≤1+ε for all i∈M .

We now relabel so that we can take N4 = N, and define a new norm on c0 by
setting

|||b||| = ‖b‖c0 ∨ sup
M∈[N]ω

∣∣∣ ∞∑
i=1

bix
∗
M (xi)

∣∣∣ for b=(bi)∈c0.

Let (yi) be the unit vector basis of c0 considered with its new norm. It follows
from (34) and the choice of N3 that

δ‖x∗M‖`1 ≤
∑
i∈AM

∣∣aMi ∣∣∣∣x∗M (xi)
∣∣+ εδ ≤ 2

(
L′(δ) + ε

)
+ εδ

for all M ∈ [N]ω. Hence (yi) is D-equivalent to (ei), where

D =
2
(
L′(δ) + ε

)
+ εδ

δ
<

1
δ1

provided ε is sufficiently small. We claim that (yi) has no unconditional subse-
quence with constant C=

(
L′(δ)−ε

)
/(1+ε). Fix M ∈ [N]ω. We have∣∣∣ ∑

i∈M
aMi x

∗
L(xi)

∣∣∣ = |x∗L(xM )| ≤ 1 for all L∈ [N]ω,

and hence, by the choice of N4, we have |||aM ||| ≤ 1+ ε. On the other hand,
property (32) of a witness applied to M gives∣∣∣∣∣∣∣∣∣ ∑

i∈EM

aMi yi

∣∣∣∣∣∣∣∣∣ ≥ ∑
i∈EM

aMi x
∗
M (xi) > L′(δ)− ε ≥ C|||aM |||,

which shows the claim. Since ε was arbitrary, C(δ1)≥L′(δ) follows.
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Parts (i) and (ii) show that supδ>0 L
′(δ)≤supδ>0 C(δ)≤supδ>0 L(δ). That we

have equality throughout follows from Proposition 4.2. �

6. Convex-unconditionality and duality

The following notion of partial unconditionality was introduced by Argyros,
Mercourakis, and Tsarpalias [5]. Given δ ∈ (0, 1], we say that a basic sequence
(xi) is δ-convex-unconditional with constant A if for all (ai) ∈ c00 and for all
E∈ [N]<ω if

δ
∑
i∈E
|ai| ≤

∥∥∥∑
i∈E

aixi

∥∥∥,
then we have ∥∥∥∑

i∈E
aixi

∥∥∥ ≤ A∥∥∥ ∞∑
i=1

aixi

∥∥∥.
The definition in [5] is actually slightly different, but it is equivalent to ours
(they express unconditionality in terms of sign-changes rather than projections).
Theorem 1.4 on `1-projections follows immediately from the next result.

Theorem 6.1 (Argyros, Mercourakis, and Tsarpalias [5]). Given δ∈(0, 1] there
is a constant A such that every normalized weakly null sequence has a δ-convex-
unconditional subsequence with constant A. Moreover, A≤ 16 log2

(
1/δ
)

for δ <
1/4.

Proof. Given δ∈(0, 1], define l=
⌊

log2

(
1/δ
)⌋

+2 and fix A∈ [1,∞). Assume that
(xi) is a normalized, weakly null sequence, which has no δ-convex-unconditional
subsequence with constant A. We will show that A≤8l.

Without loss of generality (xi) is a basic sequence with constant 2, say. So for
all (ai)∈c00 we have

(35) sup
i
|ai| ≤ 4

∥∥∥ ∞∑
i=1

aixi

∥∥∥.
Let M ∈ [N]ω. Since (xi)i∈M is not δ-convex-unconditional with constant A, there
exist (ai)∈c00 and E∈ [M ]<ω such that

δ
∑
i∈E
|ai| ≤

∥∥∥∑
i∈E

aixi

∥∥∥, and A‖x‖ <
∥∥∥∑
i∈E

aixi

∥∥∥,
where x=

∑
i∈M aixi. Rescaling, considering appropriate subsets of E, and re-

placing (ai) by (−ai) if necessary, we conclude that for every M ∈ [N]ω there
exists a quadruple (a, F, x∗, k), called a witness for M , with the following prop-
erties.
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(36) a=(ai)∈c00, F ∈ [M ]<ω, x∗∈BX∗ , k∈{1, . . . , l},
(37) ai>0 and 2−k<x∗(xi)≤2−k+1 for all i∈F,

(38)
δ

4l
≤
∑
i∈F

aix
∗(xi),

(39) A‖x‖ < 2l
∑
i∈F

aix
∗(xi) +

δ

2
, where x =

∑
i∈M

aixi.

We now use Lemma 2.5 in the usual way to select a witness (aM , FM , x∗M , kM )
for each M ∈ [N]ω in a continuous way, where the set of all witnesses is given the
discrete topology. We write aM =(aMi ) and xM =

∑
i∈M aMi xi.

We now carry out stabilizations. Fix ε>0, and pass to an infnite subset N of
N such that for all P ∈ [N ]ω we have

(40)
∑

i∈N\P

∣∣x∗P (xi)
∣∣ ≤ ε,

and for all L,M ∈ [N ]ω we have kL = kM . The first property is achieved by
Lemma 2.6, whereas the second uses infinite Ramsey theory. Observe that for all
L,M ∈ [N ]ω we have

(41) x∗L(xi) ≥
1
2
x∗M (xi) whenever i ∈ FL ∩ FM .

We finally apply Theorem 2.2 with n=1 to find L,M ∈ [N ]ω such that

(42) L ∩M = FL ∩ FM = FM .

We now estimate x∗L(xM ). On the one hand, using (42) followed by (41), (35),
and (40), we have

x∗L(xM ) =
∑
i∈M

aMi x
∗
L(xi) =

∑
i∈FM

aMi x
∗
L(xi) +

∑
i∈M\L

aMi x
∗
L(xi)

≥ 1
2

∑
i∈FM

aMi x
∗
M (xi)− 4ε‖xM‖.

On the other hand, property (39) applied to the witness of M gives

x∗L(xM ) ≤ ‖xM‖ <
2l
A

∑
i∈FM

aMi x
∗
M (xi) +

δ

2A
.

The last two inequalities together with property (38) of the witness of M show
that (

1
2
− (1 + 4ε)

2l
A

)
δ

4l
≤ (1 + 4ε)

δ

2A
.
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Since ε was arbitrary, it follows that A≤8l, as claimed. �

Given a normalized, weakly null sequence (xi) and δ∈ (0, 1] let A((xi), δ) be the
least real number A such that (xi) is δ-convex-unconditional with constant A.
Then define

A(δ) = sup
(xi)

inf
(yi)⊂(xi)

A((yi), δ),

where the supremum is taken over all normalized, weakly null sequences (xi) and
the infimum over all subsequences (yi) of (xi). Theorem 6.1 yields an upper
bound of order log

(
1/δ
)

on A(δ). We are now going to prove that the question
whether supδ A(δ)<∞ is equivalent to Problem 1.2 using the function K ′ defined
on page 26. As the proof shows the two problems are in some sense dual to each
other.

Theorem 6.2. For 0<δ1<δ≤1 we have

(i) A(δ) ≤ δ
δ−δ1K

′(δ1), and
(ii) K ′(δ) ≤ A(δ1).

In particular supδ>0A(δ)=supδ>0K
′(δ).

Proof. We begin by proving (i). Fix ε ∈ (0, 1]. There is a normalized, weakly
null sequence (xi) such that A((yi), δ)>A(δ)−ε for every subsequence (yi) of (xi).
On the other hand, after passing to a subsequence if necessary, we may assume
that A((xi), δ)≤A(δ)+ε. Set C=A(δ)(δ−δ1)/δ − ε(δ+δ1)/δ. For each M ∈ [N]ω

there is a triple (a, x∗, F ), called a witness for M , where

(43) a=(ai)∈c00, x∗∈BX∗ , F ⊂{i∈M : |x∗(xi)|≥δ1},
(44)

∑
i∈F

aix
∗(xi)>C‖x‖, where x=

∑
i∈M

aixi.

Indeed, since A((xi)i∈M , δ)>A(δ)−ε, there exist a = (ai) ∈ c00 and E ∈ [M ]<ω

such that δ
∑
i∈E |ai| ≤

∥∥∑
i∈E aixi

∥∥, and
∥∥∑

i∈E aixi
∥∥ > (A(δ)−ε)

∥∥x∥∥, where
x=
∑
i∈M aixi. By homogeneity, we may assume that

∑
i∈E |ai|=1. Let x∗∈BX∗

be a support functional for
∑
i∈E aixi, and let F = {i ∈E : |x∗(xi)| ≥ δ1}. An

easy computation now shows that (44) holds.
We now use Lemma 2.5 in the usual way to obtain a continuous selection

M 7→ (aM , x∗M , FM ) of witnesses. We let aM =(aMi ) and xM =
∑
i∈M aMi xi.

Next we find infinite subsets N1⊃N2⊃N3 of N as follows. First, there exists
N1 ∈ [N]ω such that (xi)i∈N1 is a basic sequence with constant 1+ε. Then we
apply Theorem 3.1 with n=1 to get N2∈ [N1]ω such that |aMi |≤ (1+ε)‖xM‖ for
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all M ∈ [N2]ω and for all i∈M . Finally, by Lemma 2.6 there exists N3 ∈ [N2]ω

such that
∑
i∈N3\M |x

∗
M (xi)|<ε for all M ∈ [N3]ω.

After relabelling we may assume that N3 =N. Let (ei) be the unit vector basis
of c00, and for each M ∈ [N]ω set

tM =
1

(1 + ε)2‖xM‖
∑
i∈M

aMi ei,

which is an element of [−1, 1]N by the choice of N2. We endow [−1, 1]N with the
product topology and let S be the closure of {tM : M ∈ [N]ω} ∪ {ei : i ∈ N}.
Note that S is a compact metric space. For each i∈N let fi be the ith co-ordinate
map. By the continuity of the choice of witnesses, S contains only sequences of
finite support. Hence (fi) is a normalized, weakly null sequence in C(S). We
claim that K ′((fi)i∈M , δ1)≥C/(1+ε)2 for all M ∈ [N]ω. Since ε was arbitrary, (i)
follows from this claim.

Given M ∈ [N]ω, set nM =maxFM , and let

fM =
∑
i∈M
i≤nM

x∗M (xi)fi.

For each L∈ [N]ω we have

(1 + ε)2‖xL‖|fM (tL)| =
∣∣∣ ∑
i∈L∩M
i≤nM

aLi x
∗
M (xi)

∣∣∣
≤

∣∣∣x∗M( ∑
i∈L
i≤nM

aLi xi

)∣∣∣+ ε(1 + ε)‖xL‖ ≤ (1 + ε)2‖xL‖

by the choices of N1, N2 and N3. It follows that ‖fM‖≤ 1. On the other hand,
we have FM ⊂{i∈M : i≤nM , |x∗M (xi)|≥δ1} and∥∥∥ ∑

i∈FM

x∗M (xi)fi
∥∥∥ ≥

∑
i∈FM

x∗M (xi)fi(tM )

=
1

(1 + ε)2‖xM‖
∑
i∈FM

x∗M (xi)aMi >
C

(1 + ε)2
,

as claimed.
To show (ii) fix ε ∈ (0, 1] so that δ1(1+3ε)< δ, and let (xi) be a normalized,

weakly null sequence such that K ′((yi), δ)>K ′(δ)−ε for every subsequence (yi)
of (xi). So for each M ∈ [N]ω there is a triple (a, E, x∗), called a witness for M ,
where
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(45) a=(ai)∈c00, E⊂{i∈M : |ai|≥δ}, x∗∈BX∗ ,
(46) ‖x‖=1, where x=

∑
i∈M

aixi,

(47)
∑
i∈E

aix
∗(xi) > K ′(δ)− ε, and aix

∗(xi)>0 for all i∈E.

As usual, we then have a continuous choice M 7→ (aM , EM , x∗M ) of witnesses, and
we let aM =(aMi ) and xM =

∑
i∈M aMi xi.

We now pass to infinite subsets N1⊃N2⊃N3 of N. First, we choose N1∈ [N]ω

so that (xi)i∈N1 is a basic sequence with constant 1+ε. Then we apply Theorem 3.1
with n=1 to find N2∈ [N1]ω such that we have |aMi |≤(1+ε)‖xM‖ for all M ∈ [N2]ω

and for all i∈M . Finally we use Lemma 2.6 in the usual way to obtain N3∈ [N2]ω

so that
∑
i∈N3\M |x

∗
M (xi)|<ε for all M ∈ [N3]ω.

We now relabel so that we can take N3 =N. As before, we let (ei) be the unit
vector basis of c00. We define S to be the closure in [−1, 1]N of the set{ 1

1 + 3ε

∑
i∈M

aMi ei : M ∈ [N]ω
}
∪ {ei : i ∈ N}.

As before, it is easy to verify that S is a compact metric space containing only
sequences of finite support, and that the sequence (fi) of co-ordinate maps is a
normalized, weakly null sequence in C(S). We now show that A((fi)i∈M , δ1)≥
(K ′(δ)−ε)(1+3ε)−1 for all M ∈ [N]ω.

Given M ∈ [N]ω, set nM =maxEM , and let

fM =
∑
i∈M
i≤nM

x∗M (xi)fi.

For each L∈ [N]ω we have∣∣∣ ∑
i∈L∩M
i≤nM

aLi x
∗
M (xi)

∣∣∣ ≤ ∣∣∣x∗M( ∑
i∈L
i≤nM

aLi xi

)∣∣∣+ ε(1 + ε) ≤ 1 + 3ε

by the choices of N1, N2 and N3. It follows that ‖fM‖≤ 1. On the other hand,
we have ∥∥∥ ∑

i∈EM

x∗M (xi)fi
∥∥∥ ≥ 1

1 + 3ε

∑
i∈EM

x∗M (xi)aMi ≥ δ1
∑
i∈EM

|x∗M (xi)|,

as well as∥∥∥ ∑
i∈EM

x∗M (xi)fi
∥∥∥ ≥ 1

1 + 3ε

∑
i∈EM

x∗M (xi)aMi >
K ′(δ)− ε

1 + 3ε
‖fM‖,

which proves the claim. �
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7. Unconditionality in C(S) spaces and duality

We now turn to questions on finding unconditional basic sequences in spaces
of continuous functions on a compact, Hausdorff space. We will then relate these
to problems considered so far. We start by stating a result of Rosenthal.

Theorem 7.1. For any compact, Hausdorff space S, every weakly null sequence
of (non-zero) indicator functions in C(S) has an unconditional subsequence with
constant 1.

In [4] this is presented as a consequence of a combinatorial lemma. Here
we prove a more general version of that, and obtain a more general version of
Theorem 7.1. Before stating it we need some notation. Let k∈N and M ∈ [N]ω.
Given a=(ai)i∈M and b=(bi)i∈M in {0, 1, . . . , k}M , we write a⊂b if for all i∈M
either ai=0 or ai=bi. Given j∈{1, . . . , k}, we write a⊂ jb if for all i∈M either
ai = 0 or ai = bi = j. A family F ⊂{0, 1, . . . , k}M is hereditary if a∈F whenever
b ∈ F and a ⊂ b, and is weakly hereditary if a ∈ F whenever b ∈ F and there
exists j∈{1, . . . , k} such that a⊂ jb. Given L∈ [M ]ω, we denote by FL the set of
restrictions to L of elements of F . Note that FL⊂{0, 1, . . . , k}L.

Lemma 7.2. Let k∈N and F ⊂{0, 1, . . . , k}N be a compact family of sequences
of finite support. Then there exists M ∈ [N]ω such that FM is weakly hereditary.

Proof. We argue by contradiction. Assuming that the statement is false, for
each M ∈ [N]ω we can find a quadruple (a, b, j,K) that we shall call a witness for
M , where

(48) a∈{0, 1, . . . , k}N, b∈F , j∈{1, . . . , k}, K∈N;
(49) supp(a)⊂M, a⊂ jb, K>max supp(b);
(50) if ai=ci for all i∈M with i≤K, then c /∈F .
Indeed, the assumption that FM is not weakly hereditary implies the existence
of a, b, j as in (48) such that supp(a)⊂M, a⊂ jb and there is no c∈F such that
the restrictions to M of a and c are identical. The existence of a suitable K now
follows easily from the compactness of F .

Let Ω denote the set of all witnesses of all infinite subsets of N. For r ∈ N
let Ωr be the set of elements (a, b, j,K) ∈ Ω for which K ≤ r. The conditions
of Lemma 2.5 are now easily verified (which is why we needed to introduce the
parameter K). So there is a continuous selection φ : [N]ω → Ω of witnesses. Let
φ(M)=(aM , bM , jM ,KM ), where aM =(aMi ) and bM =(bMi ) for each M ∈ [N]ω.

The continuity of φ and the compactness of F imply that the function M 7→
bM : [N]ω → c0 is continuous and its image has compact closure (in the topology
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of pointwise convergence). So applying Lemma 2.6 with ε = 1/2, say, we find
N1∈ [N]ω such that

(51) N1 ∩ supp(bL)⊂L for all L∈ [N1]ω.

An easy application of infinite Ramsey theory then gives j∈{1, . . . , k} and N2∈
[N1]ω such that jM =j for all M ∈ [N2]ω.

To conclude the proof we apply the Matching Lemma with n=1 to the function
M 7→ supp(aM ) to find L,M ∈ [N2]ω such that

L ∩M = supp(aL) ∩ supp(aM ) = supp(aM ).

Now if i ∈ supp(aM ), then aMi = aLi = bLi = j by property (49) of a witness and
by the choice of N2. On the other hand, if i ∈M \supp(aM ), then i /∈ L, and
hence by (51) we have i /∈ supp(bL), so aMi = bLi = 0. We have shown that the
restrictions to M of aM and the element bL of F are identical which gives the
required contradiction. �

Theorem 7.3. For all δ ∈ (0, 1] there is a constant L∗ such that for any com-
pact, Hausdorff space S, if (fi) is a normalized, weakly null sequence in C(S)
with |fi(t)| ∈ {0} ∪ [δ, 1] for all t ∈ S and i ∈ N, then (fi) has an unconditional
subsequence with constant L∗. Moreover, L∗≤6 log2

(
1/δ
)

for δ<1/4.

Proof. For δ ∈ (0, 1] let k = blog2(1/δ)c+1. Let I0 = {0} and let I1, . . . , Ik be
closed intervals covering [δ, 1] such that max Ij ≤ 2 min Ij for each j = 1, . . . , k.
Furthermore, let Ij+k=−Ij for j=1, . . . , k. Let S be a compact, Hausdorff space
and (fi) be a normalized, weakly null sequence in C(S) with |fi(t)| ∈ {0} ∪ [δ, 1]
for all t∈S and i∈N. Let F be the collection of all c∈{0, 1, . . . , 2k}N for which
there exists t∈S with fi(t)∈ Ici

for all i∈N. Note that F is a compact subset
of {0, 1, . . . , 2k}N consisting of sequences of finite support. By Lemma 7.2 there
exists M ∈ [N]ω such that FM is weakly hereditary. We show that the sequence
(fi)i∈M is unconditional with constant L∗=4k.

Fix a=(ai)∈c00 and E∈ [M ]<ω. Choose t∈S such that∥∥∥∑
i∈E

aifi

∥∥∥=
∣∣∣∑
i∈E

aifi(t)
∣∣∣.

Replacing a by −a if necessary, we may assume that∣∣∣∑
i∈E

aifi(t)
∣∣∣ ≤∑

i∈F
aifi(t),
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where F = {i ∈E : aifi(t) > 0}. Now choose c ∈F such that fi(t) ∈ Ici
for all

i∈N. Note that ci 6=0 for any i∈F , and so∑
i∈F

aifi(t) ≤ 2k
∑
i∈Fj

aifi(t)

for some j ∈{1, . . . , 2k}, where Fj ={i∈F : ci= j}. Finally, since FM is weakly
hereditary, there exists c′∈F such that c′i= ci= j for all i∈Fj , and c′i=0 for all
i∈M \Fj . Let t′∈S satisfy fi(t′)∈Ic′i for all i∈N. We then have∑

i∈Fj

aifi(t) ≤ 2
∑
i∈M

aifi(t′) ≤ 2
∥∥∥∑
i∈M

aifi

∥∥∥.
This completes the proof of our claim. �

Remarks. 1. If (fi) is a weakly null sequence of (non-zero) indicator functions,
then in the proof above we need only to work with two intervals I0 = {0} and
I1 ={1}. This way we do not get the factor of 2 at either of the two places where
it occurs above, and so we obtain a proof of Theorem 7.1. We also mention here a
quantitative version of Rosenthal’s result due to Gasparis, Odell and Wahl [12]: if
(fi) is a weakly null sequence of (non-zero) indicator functions, then there exists
a countable ordinal α and a subsequence (gi) of (fi) which is equivalent to a
subsequence of the unit vector basis of the generalized Schreier space Xα.
2. Lemma 7.2 and Theorem 7.3 were also proved by Arvanitakis (he uses slightly
different language and method). In [6, Remark 2.1] he effectively asks if weakly
hereditary can be replaced by hereditary in Lemma 7.2. It is not hard to see
that if that was possible, then the proof of Theorem 7.3 would give a constant
L∗ independent of δ. In turn, by Theorem 7.5 below, this would yield a positive
solution to the c0-problem. The following simple example shows that Lemma 7.2
cannot be strengthened in this way even for k = 2. For each M = {m1 <m2 <

. . . }∈ [N]ω define cM ∈{0, 1, 2}N by letting

cM (mi) =


2 if i=1

1 if 2≤ i≤m1+1

2 if m1+1<i≤m2+1

and cM is zero elsewhere. Now let F be the set of all c∈{0, 1, 2}N such that there
exist M ∈ [N]ω and n∈N such that c(i)=cM (i) for i=1, . . . , n and c(i)=0 for all
i>n — we denote this c by cM,n. Then F is a compact family of sequences of finite
support. To see that FL is not hereditary for any L={l1<l2<. . . }∈ [N]ω consider
c, c′∈{0, 1, 2}L defined as follows: c′(l1)=0, c(l1)=cL(l1) and c′(li)=c(li)=cL(li)
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for all i≥2. Then c∈FL, c′⊂c, but given M={m1<m2<. . . }∈ [N]ω, there is no
n∈N such that c′ is the restriction to L of cM,n (consider the cases m2<l2, m2 = l2
and m2>l2).

We now prove a more general result of which Theorem 7.3 is an immediate con-
sequence.

Theorem 7.4. For all δ∈(0, 1] there is a constant K∗ such that for any compact,
Hausdorff space S, every normalized, weakly null sequence (fi) in C(S) has a
subsequence (gi) such that for all t∈S and E⊂{i∈N : |gi(t)|≥δ} we have

∣∣∣∑
i∈E

aigi(t)
∣∣∣ ≤ K∗∥∥∥ ∞∑

i=1

aigi

∥∥∥ for all (ai)∈c00.

Moreover, K∗≤6 log2

(
1/δ
)

for δ<1/4.

Proof. Fix δ ∈ (0, 1] and K∗ ∈ [1,∞). Assume that S is a compact, Hausdorff
space, and (fi) is a normalized, weakly null sequence in C(S) that has no sub-
sequence satisfying the statement of the theorem. We will show that K∗ ≤ 4k,
where k=blog2(1/δ)c+1.

Let I1, . . . , Ik be closed intervals covering [δ, 1] such that max Ij≤2 min Ij for
each j=1, . . . , k. Furthermore, let Ij+k=−Ij for j=1, . . . , k. For every M ∈ [N]ω

there is a witness (t,a, j, F ) to the failure of the subsequence (fi)i∈M , where

(52) t∈S, a=(ai)∈c00, j∈{1, . . . , 2k},

F ⊂{i∈M : fi(t)∈Ij , aifi(t)>0};
(53) ‖f‖=1, where f=

∑
i∈M

aifi;

(54) 2k
∑
i∈F

aifi(t)>K∗.

We now use Lemma 2.5 to get a continuous selection M 7→ (tM ,aM , jM , FM ) of
witnesses. Let aM =(aMi ) and fM =

∑
i∈M aMi fi for each M ∈ [N]ω.

As usual, the next phase of the proof is stabilization. Find N1∈ [N]ω such that
(fi)i∈N1 is a basic sequence with constant 2, and so |aMi |≤4 for all i∈M and for
all M ∈ [N1]ω. Then pass to N2 ∈ [N1]ω such that jL = jM for all L,M ∈ [N2]ω,
which in particular implies that fi(tM ) and fi(tL) have the same sign, and differ
by a factor of at most 2 for all i∈FL∩FM . Finally, we fix ε>0 and use Lemma 2.6
to obtain N3∈ [N2]ω such that

∑
i∈N3\P |fi(tP )|<ε for all P ∈ [N3]ω.
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The Matching Lemma applied with n= 1 now yields L,M ∈ [N3]ω such that
L ∩M=FL ∩ FM =FM . Then

|fM (tL)| =
∣∣∣ ∑
i∈M

aMi fi(tL)
∣∣∣

≥
∑
i∈FM

aMi fi(tL)− 4ε

≥ 1
2

∑
i∈FM

aMi fi(tM )− 4ε

≥ K

4k
− 4ε.

On the other hand, |fM (tL)|≤‖fM‖=1, and hence K≤4k(1 + 4ε). �

We will now establish a relationship between Theorem 7.3, which is a result about
finding unconditional subsequences, and the constant L′ (defined on page 26),
which comes from a certain form of partial unconditionality. We will also show
the close connection between Theorem 7.4 and Problem 1.2. First we need to
introduce some appropriate constants, and then we will express these relationships
in Theorem 7.5 below.

For a basic sequence (xi) in a Banach space let C(xi) be the least real number
C such that (xi) is unconditional with constant C. Then for each δ ∈ (0, 1] we
define

L∗(δ) = sup
S,(fi)

inf
(gi)⊂(fi)

C(gi),

where the supremum is taken over all compact, Hausdorff spaces S and over all
normalized, weakly null sequences (fi) in C(S) with |fi(t)|∈{0}∪[δ, 1] for all t∈S
and i∈N, and the infimum is taken over subsequences (gi) of (fi). Theorem 7.3
above claims that L∗(δ) is finite and of order log

(
1/δ
)
.

Given δ∈(0, 1], and a normalized, weakly null sequence (fi) in C(S) with S a
compact, Hausdorff space, we define K∗((fi), δ) to be the least real number K∗

such that whenever t∈S and E⊂{i∈N : |fi(t)|≥δ}, we have∣∣∣∑
i∈E

aifi(t)
∣∣∣ ≤ K∗∥∥∥ ∞∑

i=1

aifi

∥∥∥ for all (ai)∈c00.

We then set

K∗(δ) = sup
S,(fi)

inf
(gi)⊂(fi)

K∗((gi), δ),
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where the supremum is over all compact, Hausdorff spaces S and all normalized,
weakly null sequences (fi) in C(S), and the infimum is over all subsequences (gi)
of (fi). Note that by Theorem 7.4 above K∗(δ) is finite and of order log

(
1/δ
)
.

Theorem 7.5. For all 0 < δ′ < δ ≤ 1 we have K∗(δ) ≤ K ′(δ) ≤ K∗(δ′) and
L∗(δ)≤L′(δ)≤L∗(δ′).

Proof. We first show that K∗(δ) ≤K ′(δ). Fix ε ∈ (0, 1]. There is a compact
Hausdorff space S and a normalized, weakly null sequence (fi) in C(S) such that
K∗((fi)i∈M , δ)>K∗(δ)−ε for all M ∈ [N]ω. So for each M ∈ [N]ω there is a witness
(t, E,a) for M , where

(55) t∈S, E⊂{i∈M : |fi(t)|≥δ}, a=(ai)∈c00;
(56) ‖f‖=1, where f=

∑
i∈M

aifi;

(57)
∣∣∣∑
i∈E

aifi(t)
∣∣∣ > K∗(δ)− ε.

We now proceed as usual. We make a continuous choice M 7→ (tM , EM ,aM ) of
witnesses, and let aM =(aMi ) and fM =

∑
i∈M aMi fi. We then find N1∈ [N]ω such

that (fi)i∈N1 is a basic sequence with constant 1+ε. By Theorem 3.1 there exists
N2∈ [N1]ω such that |aMi |≤1+ε for all i∈M and for all M ∈ [N2]ω. Finally, we
pass to a further infinite subset N3 of N2 such that

∑
i∈N3\P |fi(tP )|< ε for all

P ∈ [N3]ω.
After relabelling, if necessary, we may assume that N3 =N. We define a norm

on c00 by letting

‖(bi)‖ = sup
i
|bi| ∨

1
(1 + ε)2

sup
{∣∣∣ ∑

i∈M
bia

M
i

∣∣∣ : M ∈ [N]ω
}

for each (bi)∈ c00. Let X be the completion of the resulting normed space. It is
easy to check that the unit vector basis (ei) of c00 is a normalized, weakly null
sequence in X. Indeed, the continuity of the selection of witnesses implies that
the closure of

{∑
i∈M aMi ei : M ∈ [N]ω

}
∪{ei : i∈N} in the topology of pointwise

convergence contains only finitely supported sequences. We will now show that
K ′((yi), δ) > K∗(δ)− ε for any subsequence (yi) of (ei). This then proves the
inequality K∗(δ)≤K ′(δ).

Fix M ∈ [N]ω, and set nM =maxEM and

xM =
∑
i∈M
i≤nM

fi(tM )ei.
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For each L∈ [N]ω we have∣∣∣ ∑
i∈L∩M
i≤nM

fi(tM )aLi
∣∣∣ ≤ ∣∣∣ ∑

i∈L
i≤nM

fi(tM )aLi
∣∣∣+ (1+ε)

∑
i∈L\M

|fi(tM )|

≤ (1+ε)‖fL‖+ (1+ε)ε = (1+ε)2.

It follows that ‖xM‖≤1. On the other hand, on EM the coefficients of xM are at
least δ and ∥∥∥ ∑

i∈EM

fi(tM )ei
∥∥∥ ≥ ∣∣∣ ∑

i∈EM

fi(tM )aMi
∣∣∣ > K∗(δ)− ε.

We now show that K ′(δ)≤K∗(δ′) whenever 0<δ′<δ≤1. Fix ε∈(0, 1] such that
(1+ε)δ′ < δ. Let (xi) be a normalized, weakly null sequence with K ′((yi), δ)>
K ′(δ)−ε for every subsequence (yi) of (xi). So for each M ∈ [N]ω there is a witness
(a, E, x∗) of M , where

(58) a=(ai)∈c00, E⊂{i∈M : |ai|≥δ}, x∗∈BX∗ ;
(59) ‖x‖=1, where x=

∑
i∈M

aixi;

(60)
∑
i∈E

aix
∗(xi) > K ′(δ)− ε.

Let M 7→ (aM , EM , x∗M ) be a continuous selection of witnesses, and let aM =(aMi )
and xM =

∑
i∈M aMi xi. Choose N1 ∈ [N]ω such that (xi)i∈N1 is a basic sequence

with constant 1+ε. Use Theorem 3.1 to find N2 ∈ [N1]ω so that |aMi | ≤ 1+ε for
all i∈M and M ∈ [N2]ω. Finally, by Lemma 2.6 there exists N3∈ [N2]ω such that∑
i∈N3\P |x

∗
P (xi)|<ε for all P ∈ [N3]ω.

Relabel so that we can take N3 = N, and set tM = 1
1+ε

∑
i∈M aMi ei for each

M ∈ [N]ω, where (ei) is the unit vector basis of c00. Let S be the closure of the
set {tM : M ∈ [N]ω} ∪ {ei : i∈N} in the product space [−1, 1]N. As before, it is
easy to verify that S consists only of finitely supported sequences, and hence the
sequence (fi) of co-ordinate maps is a normalized, weakly null sequence in C(S).
We will show that

K∗((gi), δ′) >
K ′(δ)− ε
(1 + ε)2

for every subsequence (gi) of (fi), which then implies that K∗(δ′)≥K ′(δ).
Fix M ∈ [N]ω and let nM =max supp(aM ) and

fM =
∑
i∈M
i≤nM

x∗M (xi)fi.
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For each L∈ [N]ω we have

(1 + ε)|fM (tL)| =
∣∣∣ ∑
i∈L∩M
i≤nM

x∗M (xi)aLi
∣∣∣

≤
∣∣∣ ∑
i∈L
i≤nM

x∗M (xi)aLi
∣∣∣+ (1+ε)

∑
i∈L\M

|x∗M (xi)|

≤ (1+ε)‖xL‖+ (1+ε)ε ≤ (1+ε)2.

It follows that ‖fM‖≤1+ε. On the other hand, we have

|fi(tM )| = |aMi |/(1+ε) > δ′ for all i∈EM ,

and moreover∑
i∈EM

i≤nM

x∗M (xi)fi(tM ) =
∑
i∈EM

x∗M (xi)aMi /(1+ε) >
K ′(δ)− ε
(1 + ε)2

‖fM‖.

This completes the proof of the inequalities involving K ′ and K∗. The argument
for the functions L′ and L∗ is similar and is omitted. �

Recall that if (xi) is a normalized, weakly null sequence with spreading model not
equivalent to the unit vector basis of c0, then for any ε> 0 and for any δ∈ (0, 1]
there is a δ-near-unconditional subsequence of (xi) with constant 1+ε. There are
dual versions of this corresponding to Theorems 7.3 and 7.4 above. For example,
for any compact, Hausdorff space S and for any δ∈ (0, 1], if (fi) is a normalized,
weakly null sequence in C(S) with |fi(t)|∈{0} ∪ [δ, 1] for all t∈S and i∈N, and
(fi) has spreading model not equivalent to the unit vector basis of `1, then for any
ε>0 there is a subsequence of (fi) that is unconditional with constant 1+ε. The
proof (which we omit here) uses a similar argument to that of [10, Theorem 5.4].

8. The combinatorics of patterns and resolutions

In this section we consider combinatorial structures that arise in our approach
to Problem 1.2. We begin by setting up witnesses for the constant K ′(δ) (c.f.
Definition 4.1). The notation will be used throughout this section. We fix δ ∈
(0, 1], set k = blog2(1/δ)c+1, and choose ε ∈ (0, 1) so that 2kδ > 1+ε. We then
select closed intervals I1, . . . , Ik covering [δ, 1+ε] so that max Ij≤2 min Ij for each
j=1, . . . , k. By the definition of K ′(δ) there is a normalized, weakly null sequence
(xi) in some Banach space X such that K ′((yi), δ)> 1

2 K
′(δ) for every subsequence

(yi) of (xi). After passing to a subsequence if necessary we can assume, as usual,
that
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(61) (xi) is a basic sequence with constant 1+ε,

(62) sup
i
|ai|≤(1+ε)

∥∥∥ ∞∑
i=1

aixi

∥∥∥ for all (ai)∈c00.

Recall that the latter property is achieved using Theorem 3.1. We now make a
continuous selection M 7→ (aM , x∗M , FM ) of witnesses in the usual manner using
Lemma 2.5, where

(63) aM =(aMi )∈c00, x∗M ∈BX∗ , FM ⊂{i∈M : aMi ≥δ, x∗M (xi)>0},
(64) ‖xM‖=1, where xM =

∑
i∈M

aMi xi,

(65)
∑
i∈FM

aMi x
∗
M (xi) > K ′(δ)/4.

Note that |aMi |∈ [δ, 1+ε] for all M ∈ [N]ω and for all i∈FM . For each M ∈ [N]ω let
us define cM =(cMi )∈{0, 1, . . . , k}N by letting cMi be the least j∈{1, . . . , k} such
that aMi ∈ Ij if i∈FM , and letting cMi = 0 otherwise. Set FMj = {i∈N : cMi = j}
for each j=1, . . . , k. Note that

(66) FM1 , . . . , FMk are pairwise disjoint, finite subsets of M with FM =
k⋃
j=1

FMj ,

(67) for each j=1, . . . , k the function M 7→ FMj : [N]ω → [N]<ω is continuous.

Note that we have osc(aM , FMj )≤ 2 for all M ∈ [N]ω and for each j = 1, . . . , k.
Moreover, for any two infinite subsets L,M of N we have

(68)
aMi
aLi
≥ 1

2
for all i ∈ FLj ∩ FMj , j = 1, . . . , k.

Using the usual Ramsey type arguments (Lemma 2.6 and the infinite Ramsey
theorem) and relabeling, if necessary, we may assume the following stabiliza-
tions.

(69)
∑
i/∈M

|x∗M (xi)| < ε for all M ∈ [N]ω;

(70) for each j=1, . . . , k there exists wj such that for all M ∈ [N]ω we have
wj≤

∑
i∈FM

j

aMi x
∗
M (xi)≤wj+ε/k.

Observe that (65) and (70) give

(71)
k∑
j=1

wj >
K ′(δ)

4
− ε.

We now give a simple necessary and sufficient condition for a positive answer to
Problem 1.2.
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Proposition 8.1. We have supδ>0K
′(δ)<∞ if and only if there is a constant c

such that for all δ∈ (0, 1] whenever (xi) is a normalized, weakly null sequence in
a Banach space and M 7→ (aM , x∗M , FM ) is a continuous selection of witnesses
so that (61)–(65) and (69) hold, then there exist infinite subsets L,M of N such
that |x∗L(xM )|≥cK ′(δ).

Proof. Sufficiency is clear: for any δ ∈ (0, 1] there is a normalized, weakly null
sequence (xi) and a continuous selection M 7→ (aM , x∗M , FM ) of witnesses so
that (61)–(65) and (69) hold. The assumption then gives K ′(δ)≤1/c.

Now assume that K ′ = supδ>0K
′(δ) is finite. We show that the condition is

necessary with c= 1
16K′ . Let δ∈(0, 1] and assume that we are given a normalized,

weakly null sequence (xi) and a continuous selection M 7→ (aM , x∗M , FM ) of
witnesses so that (61)–(65) and (69) hold. Set t= K′(δ)

16K′ . For b=(bi)∈c00 define

|||b||| = t‖b‖`∞ ∨ sup
{∣∣∣ ∞∑

i=1

bix
∗
L(xi)

∣∣∣ : L∈ [N]ω
}
.

Let Z be the completion of c00 in the norm |||·|||. The unit vector basis (ei) of c00

is a semi-normalized, weakly null sequence of Z. So by the definition of K ′(tδ)
there is an infinite subset M of N such that K ′((êi)i∈M , tδ) < 2K ′(tδ), say, where
êi= ei

|||ei||| for all i∈N. From (65) we get∣∣∣∣∣∣∣∣∣ ∑
i∈FM

aMi ei

∣∣∣∣∣∣∣∣∣ ≥ ∣∣∣ ∑
i∈FM

aMi x
∗
M (xi)

∣∣∣ > K ′(δ)/4.

Now let bM =
∑
i∈M aMi ei. By (62) we have ‖bM‖`∞ ≤1+ε, which in turn gives

|||bM |||≤1 since x∗L has norm at most one for all L∈ [N]ω. Now since
∣∣aMi |||ei|||∣∣≥ tδ

for each i∈FM , we have∣∣∣∣∣∣∣∣∣ ∑
i∈FM

aMi ei

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣ ∑
i∈FM

aMi |||ei|||êi
∣∣∣∣∣∣∣∣∣ ≤ 2K ′(tδ)|||bM |||.

We can now conclude that

|||bM ||| >
K ′(δ)

8K ′(tδ)
> t‖bM‖`∞ .

Hence there exists L∈ [N]ω such that

|x∗L(xM )| =
∣∣∣ ∑
i∈M

aMi x
∗
L(xi)

∣∣∣ > 1
2
|||bM ||| ≥ cK ′(δ).

�
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A selection of witnesses as defined in (63)–(65) associates to each M ∈ [N]ω a
certain combinatorial data that is made up of two parts. One part is the sequence
(cMi )i∈FM

in the set {1, . . . , k}, which is a discretized version of the coefficients
(aMi )i∈FM

of the vector xM . Equivalently, this part can also be viewed as the
partition (FMj )kj=1 of FM . The other part is the sequence

(
x∗M (xi)

)
i∈FM

of dual
coefficients. To solve Problem 1.2 in the affirmative we would like to show the
existence of L,M ∈ [N]ω whose combinatorial data “match” in a suitable way to
give the necessary and sufficient condition of Proposition 8.1. For example, if we
could assume that the sets FM1 , . . . , FMk are successive for all M ∈ [N]ω, then the
Matching Lemma would provide suitable sets L and M . Indeed, we can generalize
this as follows.

Proposition 8.2. The following is a sufficient condition for supδ>0K
′(δ)<∞.

There exists a constant c such that for all k ∈ N and for all positive real num-
bers p1, . . . , pk with

∑k
j=1 pj = 1 if for all M ∈ [N]ω we are given finite subsets

FM1 , . . . , FMk of M such that (66) and (67) hold, then there exist L,M ∈ [N]ω and
J⊂{1, . . . , k} such that

∑
j∈J pj≥c, FLj ⊂FMj for all j∈J , and L∩M⊂FL∩FM .

Remark. The Matching Lemma implies that the above sufficient condition is
satisfied with c= 1

2 provided that we also require FM1 <. . .<FMk for all M ∈ [N]ω.

Proof. We will verify that the stated condition implies the sufficient and nec-
essary condition of Proposition 8.1. Given δ∈ (0, 1], assume that we are given a
normalized, weakly null sequence (xi), a continuous selection M 7→ (aM , x∗M , FM )
of witnesses so that (61)–(65) and (69) hold. After passing to a subsequence, if
necessary, we may assume that ε<c/48 and all of the conditions (61)–(70) hold.
Let w=

∑k
j=1 wj , and set pj =wj/w for each j=1, . . . , k. By our assumption we

can find L,M ∈ [N]ω and J ⊂{1, . . . , k} such that
∑
j∈J pj ≥ c, FLj ⊂FMj for all

j ∈ J , and L ∩M ⊂FL ∩ FM . Note that
∑
j∈J wj ≥ cw≥ cK ′(δ)/4−ε. We now

obtain a sequence of inequalities in a way very similar to that at the end of the
proof of Theorem 2.1.

x∗L(xM ) ≥
∑

i∈L∩M
aMi x

∗
L(xi)− 2ε

≥ 1
2

k∑
j=1

∑
i∈FL

j ∩FM
j

aLi x
∗
L(xi)− 2ε
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≥ 1
2

∑
j∈J

wj − 2ε

≥ cK ′(δ)
8

− 3ε ≥ c

16
K ′(δ).

�

The discrete nature of the sufficient condition of Proposition 8.2 makes it very
attractive: it reduces Problem 1.2 to a combinatorial, Ramsey type problem. The
conclusion in this condition is about “matching” the part of the combinatorial
data of L and M that comes from the discretization of the coefficients of xL
and xM , and it “ignores” the dual coefficients. We will now study the entire
combinatorial data as an abstract object (i.e. we forget about the underlying
Banach space). This leads to the introduction of resolutions. We will use them
to discuss the possibility of a negative answer to Problem 1.2. To conclude this
section we shall produce an example to show that supδ>0K

′(δ) is strictly greater
than 1 (recall that if (xi) is a normalized, weakly null sequence with spreading
model not equivalent to the unit vector basis of c0, then for any ε> 0 there is a
subsequence (yi) of (xi) such that K ′((yi), δ)<1+ε).

Let k∈N. A k-pattern is a finite sequence in the set {1, . . . , k} (the numbers
1, . . . , k will be called colours). A k-resolution is a pair r = ((ci)ni=1, (αi)

n
i=1),

where (ci)ni=1 is a k-pattern, and (αi)ni=1 are positive, real numbers. When we
work with a fixed k we shall simply say pattern and resolution, respectively.

Let r be a k-resolution. The weight of colour j in r is

wj(r) =
∑
i: ci=j

αi, j = 1, . . . , k,

and the weight of r is w(r) =
∑k
j=1 wj(r). A pair (x, x∗) of elements of c00 has

resolution r (or (x, x∗) is a representation of r) if the non-zero co-ordinates of x
are (2−ci)ni=1 in this order, and the non-zero co-ordinates of x∗ are (2ciαi)ni=1 in
this order, and moreover x and x∗ have the same support. In other words, we
have x=

∑n
i=1 2−cieli and x∗=

∑n
i=1 2ciαieli for some 1≤ l1<. . .<ln. Note that

x∗(x)=
∑n
i=1 αi=w(r).

Given k ∈N and non-negative, real numbers w1, . . . , wk (called weights) with∑k
j=1 wj = 1, we let R =R(w1, . . . , wk) be the class of all k-resolutions r with

wj(r)=wj for each j=1, . . . , k. The necessary and sufficient condition of Propo-
sition 8.1 motivates the following definition. Given r, s∈R we let

[r, s] = maxx∗(y),
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where the maximum is over all pairs (x, x∗) and (y, y∗) of elements of c00 that
have resolutions r and s, respectively. We also let 〈r, s〉=max

{
[r, s], [s, r]

}
. Note

that [r, s]≤
∑k
j=1 2j−1wj for all r, s∈R.

Given k-patterns c = (ci)mi=1 and d = (di)ni=1, we write c ⊂ d if there exist
1≤ l1 < . . . < lm≤n such that ci = dli for i= 1, . . . ,m. Observe that if r= (c, α)
and s = (d, β) are elements of R and c ⊂ d, then [r, s] ≥ 1. More generally, if
we can find representations (x, x∗) and (y, y∗) of r and s, respectively, and a set
J⊂{1, . . . , k} so that {i∈N : xi=2−j}⊂{i∈N : yi=2−j} for each j∈J , then we
have [r, s]≥x∗(y)≥

∑
j∈J wj (this observation is motivated by Proposition 8.2).

Since for any j ∈ {1, . . . , k} we can find representations (x, x∗) and (y, y∗) such
that the sets {i∈N : xi = 2−j} and {i∈N : yi = 2−j} are comparable, we have
〈r, s〉≥maxwj≥1/k for all r, s∈R.

Given r, s∈R and η∈ (0, 1), we say that r and s are η-orthogonal, in symbols
r ⊥η s, if 〈r, s〉 < η. Note that this can only happen for η > 1/k. Roughly
speaking, if one could find for each k∈N an infinite set of pairwise η(k)-orthogonal
resolutions with η(k)→ 0 as k →∞, then one could ‘code’ an example in a way
reminiscent of the Maurey-Rosenthal construction [18] to show that supδ>0 L(δ)=
∞, where L is the function given in Definition 4.1. We sketch this next.

Example 8.3. Let k ∈N, η = η(k) ∈ (0, 1) and C =C(k)≥ 1. Assume that we
can find weights w1, . . . , wk and a sequence (ri) in R = R(w1, . . . , wk) so that
〈ri, rj〉 < η whenever i 6= j, and 〈ri, ri〉 ≤ C for all i ∈ N. Assume also that if

ri = (c(i), α(i)), then maxj 2c
(i)
j α

(i)
j ≤ 1 for all i ∈ N, and maxj 2c

(i)
j α

(i)
j → 0 as

i → ∞. (note that this is not a serious assumption: the resolutions in a large
family of pairwise orthogonal elements of R are necessarily “flat” — c.f. proof of
Proposition 8.6). We will now show that L(2−k)≥ 1/(2C+6)η. In particular, if
(C(k))∞k=1 is bounded and η(k) → 0 as k → ∞, then this solves Problem 1.2 in
the negative.

Let Q be the set of all representations of the resolutions ri, i∈N. Let us fix an
injective function φ (the coding function) that maps finite sequences of elements
of Q to positive integers. A sequence (xj , x∗j )

k
j=1 of pairs of elements of c00 is

called a special sequence if there exist positive integers lj for j=1, . . . , k such that
the following hold.

(72) x∗1 < . . . < x∗k,

(73) (xj , x∗j ) has resolution rlj for j=1, . . . , k,
(74) lj=φ

(
(x1, x

∗
1), . . . , (xj−1, x

∗
j−1)

)
for j=1, . . . , k.
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We then call the sum
∑k
j=1 x

∗
j a special functional. Let F be the set of all special

functionals, and let us define a norm on c00 by letting

‖x‖ = ‖x‖`∞ ∨ sup
{
|x∗(Ex)| : x∗∈F , E∈I

}
.

Here I denotes the set of intervals of positive integers, and Ex is the projection of
x onto E. Let X be the completion of c00 in this norm. Then (ei) is a normalized,
bimonotone, weakly null basis of X. Let M ∈ [N]ω. One can clearly choose a
special sequence (xj , x∗j )

k
j=1 such that supp(xj)⊂M for each j= 1, . . . , k. Using

the injectivity of φ and the orthogonality of the resolutions ri, it is not difficult
to show that

∥∥∥∑k
j=1(−1)jxj

∥∥∥≤1+C+2kη≤(C+3)kη, whereas

∥∥∥ ∑
j odd

xj

∥∥∥+
∥∥∥ ∑
j even

xj

∥∥∥ ≥ k∑
j=1

x∗j

( k∑
j=1

xj

)
= k.

This shows that L((ei)i∈M , 2−k)≥1/(2C+6)η.

Our next result together with an earlier observation shows that a Maurey-
Rosenthal-type example as described above is far from possible. Indeed, it
shows that for all k ∈ N and for all weights w1, . . . , wk, any infinite subset S
of R(w1, . . . , wk) contains a further infinite subset S ′ such that 〈r, s〉 ≥ 1 for all
r, s∈S ′.

Proposition 8.4. Let k∈N. Given k-patterns c(i), i∈N, there exist 1≤ l1<l2<
. . . such that c(li)⊂c(li+1) for all i∈N.

Proof. We apply induction on k. When k=1 the result is trivial. Now assume
that k>1. For each i∈N we can write

c(i) = (c(i,1), c
(i)
1 , c(i,2), c

(i)
2 . . . , c(i,mi), c(i)mi

, c(i,mi+1)),

where mi is a non-negative integer, c(i)j is a single colour (i.e. an element of

{1, . . . , k}) and c(i,j) is a k-pattern using exactly the k−1 colours {1, . . . , k}\{c(i)j }
for 1≤ j ≤mi, and finally c(i,mi+1) is a pattern (possibly of length zero) using
strictly less than k colours. To see this simply trace the pattern c(i) from left to
right and stop every time you have seen all k colours.

We consider two cases. In the first case supimi =∞. Let λi be the length
of c(i) for each i ∈N. We can find 1≤ l1 < l2 < . . . such that mli+1 > λli for all
i∈N. Then for each i∈N the pattern c(li+1) is the concatenation of more than
λli patterns each using all k colours, from which c(li)⊂c(li+1) is clear.

In the second case the sequence (mi)∞i=1 is bounded. Then after passing to
a subsequence we may assume that for all i ∈ N we have mi = m, c

(i)
j = cj
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for 1 ≤ j ≤m, and c(i,m+1) uses exactly the colours from a proper subset S of
{1, . . . , k}. Then by the induction hypothesis we find 1≤ l1 < l2 < . . . such that
c(li,j)⊂c(li+1,j) for all i∈N and for each j=1, . . . ,m+1. It follows that c(li)⊂c(li+1)

for all i∈N. �

Having seen that there are no pairwise η-orthogonal, infinite sets of resolutions
for any η ∈ (0, 1], we now introduce so-called Rademacher resolutions that form
arbitrarily large, finite sets of pairwise η-orthogonal resolutions for η of the order
1/
√
k. This kills any hope of obtaining a positive answer to Problem 1.2 by

proving a version of the Matching Lemma that allows us to find for any N ∈N,
infinite sets L1, . . . , LN whose combinatorial data match in a suitable way.

Let k≥4 and k0 =b
√
kc. Set wjk0 =1/k0 for each j=1, . . . , k0, and let wj =0

when j is not a multiple of k0. We will now consider certain special elements of
R=R(w1, . . . , wk). Fix positive integers n1<. . .<nk0 satisfying

(75)
∑

1≤j<j′≤k0

nj
nj′

< 2−k.

For n ∈ N we denote by Rn the resolution (c, α), where

c = (k0, . . . , k0, 2k0, . . . , 2k0, . . . , k
2
0, . . . , k

2
0),

where colour jk0 appears nnj times, and αi = 1/nnjk0 whenever ci = jk0 (i.e.
we distribute each weight uniformly over the corresponding colour). We will
use the following notation: given m ∈ N and a resolution r = (c, α) we write
(r, . . . , r)m for the resolution s = (d, β), where d = (c, . . . , c) with c repeated m

times, and β = (α/m, . . . , α/m) with α/m also repeated m times. Note that if
r belongs to R, then so does (r, . . . , r)m (indeed, this is true for any choice of
weights w1, . . . , wk). Now given l, n∈N, we define the Rademacher Rn,l to be the
resolution (Rn, . . . , Rn)kl−1

0
. Note that Rn,l∈R for all l, n∈N.

Proposition 8.5. For all m,n ∈ N, the Rademachers Rnkm−l
0 ,l, l = 1, . . . ,m,

are pairwise 5/k0-orthogonal. Moreover, 〈Rnkm−l
0 ,l, Rnkm−l

0 ,l〉 ≤ 1+ 2
k0

for each
l=1, . . . ,m.

Proof. Fix l, l′∈{1, . . . ,m}, let r=Rnkm−l
0 ,l = (c, α) and s=R

nkm−l′
0 ,l′

= (d, β).
Choose representatives (x, x∗) and (y, y∗) of r and s, respectively, so that

[r, s] = x∗(y) =
∑

i∈supp(x)∩supp(y)

x∗i yi.

Note that each term x∗i yi is equal to 2cuαu2−dv for some u and v. Let S1 (respec-
tively, S2 and S3) be the set of all i∈N for which cu<dv (respectively, cu>dv
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and cu=dv). It is clear that∑
i∈S1

x∗i yi ≤ 2−k0
∑
u

αu = 2−k0 .

For each i∈S2 there exist 1≤j<j′≤k0 such that x∗i =2cuαu and yi=2−dv , where
cu = j′k0, αu = 1/nnj′km0 and dv = jk0. Moreover, colour jk0 occurs nnjkm−1

0

times in s. It follows that∑
i∈S2

x∗i yi ≤
∑

1≤j<j′≤k0

2(j′−j)k0 1
nnj′km0

nnjk
m−1
0 <

1
k0
,

by the choice of n1, . . . , nk0 (75). So the only significant contribution to [r, s]
comes from the set S3 of co-ordinates, i.e. where the colours match. Here we
always have the trivial estimate∑

i∈S3

x∗i yi ≤
∑
u

αu = w(r) = 1.

In particular, when l= l′ this gives 〈r, s〉≤1+ 2
k0

, as required. Note that for i∈S3

we have xi = yi = 2−jk0 and x∗i = y∗i = 2jk0/nnjkm0 for some j ∈ {1, . . . , k0}. In
particular x∗i yi = y∗i xi, so when l 6= l′ we may without loss of generality assume
that l < l′. Recall that for each j ∈ {1, . . . , k0} colour jk0 in r comes in kl−1

0

blocks, each block having length nnjkm−l0 . Consider such a block B, and suppose
that a δ-proportion of the block corresponds to co-ordinates i of x that belong
to S3. The corresponding co-ordinates of y in turn correspond to colour-jk0 bits
of s. Since s is made up of kl

′−1
0 copies of R

nkm−l′
0

and since colour jk0 appears

nnjk
m−l′
0 times in each copy, the number of copies used up in this matching is at

least

(76)
δnnjk

m−l
0

nnjk
m−l′
0

= δkl
′−l

0 ,

which is strictly greater than 1 if δ>1/k0. Also the contribution of a δ-proportion
of block B to

∑
i∈S3

x∗i yi is

(77) δnnjk
m−l
0

1
nnjkm0

= δk−l0 .

Let ∆ be the sum of the δ’s that are greater than 1/k0 over all colour-jk0 blocks
B of r and over all j ∈ {1, . . . , k0}. It follows from (76) that ∆kl

′−l
0 is at most

2kl
′−1

0 , since the number of copies of R
nkm−l′

0
that make up s is kl

′−1
0 and each
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copy is counted at most twice. Hence from (77) we obtain the estimate∑
i∈S3

x∗i yi ≤ ∆k−l0 +
1
k0
w(r) ≤ 3

k0
.

This finally shows that [r, s]≤5/k0, as required. �

Remarks. 1. We observed earlier that for any r, s∈R we have [r, s]≥maxwj ,
which in the above situation is 1/k0. Moreover, we always have 〈r, r〉≥ 1 for all
r∈R. So the measure of orthogonality we achieve is essentially best possible.
2. In Example 8.3 we required the resolutions in the pairwise orthogonal family
to be ‘flat’. Note that this holds for the Rademachers. Given m,n ∈ N and
l∈{1, . . . ,m}, if Rnkm−l

0 ,l=(c, α), then maxi 2ciαi≤2k/nn1k
m
0 → 0 as m→∞.

It is possible to measure, for each η ∈ (0, 1), the complexity of the family of
finite sets of pairwise η-orthogonal resolutions by introducing a suitable ordinal
index. We shall not do that, but simply comment that the above result would
then say that for η > 5/

√
k and under the assumption that we only use colours

that are multiples of
√
k and carry equal weights, this complexity is at least ω.

Whereas our next result shows that the complexity never exceeds ω (and this
holds for general weights). So in some sense the set of resolutions has just enough
complexity to allow the possibility of a negative asnwer to Problem 1.2.

Proposition 8.6. Assume that k∈N and w1, . . . , wk are arbitrary weights. Let
R = R(w1, . . . , wk) and η ∈ (0, 1/4). For all r ∈ R there exists n ∈ N so that
whenever s1, . . . , sn ∈R are pairwise η-orthogonal, we have [r, si]≥ 1/2 for each
i=1, . . . , n.

Proof. Choose j0 and j1 minimal so that

j0∑
j=1

wj ≥ 1/4 and

j1∑
j=1

wj ≥ 1/2.

We then have
j1∑
j=j0

wj ≥ 1/4 and

k∑
j=j1

wj ≥ 1/2.

Now assume the result is false. Then there exists r∈R such that for all n∈N we
have Rn⊂R and tn∈Rn such that

∣∣Rn∣∣≥n, 〈t, t′〉<η for all t, t′∈Rn with t 6= t′

and [r, tn]<1/2. We now verify two claims.
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First observe that for each n∈N the number of co-ordinates of tn of colours
1, . . . , j1 is at most the length of r. Indeed, otherwise we can choose representa-
tives (x, x∗) of r and (y, y∗) of tn so that whenever xi=2−j for some j≥j1, then
yi=2−j

′
for some j′≤j1, and this would give [r, tn]≥wj1 +. . .+wk≥1/2.

Secondly, we claim that for all n ∈ N and for all t ∈ Rn the number of co-
ordinates of t of colours 1, . . . , j0 is at most the length of r. Otherwise by the first
claim we can find representatives (x, x∗) of tn and (y, y∗) of t so that whenever
xi= 2−j for some j0≤ j≤ j1, then yi= 2−j

′
for some j′≤ j0, and this would give

[tn, t]≥wj0 +. . .+wj1≥1/4.
Now by simple pigeonhole principle, if n is greater than the number of patterns

of length at most the length of r in colours 1, . . . , j0, then there exist distinct
t, t′ ∈ Rn so that the patterns in t and t′ formed by the colours 1, . . . , j0 are
identical. It follows that there exist representatives (x, x∗) of t and (y, y∗) of t′

so that {i∈N : xi=2−j}={i∈N : yi=2−j} for each j=1, . . . , j0, and hence we
obtain the contradiction 〈t, t′〉≥w1+. . .+wj0≥1/4. �

We conclude by constructing a relatively simple example using Rademachers to
show that supδ>0K

′(δ)≥5/4.

Example 8.7. Let ε∈(0, 1). Fix positive integers n1<n2 and K such that
n1

2n2
+ 2−K < ε and

2n1 + n2

n12K
< 1.

For an infinite subset M={m1<m2<. . .} of N set nM =(n1+n2)2Km2−1 and let

EM = {m3,m4, . . . ,mnM +2}.

Now write EM as a union

EM =
2Km1−1⋃
j=1

IMj ∪
2Km1−1⋃
j=1

JMj ,

where IM1 <JM1 < IM2 <JM2 < . . . < IM
2Km1−1 <J

M
2Km1−1 and |IMj |= n12Km2−Km1

and |JMj |=n22Km2−Km1 for each j=1, . . . , 2Km1−1. Finally, set

EM1 =
2Km1−1⋃
j=1

IMj and EM2 =
2Km1−1⋃
j=1

JMj ,

so we have |EM1 |= n12Km2−1 and |EM2 |= n22Km2−1. Note that if we let ci = 2
whenever mi+2∈EM1 and ci=4 whenever mi+2∈EM2 , then (ci) is the pattern of
the Rademacher resolution R2Km2−Km1 ,Km1

as defined preceding Proposition 8.5
when k=4.
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We shall denote by IF the indicator function of a set F ⊂N, which is also the
element

∑
i∈F ei of c00. Given M={m1<m2<. . .}∈ [N]ω, let

xM = − 1
2em1 + 1

2em2 + 1
2 IEM

1
+ 1

4 IEM
2
,

x+
M = 1

2em2 + 1
2 IEM

1
+ 1

4 IEM
2
,

x∗M = 1
2em1 + em2 + 1

|EM
1 |

IEM
1

+ 1
|EM

2 |
IEM

2
.

Define a norm on c00 by setting

‖x‖ = ‖x‖`∞ ∨ sup
{
|x∗M (Ex)| : M ∈ [N]ω, E∈I

}
for each x∈ c00. Here I denotes the set of initial segments of N. Let X be the
completion of (c00, ‖·‖). It is easy to verify that (ei) is a normalized, weakly
null, monotone basis of X. We are going to show that for any subsequence (fi)
of (ei) we have K((fi), 1/4)≥ 5/4(1+ε). Since ε was arbitrary, this shows that
K(1/4)≥5/4.

Fix M={m1<m2<. . .}∈ [N]ω. On the one hand we have

‖x+
M‖ ≥ x

∗
M (x+

M ) =
5
4
.

On the other hand, we are going to show that ‖xM‖≤1+ε. So let us fix L={l1<
l2<. . .}∈ [N]ω. We need to estimate x∗L(ExM ) for any E ∈I. This is always at
least − 1

2 . To get an upper bound, we may clearly assume that supp(xM )⊂ E.
We now split into four cases. The first three of these use only the trivial estimate

x∗(y) =
∑
i

x∗i yi≤min
{
‖x∗‖`∞ · ‖y‖`1 , ‖x∗‖`1 · ‖y‖`∞

}
for any x∗, y∈c00.
Case 1. If l1 =m1 and l2 =m2, then we have

x∗L(xM ) = −1
4

+
1
2

+
1
|EL1 |

IEL
1

(1
2

IEM
1

+
1
4

IEM
2

)
+

1
|EL2 |

IEL
2

(1
2

IEM
1

+
1
4

IEM
2

)
≤ −1

4
+

1
2

+ 1 · 1
2

+
1

n22Km2−1

(1
2
n12Km2−1 +

1
4
n22Km2−1

)
= 1 +

n1

2n2
< 1 + ε.
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Case 2. If l2<m2, then we have

x∗L(xM ) = x∗L

(
− 1

2
em1

)
+
(

1
|EL1 |

IEL
1

+
1
|EL2 |

IEL
2

)(
1
2
em2 +

1
2

IEM
1

+
1
4

IEM
2

)

≤ 0 + 2 · 1
2

= 1.

Case 3. If l2>m2, then we have

x∗L(xM ) =
(1

2
el1 + el2

)
(xM )

+
(

1
|EL1 |

IEL
1

+
1
|EL2 |

IEL
2

)(
1
2

IEM
1

+
1
4

IEM
2

)

≤ 3
2
· 1

2
+

1
n12Kl2−1

(1
2
n12Km2−1 +

1
4
n22Km2−1

)
=

3
4

+
2n1 + n2

4n12K
≤ 1.

Case 4. If l2 = m2 and l1 6= m1, then we have to use the structure of the
Rademacher patterns to get an upper bound. The argument is along similar
lines to the proof of Proposition 8.5. First we have

(78) x∗L(xM ) =
1
2

+
(

1
|EL1 |

IEL
1

+
1
|EL2 |

IEL
2

)(
1
2

IEM
1

+
1
4

IEM
2

)
,

and

(79)
1
|EL2 |

IEL
2

(
1
2

IEM
1

)
≤ 1
n22Kl2−1

· 1
2
· n12Km2−1 =

n1

2n2
.

Also, since |EL1 ∩ EM2 |≤|EL1 |−|EL1 ∩ EM1 |, we have

(80)
IEL

1

(1
2

IEM
1

+
1
4

IEM
2

)
=

1
2
|EL1 ∩ EM1 |+

1
4
|EL1 ∩ EM2 |

≤ 1
4
|EL1 ∩ EM1 |+

1
4
|EL1 |.

Let us now assume that l1<m1. For each j=1, . . . , 2Kl1−1 set

Aj =
{
i∈{1, . . . , 2Km1−1} : IMi ∩ ILj 6=∅

}
.
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We now have

|EL1 ∩ EM1 | =
2Kl1−1∑
j=1

∑
i∈Aj

|ILj ∩ IMi | ≤
2Kl1−1∑
j=1

|Aj |n12Km2−Km1 .

Hence from (80) we obtain

(81)
1
|EL1 |

IEL
1

(1
2

IEM
1

+
1
4

IEM
2

)
≤ 1

2
· 2−Km1

2Kl1−1∑
j=1

|Aj |+
1
4
.

Since EL2 ∩JMi =∅ whenever minAj≤ i<maxAj for some j∈{1, . . . , 2Kl1−1}, we
have

|EL2 ∩ EM2 | =
2Km1−1∑
i=1

|EL2 ∩ JMi | ≤
(

2Km1−1 −
2Kl1−1∑
j=1

(|Aj | − 1)
)
n22Km2−Km1 .

It follows that

(82)
1
|EL2 |

IEL
2

(1
4

IEM
2

)
≤ 1

4
− 1

2
· 2−Km1

2Kl1−1∑
j=1

|Aj |+ 2Kl1−Km1 .

Note that 2Kl1−Km1≤2−K since we are assuming that l1<m1. Putting together
(78), (79), (81) and (82) we finally obtain

(83) x∗L(xM ) ≤ 1 +
n1

2n2
+ 2−K < 1 + ε,

as required. The case when l1 >m1 is very similar. For each j = 1, . . . , 2Km1−1

set
Aj =

{
i∈{1, . . . , 2Kl1−1} : ILi ∩ IMj 6=∅

}
.

We then proceed as before making the obvious changes in the various summations.

Remarks . 1. Since ‖x∗M‖`1 ≤ 7
2 for all M ∈ [N]ω, the basis (ei) of X is 7/2-

equivalent to the unit vector basis of c0, yet no subsequence is C-unconditional
for C < 5/4(1+ε). So the above example also shows that C(δ)≥ 5/4 whenever
δ ≤ 2/7, where C(δ) is the constant introduced in Section 5 in relation to the
c0-problem.
2. The basis (ei) of the space X constructed above is also an example of a nor-
malized, weakly null sequence that has no quasi-greedy basic subsequence with
constant strictly less than 8/7. To see this let α = 2/3 and let

yM = −αem1 + em2 + IEM
1

+ 2
3 IEM

2
,

y+
M = em2 + IEM

1
+ 2

3 IEM
2
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for each M ∈ [N]ω (following the notation in the proof above). Given ε>0 we may
choose the parameters n1, n2 and K so that

(84)
‖y+
M‖
‖yM‖

>
8
7
− ε

for all M ∈ [N]ω. This is proved by exactly the same calculation as in the proof
above.

Now if α=2/3−η for some η>0, then (84) still holds provided η is sufficiently
small. Then y+

M is the projection of yM onto the set of co-ordinates where the
size of the coefficient is at least 2/3. It follows that (ei)i∈M is not quasi-greedy
with constant 8/7−ε for any M ∈ [N]ω.
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