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Abstract

We study Lebesgue-type inequalities for greedy approximation

with respect to quasi-greedy bases. We mostly concentrate on this
study in the Lp spaces. The novelty of the paper is in obtaining bet-
ter Lebesgue-type inequalities under extra assumptions on a quasi-

greedy basis than known Lebesgue-type inequalities for quasi-greedy
bases. We consider uniformly bounded quasi-greedy bases of Lp,

1 < p < ∞, and prove that for such bases an extra multiplier in the
Lebesgue-type inequality can be taken as C(p) ln(m+1). The known

magnitude of the corresponding multiplier for general (no assump-

tion of uniform boundedness) quasi-greedy bases is of order m
| 1
2
− 1

p
|
,

p 6= 2. For uniformly bounded orthonormal quasi-greedy bases we

get further improvements replacing ln(m + 1) by (ln(m + 1))1/2.
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1 Introduction

We study the efficiency of greedy algorithms for m-term nonlinear approxi-

mation with regard to bases. Our primary interest is in approximation in Lp

with respect to quasi-greedy bases. Let X be an infinite-dimensional sepa-

rable Banach space with a norm ‖ · ‖ := ‖ · ‖X and let Ψ := {ψk}∞k=1 be a

semi-normalized basis for X (0 < c0 ≤ ‖ψk‖ ≤ C0, k ∈ N). All bases con-

sidered in our paper are assumed to be semi-normalized. For a given f ∈ X

we define the best m-term approximation with regard to Ψ as follows:

σm(f) := σm(f,Ψ)X := inf
bk,Λ

‖f −
∑

k∈Λ

bkψk‖X,

where the infimum is taken over coefficients bk and sets Λ of indices with

cardinality |Λ| = m. There is a natural algorithm of constructing an m-term

approximant. For a given element f ∈ X we consider the expansion

f =
∞
∑

k=1

ck(f)ψk.

We call a permutation ρ, ρ(j) = kj , j = 1, 2, ..., of the positive integers

decreasing and write ρ ∈ D(f) if

|ck1
(f)| ≥ |ck2

(f)| ≥ ... .

In the case of strict inequalities here D(f) consists of only one permutation.

We define the m-th greedy approximant of f with regard to the basis Ψ

corresponding to a permutation ρ ∈ D(f) by formula

Gm(f) := Gm(f,Ψ) := Gm(f,Ψ, ρ) :=
m
∑

j=1

ckj
(f)ψkj

.

This algorithm is known in the theory of nonlinear approximation under the

name of Thresholding Greedy Algorithm (TGA). The best we can achieve

with the algorithm Gm is

‖f −Gm(f)‖X = σm(f,Ψ)X,

or a little weaker

‖f −Gm(f)‖X ≤ Cσm(f,Ψ)X

for all f ∈ X with a constant C independent of f and m. The following

concept of a greedy basis has been introduced in [9].
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Definition 1.1. We call a basis Ψ a greedy basis if for every f ∈ X there

exists a permutation ρ ∈ D(f) such that

‖f −Gm(f,Ψ, ρ)‖X ≤ Cσm(f,Ψ)X

with a constant C independent of f and m.

We refer the reader to a survey [24] and a book [25] for further discussion

of greedy type bases. In this paper we are interested in special inequalities

– Lebesgue-type inequalities – for greedy approximation.

Lebesgue [12] proved the following inequality: for any 2π-periodic con-

tinuous function f we have

(1.1) ‖f − Sn(f)‖∞ ≤ (4 +
4

π2
lnn)En(f)∞,

where Sn(f) is the nth partial sum of the Fourier series of f and En(f)∞ is

the error of the best approximation of f by the trigonometric polynomials

of order n in the uniform norm ‖ · ‖∞. The inequality (1.1) relates the error

of a particular method (Sn) of approximation by the trigonometric poly-

nomials of order n to the best-possible error En(f)∞ of approximation by

the trigonometric polynomials of order n. By the Lebesgue-type inequality

we mean an inequality that provides an upper estimate for the error of a

particular method of approximation of f by elements of a special form, say,

form A, by the best-possible approximation of f by elements of the form

A. In the case of approximation with regard to bases (or minimal systems),

the Lebesgue-type inequalities are known both in linear and in nonlinear

settings (see surveys [10], [23], and [24]).

By the Definition 1.1 greedy bases are those for which we have ideal

(up to a multiplicative constant) Lebesgue-type inequalities for greedy ap-

proximation. In this paper we concentrate on a wider class of bases than

greedy bases – quasi-greedy bases. The concept of quasi-greedy basis was

introduced in [9].

Definition 1.2. The basis Ψ is called quasi-greedy if there exists some con-

stant C such that

sup
m

‖Gm(f,Ψ)‖ ≤ C‖f‖.

Subsequently, Wojtaszczyk [28] proved that these are precisely the bases

for which the TGA merely converges, i.e.,

lim
n→∞

Gn(f) = f.

The main result of [27] is the following Lebesgue-type inequality for

greedy approximation with respect to a quasi-greedy basis in the Lp spaces.
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Theorem 1.1. Let 1 < p <∞, p 6= 2, and let Ψ be a quasi-greedy basis of

the Lp space. Then for each f ∈ Lp we have

(1.2) ‖f −Gm(f,Ψ)‖Lp ≤ C(p,Ψ)m|1/2−1/p|σm(f,Ψ)Lp.

Theorem 1.1 does not cover the case p = 2. It is mentioned in [28] that

in the case p = 2 one has the following inequality

‖f −Gm(f,Ψ)‖L2
≤ C(Ψ) ln(m+ 1)σm(f,Ψ)L2

.

We do not know if the above inequality is sharp in the sense that an extra

factor logm cannot be replaced by a slower growing factor. The reader can

find further discussion of this problem in [26].

We note that inequality (1.2) is known (see [28]) in the case of uncon-

ditional bases Ψ. It is proved in [22] that (1.2) holds for the trigonometric

system Ψ = {eikx} for all 1 ≤ p ≤ ∞. It was noticed in [22] that (1.2) holds

for any uniformly bounded orthonormal basis of L2. Thus, it was known that

bases satisfying very different in nature conditions – uniformly bounded or-

thonormal basis of L2 or quasi-greedy basis of Lp – both guarantee that

similar Lebesgue-type inequalities (1.2) hold for greedy approximation. In

this paper we continue to study Lebesgue-type inequalities for greedy ap-

proximation. We try to make a bridge between the two above conditions

– uniformly bounded orthonormal basis of L2 and quasi-greedy basis of

Lp. We consider uniformly bounded quasi-greedy bases of Lq and study

Lebesgue-type inequalities in Lp, q ≤ p. It turns out that even the ques-

tion of existence of such bases is nontrivial. For instance, it is known (see

[4]) that there is no uniformly bounded unconditional bases in Lp, p 6= 2.

Quasi-greedy bases are close to unconditional bases. However, surprisingly,

it turns out that there exist uniformly bounded quasi-greedy bases in all

Lq with 1 < q < ∞. We discuss this issue in Section 3, where we present

a construction of uniformly bounded quasi-greedy bases. In particular, we

formulate the following theorem there.

Theorem 1.2. There exists a uniformly bounded orthonormal quasi-greedy

basis Ψ = {ψj}∞j=1 in Lp, 1 < p <∞, that consists of trigonometric polyno-

mials.

We note that existence of uniformly bounded orthonormal quasi-greedy

bases was proved by Nielsen [15]. The construction in [15] is a variation on

a construction in [11]. The same type of construction was used in [28]. Our

construction in Section 3 is a somewhat more general version of the known



Quasi-greedy bases and Lebesgue-type inequalities 5

construction. We include it in the paper without proofs for the sake of com-

pleteness and because some of our results in Section 4 rely on a particular

choice of the parameters in this specific construction. Conceivably, too, this

more general construction may have further applications. The construction

in [15] is based on the Walsh system. We should emphasize that Theorem 1.2

could also be obtained from the arguments of [15] by replacing the Walsh

system by the trigonometric system.

It is known from [1] that the space C [0, 1] does not have quasi-greedy

bases and the space L1[0, 1] has quasi-greedy bases. In Section 4 we prove,

in particular, that the space L1[0, 1] does not have a uniformly bounded

quasi-greedy Markushevich basis. This result complements a theorem of

Szarek [21] on the nonexistence of a uniformly bounded Schauder basis for

L1[0, 1]. On the other hand, we show that the Hardy space H1(D) does have

a uniformly bounded quasi-greedy basis of analytic polynomials.

In Section 5 we prove Lebesgue-type inequalities for greedy approxima-

tion in Lp, 2 ≤ p ≤ ∞, under different assumptions on a basis Ψ. In that

section we assume that Ψ is a uniformly bounded basis. In addition we

assume that Ψ is a certain type basis (quasi-greedy basis, Riesz basis) in

one of the spaces L2, Lq, 1 < q < 2, or Lq, 2 < q < ∞. Here is a typical

result from Section 5 (see Theorem 5.2). We will often use the notation

h(p) := |1
2
− 1

p
|. We also use the brief notation ‖ · ‖p := ‖ · ‖Lp.

Theorem 1.3. Assume that Ψ is a uniformly bounded quasi-greedy basis of

L2. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have for 2 ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + Cmh(p) ln(m+ 1)‖f − tm‖2.

In Section 6 we continue to prove Lebesgue-type inequalities for greedy

approximation in Lp under different assumptions on a basis Ψ. In that sec-

tion we assume that Ψ is a semi-normalized quasi-greedy basis for a pair

of spaces: Lq, 1 < q < ∞, and Lp, q ≤ p. It turns out that this assump-

tion results in a dramatic improvement of the corresponding Lebesgue-type

inequalities. It is demonstrated by the following result (see Theorem 6.1).

Theorem 1.4. Assume that Ψ is a semi-normalized quasi-greedy basis for

both Lq and Lp with 1 < q ≤ 2 ≤ p <∞. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,
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we have

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + C(p, q) ln(m+ 1)‖f − tm‖q.

We now formulate some of the Lebesgue-type inequalities obtained in the

paper. We already mentioned above (see Theorem 1.1) that the Lebesgue-

type inequalities in Lp, 1 < p < ∞, under assumption that Ψ is a quasi-

greedy basis of Lp were obtained in [27]. First we give a definition of a

democratic basis.

Definition 1.3. We say that a basis Ψ = {ψk}∞k=1 is a democratic basis for

X if there exists a constant D := D(X,Ψ) such that, for any two finite sets

of indices P and Q with the same cardinality |P | = |Q|, we have

‖
∑

k∈P

ψk‖ ≤ D‖
∑

k∈Q

ψk‖.

In Section 5 we prove that if Ψ is both quasi-greedy and democratic then

for any f ∈ X

(1.3) ‖f −Gm(f,Ψ)‖X ≤ C ln(m+ 1)σm(f,Ψ)X.

We note that it is proved in [2] that bases which are simultaneously quasi-

greedy and democratic are exactly almost greedy bases. As a corollary of

(1.3) we obtain the Lebesgue-type inequality for a uniformly bounded quasi-

greedy basis of Lp, 1 < p <∞ (see Corollary 5.3):

(1.4) ‖f −Gm(f,Ψ)‖p ≤ C(p) ln(m+ 1)σm(f,Ψ)p.

Here σm(f,Ψ)p := σm(f,Ψ)Lp. Comparing (1.4) with (1.2) we see that an ex-

tra assumption of uniform boundedness of the basis improves the Lebesgue-

type inequalities dramatically.

In Section 6, making our assumptions on the basis even stronger, we

improve (1.4) to the following inequality

(1.5) ‖f −Gm(f,Ψ)‖p ≤ C(p)(ln(m+ 1))1/2σm(f,Ψ)p,

under assumption that Ψ is a uniformly bounded orthonormal quasi-greedy

basis of Lp, 2 ≤ p <∞.

In Section 5 we impose assumptions on the basis in the Lq space and

obtain inequalities in the Lp space:

(1.6) ‖f −Gm(f,Ψ)‖p ≤ C(p, q)m(1−q/p)/2 ln(m+ 1)σm(f,Ψ)p
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under assumption that Ψ is a uniformly bounded quasi-greedy basis of Lq,

1 < q <∞, and q ≤ p ≤ ∞. We note that in the case p = q inequality (1.6)

turns into (1.4).

We begin a systematic presentation with Section 2, where we list some

properties of quasi-greedy bases that are used in the paper.

2 Properties of quasi-greedy bases

2.1 Quasi-greedy bases

The definition of a quasi-greedy basis is given in the Introduction (see Defi-

nition 1.2). We give here an equivalent definition (see [25], p. 34). For a set

of indices Λ we define the corresponding partial sum as follows

SΛ(f) := SΛ(f,Ψ) :=
∑

k∈Λ

ck(f)ψk.

Definition 2.1. We say that a basis Ψ is quasi-greedy if there exists a

constant CQ such that, for any f ∈ X and any finite set of indices Λ having

the property

min
k∈Λ

|ck(f)| ≥ max
k/∈Λ

|ck(f)|,

we have

‖SΛ(f,Ψ)‖ ≤ CQ‖f‖.

First, we present some known useful properties of quasi-greedy bases.

The reader can find the following two lemmas in [25], p. 37.

Lemma 2.1. Let Ψ be a quasi-greedy basis. Then, for any two finite sets of

indices A ⊆ B and coefficients 0 < t ≤ |cj| ≤ 1, j ∈ B, we have

‖
∑

j∈A

cjψj‖ ≤ C(X,Ψ, t)‖
∑

j∈B

cjψj‖.

It will be convenient to define the quasi-greedy constant K to be the

least constant such that

‖Gm(f)‖ ≤ K‖f‖ and ‖f −Gm(f)‖ ≤ K‖f‖, f ∈ X.

Lemma 2.2. Suppose Ψ is a quasi-greedy basis with a quasi-greedy constant

K. Then, for any real numbers cj and any finite set of indices P , we have

(4K2)−1 min
j∈P

|cj|‖
∑

j∈P

ψj‖ ≤ ‖
∑

j∈P

cjψj‖ ≤ 2K max
j∈P

|cj|‖
∑

j∈P

ψj‖.
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We present the following lemma from [1] with a proof for completeness.

Lemma 2.3. Let Ψ be a quasi-greedy basis of X. Then for any finite set of

indices Λ we have for all f ∈ X

‖SΛ(f,Ψ)‖ ≤ C ln(|Λ| + 1)‖f‖.

Proof. For a given element f ∈ X we consider the expansion

f =
∞
∑

k=1

ck(f)ψk.

Let a sequence kj , j = 1, 2, ..., of the positive integers be such that

|ck1
(f)| ≥ |ck2

(f)| ≥ ... .

We will use the notation

an(f) := |ckn(f)|

for the decreasing rearrangement of the coefficients of f . Without loss of

generality assume that f is normalized in such a way that guarantees that

|a1(f)| ≤ 1 and consider m := |Λ| ≥ 2. Consider for integer s ≥ 0

τs := {k : 2−s ≤ |ck(f)| < 21−s}.

Denote

Λs := Λ ∩ τs, Λ′ := Λ \ (∪s≤log
2

mΛs).

The semi-normalization property of the basis Ψ implies

‖SΛ′(f)‖ ≤ 2

m
|Λ′|C0 ≤ 2C0.

For s ≤ log2m we have

SΛs(f) = SΛs(Sτs(f)).

By Lemma 2.1 we obtain

‖SΛs(f)‖ ≤ C‖Sτs(f)‖.

Our assumption that Ψ is a quasi-greedy basis implies that for all s

‖Sτs(f)‖ ≤ C‖f‖.

Thus, for all s ≤ log2m

‖SΛs(f)‖ ≤ C‖f‖,
and, therefore,

‖SΛ(f)‖ ≤ C ln(m+ 1)‖f‖.
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The following Lemma 2.4 is a new result that answers Question 2 from

[7]. Let

f =
∞
∑

k=1

ck(f)ψk.

We define the following expansional best m-term approximation of f

σ̃m(f) := σ̃m(f,Ψ) := inf
Λ,|Λ|=m

‖f −
∑

k∈Λ

ck(f)ψk‖.

It is clear that

σm(f,Ψ) ≤ σ̃m(f,Ψ).

It is also clear that for an unconditional basis Ψ we have

σ̃m(f,Ψ) ≤ C(X,Ψ)σm(f,Ψ).

Lemma 2.4. Let Ψ be a quasi-greedy basis of X. Then for all f ∈ X

σ̃m(f) ≤ C ln(m+ 1)σm(f).

Proof. For a given ε > 0 let pm be an m-term polynomial

pm :=
∑

k∈P

bkψk, |P | = m,

such that

‖f − pm‖ ≤ σm(f) + ε.

Then by Lemma 2.3 we obtain

σ̃m(f) ≤ ‖f − SP (f)‖ = ‖f − pm − SP (f − pm)‖ ≤ C ln(m+ 1)(σm(f) + ε).

This completes the proof of Lemma 2.4.

Remark 2.1. After our paper was submitted we were informed that Lemma 2.4

was proved independently by Garrigós, Hernández, and Oikhberg.

We now formulate a result about quasi-greedy bases in Lp spaces. The

following theorem is from [26]. We note that in the case p = 2 Theorem 2.1

was proved in [28].

Theorem 2.1. Let Ψ = {ψk}∞k=1 be a quasi-greedy basis of the Lp space,

1 < p <∞. Then for each f ∈ X we have

C1(p) sup
n
n1/pan(f) ≤ ‖f‖p ≤ C2(p)

∞
∑

n=1

n−1/2an(f), 2 ≤ p <∞;

C3(p) sup
n
n1/2an(f) ≤ ‖f‖p ≤ C4(p)

∞
∑

n=1

n1/p−1an(f), 1 < p ≤ 2.
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Remark 2.2. Theorem 2.1 was proved in [26] under assumption that Ψ is

a normalized basis. That proof works for a semi-normalized basis as well.

Remark 2.3. The proof of Theorem 2.1 in [26] gives the following inequal-

ities. Let Ψ = {ψk}∞k=1 be a quasi-greedy basis of X. If for any set of indices

A of cardinality m we have ‖
∑

k∈A ψk‖X ≤ C ′m1/2 then for each f ∈ X we

have

(2.1) ‖f‖X ≤ C1

∞
∑

n=1

n−1/2an(f).

If for any set of indices A of cardinality m we have ‖
∑

k∈A ψk‖X ≥ c′m1/2

then for each f ∈ X we have

‖f‖X ≥ c1 sup
n
n1/2an(f).

A general version of (2.1) was obtained in [7]. We define the fundamental

function ϕ(m) := ϕ(m,Ψ, X) of a basis Ψ in X by

ϕ(m,Ψ, X) := sup
|A|≤m

‖
∑

k∈A

ψk‖.

Lemma 2.5. Let Ψ be a quasi-greedy basis of X. Then for each f ∈ X we

have

‖f‖ ≤ C
∞
∑

n=1

an(f)ϕ(n)
1

n
.

Proof. It is known (see [2], p. 581) that ϕ(n)/n is monotone decreasing.

Therefore, by Lemma 2.2 we obtain

‖f‖ ≤
∞
∑

s=1

‖
2s−1
∑

n=2s−1

an(f)ψkn‖

≤ C
∞
∑

s=1

a2s−1(f)ϕ(2s−1) ≤ C
∞
∑

n=1

an(f)ϕ(n)
1

n
.

2.2 Uniformly bounded quasi-greedy bases

It is clear that any orthonormal basis of a Hilbert space H is an uncon-

ditional basis and, therefore, a quasi-greedy basis of H. For example, the

trigonometric basis is a uniformly bounded orthonormal basis of L2. Even

the question of existence of a uniformly bounded quasi-greedy basis in Lp,
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p 6= 2, is a nontrivial question. It is known (see [4]) that there is no uni-

formly bounded unconditional bases in Lp, p 6= 2. As we already mentioned

in the Introduction, there are uniformly bounded quasi-greedy bases in Lp,

1 < p < ∞ [15]. We sketch a construction of such bases in Section 3. We

now present some properties of these bases.

Lemma 2.6. Assume that Ψ is a uniformly bounded quasi-greedy basis of

Lq, 1 < q <∞. Then for any set Λ of indices we have for q < p ≤ ∞

(2.2) ‖SΛ(f)‖p ≤ C|Λ|(1−q/p)/2‖SΛ(f)‖q.

We also have

(2.3) ‖SΛ(f)‖q ≤ C ln(|Λ|+ 1)‖f‖q .

Proof. Inequality (2.3) follows from Lemma 2.3. We prove (2.2). We have

‖SΛ(f)‖∞ ≤
∑

k∈Λ

|ck(f)|‖ψk‖∞ ≤ C
m
∑

n=1

an(SΛ(f)).

By Proposition 2.2 (see below) we continue

≤ C
m
∑

n=1

n−1/2‖SΛ(f)‖q ≤ Cm1/2‖SΛ(f)‖q.

The above inequality combined with

(2.4) ‖g‖p ≤ ‖g‖q/p
q ‖g‖1−q/p

∞ , q ≤ p ≤ ∞,

gives (2.2).

We note that in the case 1 < q ≤ 2 we could use Theorem 2.1 instead of

Proposition 2.2.

Corollary 2.1. Assume that Ψ is a uniformly bounded Riesz basis of L2.

Then for any set Λ of indices we have for 2 ≤ p ≤ ∞

‖SΛ(f)‖p ≤ C|Λ|h(p)‖f‖2.

Proof. The case p > 2 follows from Lemma 2.6 since Riesz bases are uncon-

ditional and hence quasi-greedy. The case p = 2 follows from uncondition-

ality.
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2.3 Uniformly bounded orthonormal quasi-greedy bases

We prove in Section 3 that there exist uniformly bounded orthonormal

quasi-greedy bases in Lp, 1 < p < ∞. We also prove in Section 3 that if Ψ

is a uniformly bounded orthonormal quasi-greedy basis in Lp, 2 ≤ p < ∞
then Ψ is a quasi-greedy basis of Lp′ (p−1 + p′−1 = 1). Thus there are

uniformly bounded bases which are quasi-greedy bases of two spaces Lp

and Lp′, 2 < p <∞. We now present some results in this direction.

Lemma 2.7. Assume that Ψ is a semi-normalized quasi-greedy basis for

both Lq and Lp with 1 < q ≤ 2 ≤ p <∞. Then for any set Λ of indices we

have

(2.5) ‖SΛ(f)‖p ≤ C ln(|Λ| + 1)‖f‖q.

Proof. Using notation m := |Λ| we obtain by Theorem 2.1

‖SΛ(f)‖p ≤ C2(p)
m
∑

n=1

n−1/2an(SΛ(f)) ≤ C(p)
m
∑

n=1

n−1/2an(f)

≤ C(p)
m
∑

n=1

n−1/2C3(q)
−1‖f‖qn

−1/2 ≤ C(p, q) ln(m+ 1)‖f‖q .

This proves (2.5).

Lemma 2.8. Assume that Ψ is a uniformly bounded orthonormal quasi-

greedy basis of Lp, 2 < p <∞. Then for any set Λ of indices we have

(2.6) ‖SΛ(f)‖2 ≤ C(ln(|Λ| + 1))1/2‖f‖p′

and

(2.7) ‖SΛ(f)‖p ≤ C(ln(|Λ| + 1))1/2‖f‖2.

Proof. Let |Λ| = m. By Theorem 2.2 (see below) and Theorem 2.1 we have

in the case of (2.6)

‖SΛ(f)‖2 ≤ (
m
∑

n=1

an(f)2)1/2 ≤ C(
m
∑

n=1

n−1‖f‖2
p′)

1/2 ≤ C(ln(m+ 1))1/2‖f‖p′.

In the case of (2.7) we obtain by Theorem 2.1

‖SΛ(f)‖p ≤ C
m
∑

n=1

n−1/2an(f)

≤ C(ln(m+ 1))1/2(

m
∑

n=1

an(f)2)1/2 ≤ C(ln(m+ 1))1/2‖f‖2.
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Let us discuss in more details uniformly bounded orthonormal quasi-

greedy bases. The existence of such bases was proved in [15]. We first recall

the definition of bases which are called unconditional for constant coeffi-

cients, cf. [28].

Definition 2.2. A basis Ψ is called unconditional for constant coefficients

(UCC) if there exist constants C1 and C2 such that for each finite subset

A ⊂ N and for each choice of signs εi = ±1 we have

C1‖
∑

i∈A

ψi‖ ≤ ‖
∑

i∈A

εiψi‖ ≤ C2‖
∑

i∈A

ψi‖.

It is known ([28]) that quasi-greedy bases are UCC bases. To formulate

our results we need some of the basic concepts of the Banach space theory

from [13, Definition 1.e.12]. First, let us recall the definition of type and

cotype. Let {εi} be a sequence of independent Rademacher variables. We

say that a Banach space X has type p if there exists a universal constant

C3 such that for fk ∈ X

(

Aveεk=±1‖
n
∑

k=1

εkfk‖p

)1/p

≤ C3

(

n
∑

k=1

‖fk‖p

)1/p

,

and X is of cotype q if there exists a universal constant C4 such that for

fk ∈ X

(2.8)

(

Aveεk=±1‖
n
∑

k=1

εkfk‖q

)1/q

≥ C4

(

n
∑

k=1

‖fk‖q

)1/q

.

It is known that Lp, 2 ≤ p <∞ has type 2. Consider uniformly bounded

orthonormal quasi-greedy basis Ψ = {ψj}∞j=1 in Lp, 2 < p < ∞. Then we

obtain from its orthonormality and property UCC that for any set A of

indices of cardinality m we have

m1/2 = ‖
∑

k∈A

ψk‖2 ≤ ‖
∑

k∈A

ψk‖p � (Aveεk=±1‖
∑

k∈A

εkψk‖p
p)

1/p

(2.9) � ‖(
∑

k∈A

|ψk|2)1/2‖p ≤ C(p)(
∑

k∈A

‖ψk‖2
p)

1/2 � m1/2.

Equation (2.9) shows that for uniformly bounded orthonormal quasi-

greedy basis Ψ = {ψj}∞j=1 in Lp, 2 < p < ∞, we have ϕ(m,Ψ, Lp) � m1/2.

In particular, (2.9) implies that Ψ is democratic. We consider along with

the basis Ψ in Lp its dual basis Ψ∗ in Lp′. By orthonormality of Ψ we get
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that Ψ∗ = Ψ. Properties of dual bases to quasi-greedy and almost greedy

bases are discussed in detail in [2]. In particular, by Proposition 4.4 and

Theorem 5.4 from [2] relation ϕ(m,Ψ, Lp) � m1/2 implies that Ψ is also a

quasi-greedy basis of Lp′ . We formulate this conclusion as a theorem.

Theorem 2.2. Let Ψ be a uniformly bounded orthonormal quasi-greedy

basis Ψ = {ψj}∞j=1 in Lp, 2 < p < ∞. Then Ψ is a quasi-greedy basis

of Lp′.

The definition of democratic basis is given in the Introduction (see Def-

inition 1.3).

Proposition 2.1. Let Ψ be a uniformly bounded quasi-greedy basis Ψ =

{ψj}∞j=1 in Lq, 1 < q <∞. Then Ψ is democratic with fundamental function

ϕ(m,Ψ, Lq) � m1/2.

Proof. We give the proof only for 1 < q ≤ 2 as the case 2 < q < ∞ is

similar. Using the UCC property of quasi-greedy bases and using the fact

that Lq, 1 < q ≤ 2, is of cotype 2 we obtain as in (2.9)

‖
∑

k∈A

ψk‖q � (Aveεk=±1‖
∑

k∈A

εkψk‖2
q)

1/2 ≥ Cm1/2.

Also

‖
∑

k∈A

ψk‖q � (Aveεk=±1‖
∑

k∈A

εkψk‖2
q)

1/2 ≤ (Aveεk=±1‖
∑

k∈A

εkψk‖2
2)

1/2 ≤ Cm1/2.

Combination of Proposition 2.1 and Remark 2.3 gives the following in-

equalities which we will often use.

Proposition 2.2. Let Ψ be a uniformly bounded quasi-greedy basis Ψ =

{ψj}∞j=1 in Lq, 1 < q <∞. Then we have for f ∈ Lq

(2.10) c1(q) sup
n
n1/2an(f) ≤ ‖f‖q ≤ C1(q)

∞
∑

n=1

n−1/2an(f).

This proposition implies the following analog of Lemma 2.7.

Lemma 2.9. Assume that Ψ is a uniformly bounded quasi-greedy basis Ψ =

{ψj}∞j=1 in Lq and Lp, 1 < q, p <∞. Then for any set Λ of indices we have

(2.11) ‖SΛ(f)‖p ≤ C ln(|Λ| + 1)‖f‖q.
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Proof. Let |Λ| = m. By Proposition 2.2 we obtain

‖SΛ(f)‖p ≤ C1(p)
m
∑

n=1

n−1/2an(f)

≤ c1(q)
−1C1(p)

m
∑

n=1

n−1‖f‖q ≤ C ln(|Λ| + 1)‖f‖q.

3 Construction of quasi-greedy bases

In this section we describe without proofs a general scheme of construction

of a quasi-greedy basis out of a given basis with special properties. This

scheme generalizes the one used by Wojtaszczyk in [28]. Both schemes are

based on the orthogonal Haar-type matrices, used firstly by Olevskii to

construct orthogonal systems (see [5], p. 120, [16], [17]). For the proofs of

these results we refer the reader to [3]

3.1 Assumptions

Let X be a separable Banach space and Φ = {ϕj}∞j=1 be a semi-normalized

basis of X, 0 < c0 ≤ ‖ϕj‖ ≤ C0. We assume that Φ is a Besselian basis of

X: for any

(3.1) f =
∞
∑

j=1

cj(f)ϕj

we have

(3.2) (
∞
∑

j=1

|cj(f)|2)1/2 ≤ C1‖f‖.

Assume that Φ can be split into two systems F = {fs}∞s=1, fs = ϕm(s)

and E = {ej}∞j=1, ej = ϕn(j) with increasing sequences {m(s)} and {n(j)}
in such a way that E has the following special property. For any sequence

{cj} we have

(3.3) ‖
∞
∑

j=1

cjej‖ ≤ C2(
∞
∑

j=1

|cj |2)1/2.

In our construction of quasi-greedy bases we will use special matrices.

Let a collection of matrices A = {A(n)}∞n=1, A(n) is of size n × n, satisfy

the following properties.
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M1. Singular numbers of matrices A(n) and their inverse A(n)−1 are

uniformly bounded:

(3.4) sj(A(n)) ≤ C3; sj(A(n)−1) ≤ C3.

M2. For the elements of the first column of matrix A(n) = [aij(n)] we

have

(3.5) |ai1(n)| ≤ C4n
−1/2.

3.2 Construction

Let {nk}∞k=0, n0 = 0, be an increasing sequence of integers such that

(3.6) nk+1 ≥ n2
k.

For a fixed natural number k we pick the basis elements

(3.7) gk
1 := fk, gk

i := eSk−1+i−1, i = 2, . . . , nk,

where {Sj} is defined recursively as

Sj = Sj−1 + nj − 1, j = 1, 2, . . . , S0 = 0.

We build a new system of elements {ψk
i }nk

i=1 using a matrix A(nk) in the

following way:

(3.8) (ψk
1 , . . . , ψ

k
nk

)T = A(nk)(g
k
1 , . . . , g

k
nk

)T .

In other words, for i ∈ [1, nk] we have

ψk
i =

nk
∑

j=1

aij(nk)g
k
j .

We begin with a property of the system G := {gk
i }nk,∞

i=1,k=1 = {gj(k,i)} ordered

in the lexicographical way: j(k′, i′) > j(k, i) if either k′ > k or k′ = k and

i′ > i.

Proposition 3.1. The system G is a Besselian basis of X.

We define the system Ψ = {ψk
i }nk ,∞

i=1,k=1 = {ψj(k,i)} ordered in the lexico-

graphical way: j(k′, i′) > j(k, i) if either k′ > k or k′ = k and i′ > i. The

following theorem summarizes the properties of Ψ. M1 we obtain

Theorem 3.1. The basis Ψ is a Besselian quasi-greedy basis of X.
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3.3 Extra assumptions

First of all we note that if Φ ⊂ H is from a Hilbert space H and forms

an orthonormal basis there then G also forms an orthonormal basis in H.

Second, if matrices A(n) are orthogonal matrices then Ψ is an orthonormal

basis of H.

Next, assume that Y is a subspace of X with a stronger norm: ‖f‖X ≤
‖f‖Y . Assume that the basis Φ is from Y and ‖ϕj‖Y ≤ B, j = 1, . . . . We

impose an extra assumption on the matrices A(n) too.

M3. Assume that for all n

(3.9)
n
∑

j=1

|aij(n)| ≤ C5.

Under condition M3, which is satisfied by the Haar matrices, we easily

derive from the definition of Ψ that

‖ψk
i ‖Y ≤ C5B.

Let X = Lp(0, 2π), 2 < p < ∞, Y = L∞(0, 2π). Consider Φ = T
to be the trigonometric system {eikx}. Define E := {ei2jx}∞j=1. It is well

known that (3.3) holds for this system. By Riesz theorem T is a basis of Lp,

1 < p < ∞. Trivially, T has Besselian property in Lp, 2 < p < ∞. Thus,

applying the above construction for the case where the matrices A(n) are

orthogonal we obtain the following theorem.

Theorem 3.2. There exists a uniformly bounded orthonormal system Ψ =

{ψj}∞j=1 consisting of trigonometric polynomials which is a quasi-greedy basis

for Lp[0, 1] for all 1 < p <∞.

Proof. The quasi-greedy property holds for all p > 2 by the preceding dis-

cussion. It holds also for 1 < p < 2 by the duality result Theorem 2.2.

Remark 3.1. The orthonormal system constructed in Theorem 3.2 will

also be a quasi-greedy basis for other function spaces, including the Lorentz

spaces Lp,q[0, 1] for 1 < p <∞, 1 ≤ q <∞.

Remark 3.2. Theorem 3.2 can also be obtained from the construction of

[15] by replacing the Walsh system by the trigonometric system. We thank

the referee for this observation.
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4 Uniformly bounded quasi-greedy systems

The main result of this section is that there is no analog of Theorem 3.2

for L1[0, 1]. It is known that L1[0, 1] has a quasi-greedy basis [1, Theo-

rem 7.1] and, by a theorem of Szarek [21], that L1[0, 1] does not admit any

uniformly integrable Schauder basis (see also [8]). On the other hand, the

trigonometric system is a uniformly bounded Markushevich basis. There-

fore, it is natural to ask whether L1[0, 1] admits a uniformly bounded (or

uniformly integrable) quasi-greedy Markushevich basis Ψ. We answer this

question negatively.

First, we recall the relevant definitions. Let X be a separable Banach

space. Let Ψ = {ψj}∞j=1 ⊂ X be a semi-normalized fundamental system, i.e.

there exist positive constants a and b such that

(4.1) a ≤ ‖ψj‖ ≤ b (j ≥ 1),

with biorthogonal sequence {ψ∗
j}∞j=1 ⊂ X∗. Ψ is said to be a Markushevich

basis if the mapping f 7→ {ψ∗
j (f)}∞j=1 (f ∈ X) is one-one. In other words,

each f ∈ X is uniquely determined by its coefficient sequence {ψ∗
j (f)}∞j=1.

We say that Ψ is quasi-greedy if there exists a constant C such that

(4.2) ‖Gm(f,Ψ)‖ ≤ C‖f‖ (m ≥ 1, f ∈ X).

Wojtaszczyk [28] proved that (4.2) is equivalent to the norm convergence of

{Gm(f)} to f for all f ∈ X.

It follows easily from (4.1) and (4.2) that {ψ∗
j}∞j=1 is semi-normalized in

X∗. Indeed, for f ∈ X, we have

|ψ∗
j (f)| ≤ a1(f) ≤ (1/a)‖G1(f)‖ ≤ (C/a)‖f‖,

and hence ‖ψ∗
j‖ ≤ C/a. On the other hand, since ψ∗

j (ψj) = 1, we also have

‖ψ∗
j‖ ≥ 1/‖ψj‖ ≥ 1/b.

The following result was proved for quasi-greedy bases (actually for the

larger class of thresholding-bounded bases) in [1, Lemma 8.2]. The proof

easily carries over to quasi-greedy Markushevich bases (cf. also the proof of

Lemma 2.3 above).

Proposition 4.1. Suppose that Ψ is a semi-normalized quasi-greedy Marku-

shevich basis for X. There exists a constant C such that for all finite sets

Λ ⊂ N with |Λ| = N ≥ 2, we have

max
±

‖
∑

n∈Λ

±ψ∗
n(f)ψn‖ ≤ C lnN‖f‖ (f ∈ X).
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In particular,

‖SΛ(f)‖ ≤ C lnN‖f‖ (f ∈ X).

Recall that a bounded operator T : X → Y , where X and Y are Banach

spaces, is absolutely summing if there exists a constant C such that, for all

n ≥ 1 and for all finite sequences {fj}n
j=1 ⊂ X, we have

n
∑

j=1

‖T (fj)‖ ≤ C max
±

‖
n
∑

j=1

±fj‖.

The smallest such constant is denoted π1(T ). A Banach space X is called a

GT space [19] if every bounded operator T : X → `2 is absolutely summing.

X is a GT space if and only if there exists a constant B such that π1(T ) ≤
B‖T‖ for all bounded T : X → `2. Grothendieck [6] proved that L1(µ)

spaces are GT spaces.

The proof of the following result is based on the methods used in [1,

Section 8].

Theorem 4.1. Suppose that X is a GT space. Let Ψ be a semi-normalized

quasi-greedy Markushevich basis for X. Then Ψ is democratic and its fun-

damental function satisfies ϕ(n) � n.

For 1 ≤ p ≤ ∞, recall that a Markushevich basis Ψ is said to be p-

Besselian if there exists a constant Cp such that

(
∞
∑

n=1

|ψ∗
n(f)|p)1/p ≤ Cp‖f‖ (f ∈ X)

(with the obvious modification for p = ∞). Since ψ is quasi-greedy, C∞ =

supn≥1 ‖ψ∗
n‖ <∞, so Ψ is ∞-Besselian.

We will derive Theorem 4.1 from the following Theorem 4.2.

Theorem 4.2. Suppose that Ψ is a semi-normalized quasi-greedy Marku-

shevich basis for a GT space X. Then Ψ is r-Besselian for all r > 1.

We need the following key lemma.

Lemma 4.1. Suppose that Ψ is a semi-normalized quasi-greedy Markushe-

vich basis for a GT space X. If Ψ is p-Besselian for some 2 ≤ p ≤ ∞, then

Ψ is r-Besselian for all r satisfying 1/r < 1/p + 1/2.

Proof. We shall give the proof for the case 2 < p < ∞ as the case p = ∞
requires only minor changes. Let 1/s = 1/p + 1/2. Suppose that Λ ⊂ N,
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with |Λ| = N , and that (ηn)n∈Λ is any fixed choice of signs. Choose f ∈ X,

with ‖f‖ = 1, such that

∑

n∈Λ

ηnψ
∗
n(f) ≥ 1

2
‖
∑

n∈Λ

ηnψ
∗
n‖.

Next consider T : X → `2(Λ) defined as follows:

T (g) = (ψ∗
n(g)|ψ∗

n(f)|s−1)n∈Λ (g ∈ X).

Then, applying Hölder’s inequality and using the fact that Ψ is p-Besselian,

we get

‖T (g)‖ = (
∑

n∈Λ

|ψ∗
n(f)|2s−2|ψ∗

n(g)|2)1/2

≤ (
∑

n∈Λ

|ψ∗
n(f)|s)1−1/s(

∑

n∈Λ

|ψ∗
n(g)|p)1/p

≤ Cp(
∑

n∈Λ

|ψ∗
n(f)|s)1−1/s‖g‖.

Hence ‖T‖ ≤ Cp(
∑

n∈Λ |ψ∗
n(f)|s)1−1/s. Since X is a GT space, we have

∑

n∈Λ

|ψ∗
n(f)|s =

∑

n∈Λ

|ψ∗
n(f)|‖T (ψn)‖

≤ B‖T‖ sup
εn=±1

‖
∑

n∈Λ

εnψ
∗
n(f)ψn‖

≤ BCp(
∑

n∈Λ

|ψ∗
n(f)|s)1−1/s sup

εn=±1
‖
∑

n∈Λ

εnψ
∗
n(f)ψn‖.

Thus,

(
∑

n∈Λ

|ψ∗
n(f)|s)1/s ≤ BCp sup

εn=±1
‖
∑

n∈Λ

εnψ
∗
n(f)ψn‖.

Since |Λ| = N , Proposition 4.1 yields

sup
εn=±1

‖
∑

n∈Λ

εnψ
∗
n(f)ψn‖ ≤ C ′(lnN),

where C ′ is independent of N . Hence

(
∑

n∈Λ

|ψ∗
n(f)|s)1/s ≤ BC ′Cp(lnN).

Thus,

‖
∑

n∈Λ

ηnψ
∗
n‖ ≤ 2

∑

n∈Λ

ηnψ
∗
n(f)

≤ 2(
∑

n∈Λ

|ψ∗
n(f)|s)1/sN1−1/s

≤ BC ′Cp(lnN)N1−1/s.
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Now suppose that g ∈ X with ‖g‖ = 1. For a > 0, let

Λ(a) = {n ∈ N : |ψ∗
n(g)| ≥ a} and N(a) = |Λ(a)|.

Then, for some choice of signs (ηn), we have

aN(a) ≤
∑

n∈Λ(a)

ηnψ
∗
n(g)

≤ ‖
∑

n∈Λ(a)

ηnψ
∗
n‖

≤ BC ′Cp(lnN(a))N(a)1−1/s.

Thus, for some constant C ′′, we have N(a) ≤ C ′′a−t provided t satisfies

1

r
<

1

t
<

1

s
.

Note that

sup
n≥1

|ψ∗
n(g)| ≤ sup

n≥1
‖ψ∗

n‖∞ = C∞.

Hence

∞
∑

n=1

|ψ∗
n(g)|r ≤

∞
∑

n=0

N(2−nC∞)(21−nC∞)r

≤ 2rC ′′

∞
∑

n=0

(2−nC∞)r−t <∞.

Hence Ψ is r-Besselian.

Applying the lemma twice, starting with p = ∞, it follows that Ψ is

r-Besselian for all r > 1, which proves Theorem 4.2.

Proof of Theorem 4.1. By Theorem 4.2, Ψ is 2-Besselian with constant C2 <

∞. Hence, for every finite Λ ⊂ N, the mapping T : X → `2(Λ) given by

f 7→ (ψ∗
n(f))n∈Λ satisfies ‖T‖ ≤ C2. Since X is a GT space the absolutely

summing norm of T satisfies π1(T ) ≤ BC . Thus,

|Λ| =
∑

n∈Λ

‖T (ψn)‖2 ≤ BC max
±

‖
∑

n∈Λ

±ψn‖.

Since Ψ is quasi-greedy, and hence unconditional for constant coefficients,

it follows that ϕ(n) � n.

From [2, Lemma 3.2] and Theorem 4.1 we obtain the following result.
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Corollary 4.1. Suppose that Ψ is a semi-normalized quasi-greedy Marku-

shevitch basis for a GT space X. There exists a constant C such that for all

g ∈ X we have

an(g) ≤ Cn−1‖g‖.

Recall that a system {fj} ⊂ L1[0, 1] is uniformly integrable if, given

ε > 0, there exists δ > 0 such that if λ(A) < δ, where λ denotes Lebesgue

measure, then
∫

A
|fj| dλ < ε for all j ≥ 1. Clearly, uniformly bounded

systems are uniformly integrable.

Theorem 4.3. Let Ψ be a semi-normalized quasi-greedy Markushevich basis

for L1[0, 1]. Then no subsequence of Ψ is uniformly integrable. Hence every

subsequence of Ψ contains a further subsequence equivalent to the unit vector

basis of `1.

Proof. Let {fj} ⊂ L1[0, 1] be any uniformly integrable system. Given ε > 0,

choose M > 0 such that ‖fjχ{|fj|>M}‖1 < ε for all j. Then

Ave± ‖
n
∑

j=1

±fj‖1 ≤ nε+ Ave± ‖
n
∑

j=1

±fjχ{|fj|≤M}‖2 ≤ nε+M
√
n.

Hence Ave± ‖
∑n

j=1 ±fj‖1 = o(n). Since L1[0, 1] is a GT space, Theorem 4.1

implies that {fj} is not a subsequence of any quasi-greedy Markushevich

basis. Finally, it is well-known that semi-normalized sequences in L1[0, 1]

are either uniformly integrable or contain a subsequence equivalent to the

unit vector basis of `1.

Remark 4.1. Complemented subspaces of L1 spaces are GT spaces. Hence

the previous theorem extends to quasi-greedy Markushevich bases of com-

plemented (infinite-dimensional) subspaces of L1[0, 1]. A related result of

Popov [20] asserts that complemented subspaces of L1[0, 1] do not admit a

uniformly integrable Schauder basis.

Next we consider the Hardy spaces Hp(D) (1 ≤ p < ∞) of analytic

functions on the disk D := {z ∈ C : |z| < 1} equipped with the norm

‖f‖p = sup
0<r<1

(
1

2π

∫ 2π

0

|f(reiθ|p dθ)1/p.

Using the system {zn}∞n=0 instead of T in the proof of Theorem 3.2 yields

the following result.

Theorem 4.4. There exists an orthonormal system of uniformly bounded

analytic polynomials which is a quasi-greedy basis for Hp(D) for 1 < p <∞.
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Using some deep results from Banach space theory we can extend the

latter result also to the case p = 1.

Theorem 4.5. H1(D) admits a semi-normalized uniformly bounded quasi-

greedy basis of analytic polynomials.

Proof. By Paley’s inequality [18]

(
∞
∑

n=1

|f̂(2n)|2)1/2 � ‖
∞
∑

n=1

f̂ (2n)z2n‖1 ≤ 2‖f‖1

Hence P (f) =
∑∞

n=1 f̂(2n)z2n

is a bounded projection on H1(D). Let X :=

kerP and let H := [ej]
∞
j=1, where ej := z2j

. Then H1(D) is linearly isomor-

phic to X ⊕H (equipped with the sum norm), which in turn is isomorphic

to X⊕`2. Since X contains a complemented subspace isomorphic to `2 (e.g.,

the subspace spanned by (z3j

)∞j=1), it follows that X is also isomorphic to

X ⊕ `2 and thus also isomorphic to H1(D). Hence, by a theorem of Maurey

[14], X has a normalized unconditional basis (fj)
∞
j=1. The intersection of X

with the linear space of analytic polynomials is dense in X. Hence we may

assume that each fj is an analytic polynomial. Since H1(D) has cotype 2

(see (2.8)), it follows that {fj}∞j=1 is Besselian. Then Φ = {fj}∞j=1 ∪ {ej}∞j=1

is a basis for H1(D) satisfying (3.2) and (3.3). Assume the matrices {A(n)}
satisfy M1-M3 and, in addition, that nk ≥ ‖fk‖2

∞. By the construction,

the system Ψ is a semi-normalized quasi-greedy basis. Moreover, by M2

and M3,

sup
j≥1

‖ψj‖∞ ≤ sup
k≥1

‖fk‖∞√
nk

+ C5 sup
k≥1

‖ek‖ ≤ 1 + C5.

Thus, Ψ is uniformly bounded.

Finally, let us mention that Theorem 3.2 may be generalized to certain

closed subspaces of Lp[0, 1], for p > 2, including those spanned by any

subsequence of the trigonometric system. Recall that {ψj} ⊂ L2[0, 1] is a

Riesz sequence if ‖∑ cjψj‖2 � (
∑ |cj|2)1/2 for all scalars {cj}.

Proposition 4.2. Let X be a closed subspace of Lp[0, 1] for 2 ≤ p < ∞.

Suppose that X has a uniformly bounded Schauder basis {ψj} which is a

Riesz sequence in L2[0, 1]. Then X admits a uniformly bounded quasi-greedy

basis.

Proof. Since Lp[0, 1] has an unconditional basis and {ψj} is weakly null,

it follows by a standard “gliding hump” argument that some subsequence
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{ψj}j∈A is unconditional. Since Lp[0, 1] has type 2 (for the upper estimate)

and {ψj} is a Riesz sequence in L2[0, 1] (for the lower estimate) it follows

that ‖∑j∈A cjψj‖p � (
∑

j∈A |cj|2)1/2 for all scalars {cj}, i.e., {ψj}j∈A is a

sequence in X that is equivalent to the unit vector basis of `2. Since {ψj}
is a Riesz sequence in L2[0, 1], we have, for all f ∈ X,

‖
∑

cj(f)ψj‖p ≥ ‖
∑

cj(f)ψj‖2 ≥ k1(
∑

j∈A

|cj(f)|2)1/2 ≥ k2‖
∑

j∈A

cj(f)ψj‖p,

where k1 and k2 are constants. Hence the projection Pf =
∑

j∈A cj(f)ψj

is bounded on X, which implies that X is linearly isomorphic to [ψj]j /∈A ⊕
[ψj]j∈A. The fact that {ψj} is a Riesz sequence in L2[0, 1] implies that {ψj}
is a (uniformly bounded) Besselian basis for X. The proof is completed as

in the discussion preceding Theorem 3.2.

5 Lebesgue-type inequalities I

Our main interest in this section is to prove Lebesgue-type inequalities for

greedy approximation in Lp, 2 ≤ p ≤ ∞, under different assumptions on a

basis Ψ. In this section we assume that Ψ is a uniformly bounded basis. In

addition we assume that Ψ is a certain type basis (quasi-greedy basis, Riesz

basis) in one of the spaces L2, Lq, 1 < q < 2, or Lq, 2 < q < ∞. We will

often use the following lemma.

Lemma 5.1. Suppose that X ⊂ Y are two Banach spaces such that ‖·‖Y ≤
‖ · ‖X. Assume that a basis of X Ψ satisfies the following property: For any

set of indices Λ

‖SΛ(f)‖X ≤ w(|Λ|)‖f‖Y .

Then for each f ∈ X and any m-term polynomial

pm =
∑

k∈P

bkψk, |P | = m,

we have

‖f − SP (f)‖X ≤ ‖f − pm‖X + w(m)‖f − pm‖Y .

Proof. It is a simple one line proof. We have

‖f−SP (f)‖X = ‖f−pm(f)−SP (f−pm(f)‖X ≤ ‖f−pm‖X+w(m)‖f−pm‖Y .
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We now proceed to a systematic presentation of new results.

Theorem 5.1. Assume that Ψ is a uniformly bounded Riesz basis of L2.

Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have for 2 ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + Cmh(p)‖f − tm‖2.

Corollary 5.1. Assume that Ψ is a uniformly bounded Riesz basis of L2.

Then we have for 2 ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ Cmh(p)σm(f,Ψ)p.

Proof. Denote by Q the set of indices picked by the greedy algorithm after

m iterations

Gm(f) := Gm(f,Ψ) =
∑

k∈Q

ck(f)ψk.

We use the representation

(5.1) f −Gm(f) = f − SQ(f) = f − SP (f) + SP (f) − SQ(f).

First, we bound ‖f − SP (f)‖p. By Lemma 5.1 and Lemma 2.1 we get

(5.2) ‖f − SP (f)‖p ≤ ‖f − tm‖p + Cmh(p)‖f − tm‖2.

Second, we write

‖SP (f) − SQ(f)‖p = ‖SP\Q(f) − SQ\P(f)‖p

(5.3) ≤ ‖SP\Q(f)‖p + ‖SQ\P(f)‖p.

Using Lemma 2.1 we obtain

(5.4) ‖SP (f) − SQ(f)‖p ≤ Cmh(p)(‖SP\Q(f)‖2 + ‖SQ\P (f)‖2).

The definition of Q implies

‖SP\Q(f)‖2 ≤ C(
∑

k∈P\Q

|ck(f)|2)1/2

(5.5) ≤ C(
∑

k∈Q\P

|ck(f)|2)1/2 ≤ C‖SQ\P(f)‖2.

Next,

(5.6) ‖SQ\P (f)‖2 = ‖SQ\P(f − tm)‖2 ≤ C‖f − tm‖2.

Combining (5.1) – (5.6) we complete the proof of Theorem 5.1.
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We now impose a little weaker assumption on a basis Ψ than the one in

Theorem 5.1.

Theorem 5.2. Assume that Ψ is a uniformly bounded quasi-greedy basis of

L2. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have for 2 ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + Cmh(p) ln(m+ 1)‖f − tm‖2.

Corollary 5.2. Assume that Ψ is a uniformly bounded quasi-greedy basis

of L2. Then for 2 ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ Cmh(p) ln(m+ 1)σm(f,Ψ)p.

Proof. This proof goes along the lines of proof of Theorem 5.1. However,

the details are different because we need to use properties of quasi-greedy

bases instead of properties of Riesz bases. We use notations from the proof

of Theorem 5.1 and the representation (5.1). By Lemma 5.1 and Lemma

2.6 we get for ‖f − SP (f)‖p

(5.7) ‖f − SP (f)‖p ≤ ‖f − tm‖p + Cmh(p) ln(m+ 1)‖f − tm‖2.

Using Lemma 2.6 we obtain from (5.3)

(5.8) ‖SP (f) − SQ(f)‖p ≤ Cmh(p)(‖SP\Q(f)‖2 + ‖SQ\P (f)‖2).

Next, we have by Theorem 2.1

‖SQ\P(f)‖2 = ‖SQ\P (f − tm)‖2 ≤ C2(2)
m
∑

n=1

n−1/2an(SQ\P (f − tm))

≤ C

m
∑

n=1

n−1/2an(f − tm) = C

m
∑

n=1

n−1(n1/2an(f − tm))

(5.9) ≤ C ln(m+ 1) sup
n
n1/2an(f − tm) ≤ C ln(m+ 1)‖f − tm‖2.

For the SP\Q(f) we have

‖SP\Q(f)‖2 ≤ C2(2)

m
∑

n=1

n−1/2an(SP\Q(f))
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≤ C2(2)
m
∑

n=1

n−1/2an(SQ\P (f)) = C2(2)
m
∑

n=1

n−1/2an(SQ\P(f − tm))

which has been estimated in (5.9)

(5.10) ≤ C ln(m+ 1)‖f − tm‖2.

Combining (5.7) – (5.10) we complete the proof of Theorem 5.2.

Theorem 5.3. Assume that Ψ is a democratic quasi-greedy basis of X.

Then for any f ∈ X

‖f −Gm(f,Ψ)‖X ≤ C ln(m+ 1)σm(f,Ψ)X.

Corollary 5.3. Assume that Ψ is a uniformly bounded quasi-greedy basis

of Lp, 1 < p <∞. Then

‖f −Gm(f,Ψ)‖p ≤ C(p) ln(m+ 1)σm(f,Ψ)p.

Proof. It is known (see [2]) that a democratic and quasi-greedy basis is an

almost greedy basis. Therefore, the following inequality

‖f −Gm(f,Ψ)‖X ≤ Cσ̃m(f,Ψ)X

holds for any f ∈ X. It remains to apply Lemma 2.4 to complete the proof

of Theorem 5.3. Corollary 5.3 follows from Theorem 5.3 and Proposition

2.1.

Theorem 5.4. Assume that Ψ is a uniformly bounded quasi-greedy basis of

Lq, 1 < q <∞. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have for q ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + C(p, q)m(1−q/p)/2 ln(m+ 1)‖f − tm‖q.

Corollary 5.4. Assume that Ψ is a uniformly bounded quasi-greedy basis

of Lq, 1 < q <∞. Then for q ≤ p ≤ ∞

‖f −Gm(f,Ψ)‖p ≤ C(p, q)m(1−q/p)/2 ln(m+ 1)σm(f,Ψ)p.
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Proof. This proof goes along the lines of proof of Theorem 5.2. We use

notations from the proof of Theorem 5.2 and the representation (5.1). By

Lemma 5.1 and Lemma 2.6 we get for ‖f − SP (f)‖p

(5.11) ‖f − SP (f)‖p ≤ ‖f − tm‖p + C(p, q)m(1−q/p)/2 ln(m+ 1)‖f − tm‖q.

Using Lemma 2.6 we obtain from (5.3)

(5.12) ‖SP (f) − SQ(f)‖p ≤ Cm(1−q/p)/2(‖SP\Q(f)‖q + ‖SQ\P(f)‖q).

By Lemma 2.3 we estimate

‖SQ\P (f)‖q = ‖SQ\P (f − tm)‖q ≤ C ln(m+ 1)‖f − tm‖q.

We give another proof of this bound because it will be used in estimating

‖SP\Q(f)‖q. We have by Proposition 2.2

‖SQ\P (f)‖q = ‖SQ\P(f − tm)‖q ≤ C(q)
m
∑

n=1

n−1/2an(SQ\P(f − tm))

≤ C(q)
m
∑

n=1

n−1/2an(f − tm) = C(q)
m
∑

n=1

n−1(n1/2an(f − tm))

(5.13) ≤ C(q) ln(m+ 1) sup
n
n1/2an(f − tm) ≤ C(q) ln(m+ 1)‖f − tm‖q.

For the SP\Q(f) we have

‖SP\Q(f)‖q ≤ C(q)
m
∑

n=1

n−1/2an(SP\Q(f))

≤ C(q)
m
∑

n=1

n−1/2an(SQ\P (f)) = C(q)
m
∑

n=1

n−1/2an(SQ\P (f − tm))

which has been estimated in (5.13)

(5.14) ≤ C(q) ln(m+ 1)‖f − tm‖q.

Combining (5.11) – (5.14) we complete the proof of Theorem 5.4.
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6 Lebesgue-type inequalities II

In this section we continue to prove Lebesgue-type inequalities for greedy

approximation inLp under different assumptions on a basis Ψ. In this section

we assume that Ψ is a quasi-greedy basis for a pair of spaces: Lq, 1 < q <∞,

and Lp, q ≤ p.

Theorem 6.1. Assume that Ψ is a semi-normalized quasi-greedy basis for

both Lq and Lp with 1 < q ≤ 2 ≤ p <∞. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + C(p, q) ln(m+ 1)‖f − tm‖q.

Corollary 6.1. Assume that Ψ is a semi-normalized quasi-greedy basis for

both Lq and Lp with 1 < q ≤ 2 ≤ p <∞. Then

‖f −Gm(f,Ψ)‖p ≤ C(p, q) ln(m+ 1)σm(f,Ψ)p.

Proof. This proof goes along the lines of proof of Theorem 5.2. We use

notations from the proof of Theorem 5.1 and the representation (5.1). By

Lemma 5.1 and Lemma 2.7 we get for ‖f − SP (f)‖p

(6.1) ‖f − SP (f)‖p ≤ ‖f − tm‖p + C(p, q) ln(m+ 1)‖f − tm‖q.

We obtain from (5.3)

(6.2) ‖SP (f) − SQ(f)‖p ≤ ‖SP\Q(f)‖p + ‖SQ\P(f)‖p.

Next, we have by Theorem 2.1

‖SQ\P(f)‖p = ‖SQ\P (f − tm)‖p ≤ C2(p)

m
∑

n=1

n−1/2an(SQ\P (f − tm))

≤ C(p)
m
∑

n=1

n−1/2an(f − tm) = C(p)
m
∑

n=1

n−1(n1/2an(f − tm))

(6.3) ≤ C(p) ln(m+ 1) sup
n
n1/2an(f − tm) ≤ C(p, q) ln(m+ 1)‖f − tm‖q.

For the SP\Q(f) we have by Theorem 2.1

‖SP\Q(f)‖p ≤ C2(p)

m
∑

n=1

n−1/2an(SP\Q(f))
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≤ C2(p)
m
∑

n=1

n−1/2an(SQ\P (f)) = C2(p)
m
∑

n=1

n−1/2an(SQ\P(f − tm))

which has been estimated in (6.3)

(6.4) ≤ C(p, q) ln(m+ 1)‖f − tm‖q.

Combining (6.1) – (6.4) we complete the proof of Theorem 6.1.

Remark 6.1. The statement of Corollary 6.1 holds even if we drop the

assumption that Ψ is quasi-greedy basis of Lq.

Proof. Assumption that Ψ is semi-normalized for both Lq and Lp, q ≤ 2 ≤ p,

implies that it is semi-normalized in L2. Then as in Proposition 2.1 we can

prove that Ψ is democratic with ϕ(m) � m1/2. It remains to apply Theorem

5.3.

Now we prove sharper results for uniformly bounded orthonormal quasi-

greedy basis.

Theorem 6.2. Assume that Ψ is a uniformly bounded orthonormal quasi-

greedy basis for Lp, 2 ≤ p <∞. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have

(6.5) ‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + C(p) ln(m+ 1)‖f − tm‖p′,

(6.6) ‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + C(p)(ln(m+ 1))1/2‖f − tm‖2.

Corollary 6.2. Assume that Ψ is a uniformly bounded orthonormal quasi-

greedy basis for Lp, 2 ≤ p <∞. Then

‖f −Gm(f,Ψ)‖p ≤ C(p)(ln(m+ 1))1/2σm(f,Ψ)p.

Proof. By Theorem 2.2 Ψ is a quasi-greedy basis of Lp′. Thus, (6.5) follows

from Theorem 6.1 with q = p′. We now prove (6.6). As in the proof of

Theorem 6.1 we obtain by Lemma 5.1 and Lemma 2.8

(6.7) ‖f − SP (f)‖p ≤ ‖f − tm‖p + C(p)(ln(m+ 1))1/2‖f − tm‖2.
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By Theorem 2.1 we obtain

‖SQ\P (f)‖p = ‖SQ\P (f − tm)‖p ≤ C(p)
m
∑

n=1

n−1/2an(f − tm)

(6.8)

≤ C(p)(

m
∑

n=1

n−1)1/2(

m
∑

n=1

an(f − tm)2)1/2 ≤ C(p)(ln(m+ 1))1/2‖f − tm‖2.

As in the proof of Theorem 6.1 we get

‖SP\Q(f)‖p ≤ C(p)
m
∑

n=1

n−1/2an(f − tm)

and by the intermediate step in (6.8)

≤ C(p)(ln(m+ 1))1/2‖f − tm‖2.

It remains to use representation (5.1) and inequality (6.2).

If Ψ is assumed to be uniformly bounded, then the Lebesgue-type in-

equality of Theorem 6.1 holds whenever q ≤ p.

Theorem 6.3. Assume that Ψ is a uniformly bounded quasi-greedy basis

for both Lq and Lp with 1 < q ≤ p <∞. Then for any m-term polynomial

tm =
∑

k∈P

bkψk, |P | = m,

we have

‖f −Gm(f,Ψ)‖p ≤ ‖f − tm‖p + C(p, q) ln(m+ 1)‖f − tm‖q.

Proof. As in the proof of Theorem 6.1 we obtain by Lemma 5.1 and Lemma

2.9

(6.9) ‖f − SP (f)‖p ≤ ‖f − tm‖p + C(p, q) ln(m+ 1)‖f − tm‖q.

By Proposition 2.2 we obtain

‖SQ\P (f)‖p = ‖SQ\P(f − tm)‖p ≤ C(p, q)

m
∑

n=1

n−1/2an(f − tm)

(6.10) ≤ C(p, q)

m
∑

n=1

n−1‖f − tm‖q ≤ C(p, q) ln(m+ 1)‖f − tm‖q.
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As in the proof of Theorem 6.1 we get

‖SP\Q(f)‖p ≤ C(p, q)
m
∑

n=1

n−1/2an(f − tm)

and by the intermediate step in (6.10)

≤ C(p, q) ln(m+ 1))‖f − tm‖q.

It remains to use representation (5.1) and inequality (6.2).
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