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Abstract

We continue the study of 1-greedy bases initiated by F. Albiac and P. Woj-
taszczyk [1]. We answer several open problems they raised concerning symme-
try properties of 1-greedy bases and the improving of the greedy constant by
renorming. We show that 1-greedy bases need not be symmetric nor subsym-
metric. We also prove that one cannot in general make a greedy basis 1-greedy
as demonstrated for the Haar basis of dyadic Hardy space H1(R) and for the
unit vector basis of Tsirelson space. On the other hand, we give a renorming of
Lp (1 < p < ∞) that makes the Haar basis 1-unconditional and 1-democratic.
Other results in this paper clarify the relationship between various basis con-
stant that arise in the context of greedy bases.
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Introduction

In approximation theory one is often concerned with approximating a signal
(a vector in some Banach space) with a finite linear combination from some
dictionary (a basis of the space). The greedy algorithm is perhaps the simplest
theoretical scheme for m-term approximation, which can be described as follows.
Let X be a Banach space and (ei) be a (Schauder) basis of X. Recall that this
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means that for any x ∈ X there is a unique sequence (xi) of scalars with x =∑∞
i=1 xiei. For such an x we fix a permutation ρ of N (not necessarily unique)

such that |xρ(1)| ≥ |xρ(2)| ≥ . . . . We then define the mth greedy approximant
to x by

Gm(x) =
m∑

i=1

xρ(i)eρ(i) .

For this to make sense we need inf‖ei‖ > 0, otherwise (xi) may be unbounded.
In fact, we will always assume that (ei) is seminormalized, i.e., 0 < inf‖ei‖ ≤
sup‖ei‖ < ∞, and often that (ei) is normalized, i.e., ‖ei‖ = 1 for all i ∈ N.

We measure the efficiency of the greedy algorithm by comparing it to the
best m-term approximation: for m ∈ N we let

σm(x) = inf
{∥∥∥x−

∑
i∈A

aiei

∥∥∥ : A ⊂ N, |A| ≤ m, (ai)i∈A ⊂ R
}

.

We say that (ei) is a greedy basis for X if there exists C > 0 (C-greedy) such
that

‖x− Gm(x)‖ ≤ Cσm(x) for all x ∈ X and for all m ∈ N .

The smallest C is the greedy constant of the basis. An important example
is the Haar basis of Lp[0, 1] (1 < p < ∞) which was shown to be greedy by
V. N. Temlyakov [10]. This result was later established by P. Wojtaszczyk [11]
using a different method which extended to the Haar system in one-dimensional
dyadic Hardy space Hp(R), 0 < p ≤ 1. Other examples include the unit vector
basis of `p (1 ≤ p < ∞) and c0, or an orthonormal basis of a separable Hilbert
space.

As well as in approximation theory, Schauder bases play a very important
rôle in abstract Banach space theory. The idea behind introducing a co-ordinate
system is that it makes an a priori abstract space into a concrete space of
scalar sequences. There are many deep and beautiful results in the geometry
of Banach spaces that were solved using basis techniques. Often knowing that
a space has a basis, however, is not sufficient and one needs to consider special
bases. A particularly useful notion is that of an unconditional basis: a basis
(ei) of a Banach space X is said to be unconditional if there is a constant K
(K-unconditional) such that∥∥∥∑

aiei

∥∥∥ ≤ K ·
∥∥∥∑

biei

∥∥∥ whenever |ai| ≤ |bi| for all i ∈ N .

The best constant K is the unconditional constant of the basis which we denote
by KU . The property of being unconditional is easily seen to be equivalent to
that of being suppression unconditional which means that for some constant K
(suppression K-unconditional) the natural projection onto any subsequence of
the basis has norm at most K:∥∥∥∑

i∈A

aiei

∥∥∥ ≤ K ·
∥∥∥ ∞∑

i=1

aiei

∥∥∥ for all (ai) ⊂ R, A ⊂ N .
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The smallest K is the suppression unconditional constant of the basis and is
denoted by KS . It is easy to verify that KS ≤ KU ≤ 2KS .

It is perhaps somewhat surprising that various properties of bases that have
arisen independently in abstract Banach space theory on the one hand and
in approximation theory on the other hand turned out to be closely related.
In [7], S. V. Konyagin and V. N. Temlyakov introduced the notion of greedy
and democratic bases and proved the following characterization.

Theorem 0.1 ([7, Theorem 1]). A basis of a Banach space is greedy if and only
if it is unconditional and democratic.

A basis (ei) is said to be democratic if there is a constant ∆ > 0 (∆-
democratic) such that∥∥∥∑

i∈A

ei

∥∥∥ ≤ ∆
∥∥∥ ∑

i∈B

ei

∥∥∥ whenever |A| ≤ |B| .

(In the original definition, A and B have the same cardinality, however when
(ei) is weakly null, which will always be the case for us, the two definitions are
equivalent.) The proof of this theorem provides the following estimates for the
various basis constants involved (c.f. [12, Theorem 1]):

KS ≤ C , ∆ ≤ C and C ≤ KS + K3
S ·∆ . (1)

That is, a C-greedy basis is suppression C-unconditional and C-democratic, and
conversely, a suppression unconditional and ∆-democratic basis is C-greedy with
C ≤ KS + K3

S ·∆.
In this paper we continue the study of the “isometric case”, i.e., the case

when C = 1, initiated by F. Albiac and P. Wojtaszczyk. In [1] they give a
characterization of 1-greedy bases in terms of symmetry properties of the basis.
They raise several open problems about symmetry properties of 1-greedy bases
and about the possibility of improving various basis constants by renorming. In
this paper we shall provide solutions to these problems. In order to explain their
characterization, we need some definitions. Let (ei) be a basis of a real Banach
space X. The support (with respect to the basis (ei)) of a vector x =

∑
xiei is

the set supp(x) = {i ∈ N : xi 6= 0}. The subspace of vectors with finite support
(i.e., the linear span of (ei)) can be indentified in the obvious way with the space
c00 of real sequences that are eventually zero. The basis (ei) then corresponds
to the unit vector basis of c00. Given vectors x =

∑
xiei and y =

∑
yiei in

c00, we say y is a greedy rearrangement of x (with respect to the basis (ei))
if there exists a bijection π : supp(x) → supp(y) such that |yπ(i)| = |xi| for
all i ∈ supp(x), and π(i) = i and yi = xi whenever |xi| < ‖x‖`∞ . To put
it informally, y is obtained from x by moving (and possibly changing the sign
of) some of the coefficients of x of maximum modulus to co-ordinates where
x is zero. Note that this definition differs slightly from that given in [1] in
that we allow changing the signs of coefficients of maximum modulus that are
not “moved” to other co-ordinates. This subtle difference is an important one
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but only for finite bases (c.f. Definition 3.1, Proposition 3.2 and Example 5.1
in [1]). In this paper we will only consider infinite bases, and for those the two
definitions of Property (A) below resulting from the two definitions of greedy
rearrangement are equivalent.

Theorem 0.2 ([1, Theorem 3.4]). A basis (ei) of a Banach space is 1-greedy if
and only if it satisfies the following two properties:

(i) (ei) is suppression 1-unconditional, and

(ii) (ei) satisfies Property (A): ‖x‖ = ‖y‖ whenever y is a greedy rearrangement
of x.

Property (A) is a sort of weak symmetry property for largest coefficients.
Recall that the basis (ei) of X is symmetric if there is a constant K > 0 (K-
symmetric) such that for all x =

∑∞
i=1 xiei in X, for all permutations π of N

and for all sequences (εi) of signs we have∥∥∥ ∞∑
i=1

εixπ(i)ei

∥∥∥ ≤ K ·
∥∥∥ ∞∑

i=1

xiei

∥∥∥ .

Thus, by the above characterization, the property of being 1-greedy is formally
weaker than being 1-symmetric. Albiac and Wojtaszczyk gave an example of
a 1-greedy but not 1-symmetric basis [1, Example 5.6]. Their example, being
the unit vector basis of c0 with an equivalent norm, is still symmetric, and they
raise the question whether there is a 1-greedy basis that is not symmetric [1,
Problem 6.1]. In this paper we give a positive answer to this question:

Theorem A. There is a Banach space with a normalized basis that is 1-greedy
and not symmetric.

We can strengthen the above result with considerably more work to obtain
the following.

Theorem B. There is a norm on c00⊕c00 equivalent to the norm ‖·‖`2 +‖·‖`2,1

with respect to which the unit vector basis is 1-greedy and not subsymmetric.

The definition of Lorentz space `2,1 will be recalled in Section 4. A basis (ei)
of a Banach space X is subsymmetric if it is equivalent to all its subsequences
which implies that there is a constant K > 0 (K-subsymmetric) such that for
all x =

∑∞
i=1 xiei in X, for all sequences (εi) of signs and for all increasing

sequences n1 < n2 < . . . of positive integers we have∥∥∥ ∞∑
i=1

εixieni

∥∥∥ ≤ K
∥∥∥ ∞∑

i=1

xiei

∥∥∥ .

Note that a 1-subsymmetric spaces is 1-unconditional and 1-democratic.
What justifies studying the isometric case in general is the fact that various

approximation algorithms converge trivially when some appropriate constant
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is 1. By contrast, when this constant is strictly greater than 1, the problem of
convergence can be very difficult to resolve. We mention as an example (see [3]
and [9] for details and recent developments) the so called X-greedy algorithm
whose convergence for the Haar basis of Lp[0, 1] (whose unconditional constant
is strictly greater than 1) is still an open problem. The question of improving
the greedy or democracy constant of a basis by renorming is therefore of interest.
This question was raised explicitly by Albiac and Wojtaszczyk [1, Problems 6.2
and 6.3]. In this paper we present a solution by giving as counterexamples two
important Banach spaces with greedy bases.

Theorem C. There is no renorming of the dyadic Hardy space H1 that makes
its natural basis 1-greedy. There is no renorming of Tsirelson space T for which
there is any 1-greedy, normalized basis of T .

It remains an open problem whether the Haar basis of Lp[0, 1] (1 < p < ∞)
can become 1-greedy under an equivalent norm [1, Problem 6.2]. Towards a
positive answer Albiac and Wojtaszczyk showed [1, Proposition 4.5] that under
an equivalent norm, for any ε > 0, there is a subsequence of the Haar basis
which is 1-unconditional and (1 + ε)-democratic, and whose closed linear span
is isomorphic to Lp[0, 1]. In this paper we strengthen this result considerably:

Theorem D. For any 1 < p < ∞ there is a renorming of Lp[0, 1] such that the
Haar basis is 1-unconditional and 1-bidemocratic.

A glance at the estimates (1) reveals that this renorming makes the Haar
basis 2-greedy. We are going to show that in general one cannot deduce anything
better.

Theorem E. There exists a 1-unconditional, 1-democratic basis which is not
C-greedy for any C < 2.

In fact, the example we construct is 1-subsymmetric. In [1, Example 5.4] it is
observed that the first example of a subsymmetric but not symmetric basis due
to D. J. H. Garling [5] is also an example for a 1-unconditional, 1-democratic but
not 1-greedy basis. The greedy constant of Garling’s example turns out to be 2
(this is not computed in [1] but it is not hard to see), and thus Garling’s example
also proves Theorem E. Our example has the additional property of being 2-
symmetric, which is best possible since, by [1, Theorem 2.5], a C-symmetric
basis is C-greedy.

In the other direction, a 1-greedy basis is suppression 1-unconditional by
Theorem 0.2, and hence 2-unconditional. For finite bases, Examples 5.1 and 5.2
of [1] show that 1-greedy need not imply 1-unconditional, but this possibility
was left open for infinite bases [1, Problem 6.4]. We solve this problem by
proving

Theorem F. There is a renorming of Lorentz space `2,1 such that the unit
vector basis is 1-greedy, 2-unconditional but not (2 − ε)-unconditional for any
ε > 0.
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The paper is organized as follows. The first two sections are concerned with
renorming results: we prove Theorems C and D in Sections 1 and 2, respectively.
In Sections 3 and 4 we give examples that clarify the relationship between the
greedy, democratic and unconditional constants of a basis (Theorems E and F).
In Section 5 we construct a basis that is 1-greedy but not symmetric, and finally,
in Section 6, we produce a 1-greedy basis that is not even subsymmetric.

We follow standard Banach space terminology and work with real scalars
throughout. We use |·| for absolute value (of a real number) and size (of a finite
set). The indicator function of a set A is denoted by 1A. For A ⊂ N we think
of 1A as the vector

∑
i∈A ei in c00 or the functional

∑
i∈A e∗i , where (e∗i ) is the

sequence of biorthogonal functionals to the unit vector basis (ei) of c00. For a
vector x and functional f , the standard pairing f(x) will sometimes be written
as 〈x, f〉.

1. Renormings of greedy bases

The following questions were raised by Albiac and Wojtaszczyk (see Prob-
lems 6.2 and 6.3 in [1]).

(i) Can a greedy basis (ei) be renormed so that it is 1-greedy?

(ii) Can a democratic basis (ei) be renormed so that it is 1-democratic?

By the characterization of 1-greedy bases, Theorem 0.2, a 1-greedy basis
is 1-democratic, and so the following proposition solves both problems in the
negative for spaces like the Tsirelson space T (i.e., the dual of the original
Tsirelson space as described in [4]) with any basis, or for the dyadic Hardy
space H1 with the Haar basis.

Proposition 1.1. Assume that X is a Banach space with a normalized sup-
pression 1-unconditional basis (ei) and that there is a sequence (ρn) ⊂ (0, 1]
with ρ = infn∈N ρn > 0 so that∥∥∥ ∑

i∈E

ei

∥∥∥ = ρnn whenever n ∈ N and E ⊂ N with |E| = n .

Then (ei) is 2
ρ -equivalent to the unit vector basis of `1.

Proof. First note that the sequence (ρn) is non-increasing. Indeed,

n(n− 1)ρn =
∥∥∥(n− 1)

n∑
i=1

ei

∥∥∥
=

∥∥∥ n∑
i=1

∑
j∈{1,...,n}\{i}

ej

∥∥∥
≤

n∑
i=1

∥∥∥ ∑
j∈{1,...,n}\{i}

ej

∥∥∥ = n(n− 1)ρn−1 ,

6



which implies the claim.
Denote the biorthogonal functionals of (ei) by (e∗i ). For each finite subset E

of N we choose (a(E)
i )i∈E ⊂ R, so that∑

i∈E

a
(E)
i e∗i ∈ SX∗ and (2)( ∑

i∈E

a
(E)
i e∗i

)( ∑
i∈E

ei

)
=

∑
i∈E

a
(E)
i =

∥∥∥ ∑
i∈E

ei

∥∥∥ = nρn. (3)

Since (ei) is suppression 1-unconditional, it follows that a
(E)
i ≥ 0 for all i ∈ E.

Since for any finite E ⊂ N with |E| = n, and for any j ∈ E we have∑
i∈E\{j}

a
(E)
j ≤

∥∥∥ ∑
i∈E\{j}

ei

∥∥∥ = (n− 1)ρn−1 =
∑

i∈E\{j}

a
(E\{j})
i

≤
∥∥∥ ∑

i∈E

ei

∥∥∥ = nρn =
∑
i∈E

a
(E)
i ,

it follows, after choosing j0 ∈ E so that minj∈E a
(E)
j = a

(E)
j0

, that

min
j∈E

a
(E)
j = a

(E)
j0

(4)

=
∑
i∈E

a
(E)
i −

∑
i∈E\{j0}

a
(E)
i

≥ nρn − (n− 1)ρn−1 = ρn − (ρn−1 − ρn)(n− 1) .

Let bn = min1≤j≤n a
({1,2,...,n})
j . Since 1 − ρ =

∑
n≥2(ρn−1 − ρn) < ∞ we can

find an infinite set N ⊂ N for which

lim
n→∞, n∈N

(n− 1)(ρn−1 − ρn) = 0 .

Fix ε ∈ (0, ρ). By (4) we can pass to an infinite Nε ⊂ N such that bn ≥ ρn−ε ≥
ρ−ε whenever n ∈ Nε. Finally, using the suppression 1-unconditionality of (e∗i ),
it follows that

∑
i∈A(ρ − ε)e∗i ∈ BX∗ for all A ⊂ {1, . . . n} and for all n ∈ Nε,

and thus for all n ∈ N.
Since ε > 0 can be chosen arbitrarily small, it follows that (e∗i ) is 2/ρ-

equivalent to the unit vector basis of c0, and thus (ei) is 2/ρ-equivalent to the
unit vector basis of `1.

In the next two results we use Proposition 1.1 to deduce Theorem C stated
in the Introduction, and answer questions (i) and (ii) above.

Corollary 1.2. There is no renoming of Tsirelson space T for which T has an
unconditional and 1-democratic basis.

Proof. Assume a renorming |||·||| of T existed admitting an unconditional and
1-democratic basis (xi). We can clearly assume that (xi) is normalized. We can
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also assume that (xi) is suppression 1-unconditional. Indeed, if it is not, then
we can simply pass to the equivalent norm given by

sup
E⊂N

∣∣∣∣∣∣∣∣∣ ∑
i∈E

aixi

∣∣∣∣∣∣∣∣∣
for any

∑
aixi ∈ T , with respect to which (xi) is suppression 1-unconditional

and still normalized 1-democratic.
(xi) is weakly null (since T is reflexive), and therefore it has a subsequence

(x′i) with `1 as spreading model. It follows that there is a ρ > 0 and a sequence
(ρn) ⊂ (0, 1] such that for any n ∈ N and any A ⊂ N with |A| = n we have∥∥∥ 1

n

∑
i∈A

xi

∥∥∥ = lim
k1→∞, k2→∞...kn→∞

∥∥∥ 1
n

n∑
i=1

x′ki

∥∥∥ = ρn ≥ ρ .

This implies, by Proposition 1.1, that (xi) is equivalent to the unit vector basis
of `1, which is a contradiction.

Remark. The above argument applies more generally to show that if Y is any
reflexive Banach space not containing `1, and if `1 is the only spreading model
of Y , then Y contains no unconditional 1-democratic basic sequence.

Corollary 1.3. The dyadic Hardy space H1 admits no equivalent norm with
respect to which the Haar system is 1-greedy.

Proof. Let us denote by (hn) the Haar system in H1. It was shown in [11,
Lemma 9] that ∣∣∣∣∣∣∣∣∣ ∑

n∈A

hn

∣∣∣∣∣∣∣∣∣ ≥ 1
2
|A| (5)

for any finite set A ⊂ N. Here |||·||| denotes the natural square-function norm
of H1 (see [11] for details). Now assume that ‖·‖ is an equivalent norm on H1

with respect to which (hn) is 1-democratic. As in the proof of Corollary 1.2
we may assume that (hn) is normalized and suppression 1-unconditional with
respect to ‖·‖. Then by (5) the conditions of Proposition 1.1 are satisfied with
en = hn for all n. This implies that (hn) is equivalent to the unit vector basis
of `1, which is a contradiction.

Remark. In [11] Wojtaszczyk studied the efficiency of the greedy algorithm for
multi-dimensional Haar systems. In particular he showed that in dimension one
the Haar basis is a greedy basis for Hp, 0 < p < ∞. For p > 1 this reproves the
result of Temlyakov [10] that the Haar basis of Lp is greedy.

2. Renormings of bidemocratic greedy bases

In this section we show that Lp[0, 1] (1 < p < ∞) may be renormed so that
the Haar basis is 1-unconditional and 1-democratic (Theorem D). This answers
a question raised implicitly in [1, page 78]. We first prove some more general
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results on renorming bidemocratic greedy bases, of which Theorem D will be an
easy consequence.

Suppose that (ei) is a normalized 1-unconditional greedy basis of a Banach
space X with biorthogonal sequence (e∗i ). Recall that the fundamental function
ϕ is defined by

ϕ(n) = sup
|A|≤n

∥∥∥∑
i∈A

ei

∥∥∥ .

The dual fundamental function ϕ∗ is given by

ϕ∗(n) = sup
|A|≤n

∥∥∥∑
i∈A

e∗i

∥∥∥ .

We recall that (ϕ(n)/n) is a decreasing function of n, since for any A ⊂ N with
|A| = n we have ∑

i∈A

ei =
1

n− 1

∑
i∈A

∑
j∈A\{i}

ej

(c.f. the first claim in the proof of Proposition 1.1). Clearly, ϕ(n)ϕ∗(n) ≥ n.
We say that (ei) is bidemocratic if there is a constant ∆ > 0 (∆-bidemocratic)
such that

φ(n)φ∗(n) ≤ ∆n for all n ∈ N .

It is known [2, Proposition 4.2] that if (ei) is bidemocratic with constant ∆,
then both (ei) and (e∗i ) are democratic with constant ∆.

Theorem 2.1. Suppose that (ei) is a 1-unconditional and ∆-bidemocratic basis
for a Banach space X. Then

|||x||| = max
{
‖x‖, sup

|A|<∞

φ(|A|)
|A|

∑
i∈A

|e∗i (x)|
}

(6)

is an equivalent norm on X. Moreover, (ei) is 1-unconditional and 1-bidemocratic
with respect to |||·|||. In particular, (ei) and (e∗i ) are 1-democratic and 2-greedy.

Proof. For x ∈ X and |A| < ∞, note that

φ(|A|)
|A|

∑
i∈A

|e∗i (x)| ≤ ∆
φ∗(|A|)

∑
i∈A

|e∗i (x)| ≤ ∆‖x‖ .

Hence
‖x‖ ≤ |||x||| ≤ ∆‖x‖ .

Since
∥∥∑

i∈A ei

∥∥ ≤ φ(|A|), we have∣∣∣∣∣∣∣∣∣ ∑
i∈A

ei

∣∣∣∣∣∣∣∣∣ = sup
|B|<∞

|A ∩B|φ(|B|)
|B|

= sup
n≥|A|

|A|φ(n)
n

= φ(|A|) ,
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using the fact that (φ(n)/n) is a decreasing function of n. Thus, (ei) is 1-
democratic with respect to |||·|||.

From (6) we have
∣∣∣∣∣∣ ∑

i∈A e∗i
∣∣∣∣∣∣ ≤ |A|

φ(|A|)
. On the other hand,

∣∣∣∣∣∣∣∣∣ ∑
i∈A

e∗i

∣∣∣∣∣∣∣∣∣ ≥ |A|∣∣∣∣∣∣ ∑
i∈A ei

∣∣∣∣∣∣ =
|A|

φ(|A|)
.

Hence (ei) and (e∗i ) have fundamental functions with respect to |||·||| of (φ(n))
and (n/φ(n)), respectively, which implies that (ei) is 1-bidemocratic.

Corollary 2.2. Suppose that X has nontrivial type and that (ei) is a greedy basis
for X. Then X admits an equivalent norm |||·||| such that (ei) is 1-unconditional
and 1-bidemocratic with respect to |||·|||.

Proof. First, we use the fact that there is an equivalent norm on X for which
(ei) is 1-unconditional (and greedy). By [2, Prop. 4.1] every greedy basis for
a space with nontrivial type is bidemocratic. So by Theorem 2.1 there is an
equivalent norm for which (ei) is 1-unconditional and 1-bidemocratic.

Lp[0, 1] has nontrivial type for 1 < p < ∞, so we obtain Theorem D in the
Introduction which improves [1, Proposition 4.5].

Corollary 2.3. There is a renorming of Lp[0, 1] (1 < p < ∞) for which the
Haar basis is 1-unconditional and 1-bidemocratic.

3. 1-unconditional and 1-democratic does not imply 1-greedy

In this section we give an example of a 1-unconditional and 1-democratic, and
hence 2-greedy, basis (ei) that is not C-greedy for any C < 2. This establishes
Theorem E. Our example is in fact 2-symmetric which is best possible since a
C-symmetric basis is C-greedy by [1, Theorem 2.5]. It is also 1-subsymmetric:
for all (ai) ∈ c00, for all sequences (εi) of signs and for all increasing sequences
n1 < n2 < . . . of positive integers we have∥∥∥ ∞∑

i=1

εiaieni

∥∥∥ =
∥∥∥ ∞∑

i=1

aiei

∥∥∥ .

Thus, subject to being 1-unconditional and 1-democratic but not C-greedy for
any C < 2, our example has as much symmetry as one can hope for. The
construction is motivated by the proof by Kutzarova and Lin that Schlumprecht
space S contains `n

∞’s uniformly [8]. We first need to introduce a piece of
notation. For subsets E,F of N we write E < F if m < n for all m ∈ E, n ∈ F .
If m ∈ N and F ⊂ N, then we write m < F instead of {m} < F .

Fix (εi) ⊂ R+ such that
∑∞

i=1

∑
j≥i εj < 1. Then choose sequences ni ↗∞

of positive integers and ri ↘ 0 of positive reals such that r1 = n1 = 1 and

max
{ rini

rjnj
,
rj

ri

}
< εj whenever i < j .

10



This can clearly be done, and moreover we can also arrange that ni divides nj

whenever i < j. Let

F =
{
s1E + t1F : s, t ∈ R, E, F ⊂ N, E < F,

∃ i < j, s = ri, |E| = ni, t = rj , |F | = nj

}
and define

‖x‖ = sup
f∈F

〈|x|, f〉 (x ∈ c00),

where |x| denotes the sequence
(
|xi|

)
if x = (xi). It is easy to verify that

‖·‖ is a norm on c00 and that the unit vector basis (ei) is a normalized (n.b.,
r1 = n1 = 1) 1-subsymmetric basis of the completion X of (c00, ‖·‖). It is also
not hard to verify that (ei) is 2-symmetric. Indeed,

|||x||| = sup
{
ri〈x,1E〉 : i ∈ N, E ⊂ N, |E| = ni

}
(x ∈ c00)

is a 2-equivalent norm on X with respect to which (ei) is 1-symmetric. It
remains to show that the greedy constant of (ei) is 2.

Theorem 3.1. Let X be the space defined above. The unit vector basis (ei) of
X is not C-greedy for any C < 2.

For the proof we need norm-estimates for two types of vectors.

Lemma 3.2. Fix i < j in N. Let x = 1
rini

1G + 1
rjnj

1H , where

G = {g1, . . . , gni
} , H =

ni⋃
m=1

Hm , H1 < g1 < H2 < g2 < · · · < Hni
< gni

and |Hm| = nj

ni
for each m = 1, . . . , ni. Then ‖x‖ ≤ 1 + 1

ni
+ 2

∑
p≥i εp.

Proof. Let k ∈ N and let E ⊂ N with |E| = nk. We first estimate 〈x, rk1E〉.
We define

λ(E) = min{m ≥ 1 : minE ≤ gm}
ρ(E) = min{m ≥ 1 : max E < gm}

and, for this to be always well-defined, we set gni+1 = ∞. We have

〈x, rk1E〉 =
rk

rini
|G ∩ E|+ rk

rjnj
|H ∩ E|

≤ rk

rini
min

{
ρ(E)−λ(E), ni, nk

}
+

rk

rjnj
min

{(
ρ(E)−λ(E)+1

)nj

ni
, nj , nk

}
.

Observe that

rk

rini
min

{
ρ(E)− λ(E), ni, nk

}
≤


ρ(E)−λ(E)

ni
if k = i

min
{

rk

ri
, rknk

rini

}
if k 6= i .

11



Similarly, we have

rk

rjnj
min

{(
ρ(E)− λ(E) + 1

)nj

ni
, nj , nk

}
≤


ρ(E)−λ(E)+1

ni
if k = j

min
{

rk

rj
, rknk

rjnj

}
if k 6= j .

Hence, by the choice of (nl) and (rl), we have

〈x, rk1E〉 ≤


ρ(E)−λ(E)

ni
+ εj if k = i

εj + ρ(E)−λ(E)+1
ni

if k = j

εmax{i,k} + εmax{j,k} otherwise.

We can finally estimate ‖x‖. Let f ∈ F . Then f = s1E + t1F , where s =
rk, |E| = nk, t = rl and |F | = nl for some k < l; moreover E < F , which
implies that ρ(E) ≤ λ(F ), and hence (ρ(E) − λ(E)) + (ρ(F ) − λ(F )) ≤ ni. It
follows immediately that

〈x, f〉 = 〈x, rk1E〉+ 〈x, rl1F 〉 ≤ 1 +
1
ni

+ 2
∑
p≥i

εp

and this completes the proof of the lemma.

Lemma 3.3. Fix i < j in N. Let y = 1
rini

1G + 1
rjnj

1H , where G < H, |G| = ni

and |H| = nj. Then ‖y‖ ≥ 2.

Proof. Simply apply to y the element f = ri1G + rj1H of F .

Remark. The vectors x and y in the previous two lemmata are rearrangements
of each other, so we already know that the unit vector basis is not C-symmetric
for any C < 2.

Proof of Theorem 3.1. Fix µ > 1 and fix positive integers i < j. Let

z = s′1G′ + s1G + t1H

where G and H are defined as in Lemma 3.2, G′ < H and |G′| = |G| = ni, and
s′ = 1

rini
, s = µ

rini
, t = 1

rjnj
. Thus z combines two vectors of type x and y

from the two lemmata above.
Consider now N -term approximations to z where N = ni. By Lemma 3.2

we have
σN (z) ≤ ‖z − s′1G′‖ < 1 +

1
ni

+ 3
∑
p≥i

εp

provided µ− 1 is sufficiently small. On the other hand, the N th greedy approx-
imant to z is GN (z) = s1G, and

‖z − GN (z)‖ = ‖z − s1G‖ ≥ 2

by Lemma 3.3. Letting i go to infinity, we have shown that the basis is not
C-greedy if C < 2.
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4. 1-greedy does not imply 1-unconditional

In this section we answer Problem 6.4 of [1] by constructing a 1-greedy basis
that is not 1-unconditional. This will be achieved by renorming the Lorentz
space `2,1. We begin with recalling the definition of `2,1.

Consider the weight sequence wi =
√

i−
√

i− 1, i = 1, 2, . . . . Let E be the
collection of all formal sums f of the form

f =
∞∑

i=1

±wie
∗
mi

for any choice of signs, where m1,m2, . . . is a permutation of N. Then

‖x‖`2,1 = sup
f∈E

〈x, f〉 (x ∈ c00)

defines a norm on c00, and we denote by `2,1 the completion of c00 with respect
to this norm. The unit vector basis (ei) is a normalized 1-symmetric, and hence
1-greedy [1, Theorem 2.5], basis of `2,1. Note that for x =

∑∞
i=1 xiei we have

‖x‖`2,1 =
∞∑

i=1

wi|xρ(i)| ,

where ρ is the decreasing rearrangement of x: |xρ(1)| ≥ |xρ(2)| ≥ . . . . The
space `2,1 will also be featured in Sections 5 and 6 where we shall recall further
properties.

Let F now be the collection of all functionals f of the form

f =
1√
n

∑
i∈E

±e∗i +
∞∑

i=n+1

wie
∗
mi

, (7)

for any choice of signs, where n ≥ 1, |E| = n, (mi) is a sequence of distinct
positive integers, and {mi : i > n} ∩ E = ∅. Then

|||x||| = sup
f∈F

|〈x, f〉| (x ∈ `2,1)

is a renorming of `2,1 satisfying

|||x||| ≤ ‖x‖`2,1 ≤ 2|||x||| for all x ∈ `2,1 .

The second inequality is straightforward. To see the first one, it is sufficient
to prove the following: for n ∈ N and positive reals a1 ≥ a2 ≥ · · · ≥ an, the
inequality 1√

n

∑
ai ≤

∑
wiai holds. One way to see this is as follows.∑

wiai = sup
ρ

∑
wiaρ(i) ≥ Aveρ

∑
wiaρ(i) =

1
n

( ∑
wi

)( ∑
ai

)
=

1√
n

∑
ai ,

where the first equality, in which the sup is taken over all permutations ρ
of {1, . . . , n}, follows by a standard inequality for decreasing rearrangements
(see [6, p. 261]), whereas the inequality, in which we replace sup by the average
over all ρ, is clear as are the next two equalities.
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Theorem 4.1. With respect to |||·|||, (ei) is 1-greedy and 2-unconditional but
not (2− ε)-unconditional for any ε > 0.

Proof. Note that (ei) is a normalized, suppression 1-unconditional, and hence
2-unconditional, basis for (`2,1, |||·|||). To show that (ei) is 1-greedy it suffices, by
Theorem 0.2, to verify Property (A). To that end, consider x = y +

∑
i∈B ±ei,

for some choice of signs, where ‖y‖`∞ < 1, B ∩ supp(y) = ∅ and |supp(y)| < ∞.
Suppose that |〈x, f〉| = |||x|||, where f is given by (7) for an appropriate choice
of signs. We may assume without loss of generality that 〈x, f〉 > 0, which
implies that 〈x, e∗mi

〉 ≥ 0 for all i > n. We shall show that f may be chosen
so that B ⊂ E. This will immediately imply Property (A), since if x̄ is a
greedy rearrangement of x then the same greedy rearrangement applied to f
yields f̄ ∈ F which norms x̄. Indeed, fixing N ∈ N with N > supp(x) and
N > supp(x̄), we can assume, after changing f if necessary, that

{mi : i > n} ∩ {1, . . . , N} = {mi : i > n} ∩ supp(x) ,

so the change from f to f̄ is permissible.
Assume now that B 6⊂ E, and fix r ∈ B \ E. If r = mi for some i > n,

then interchanging mi and mn+1 does not decrease 〈x, f〉. So we may assume
that either r /∈ {mi : i > n} or r = mn+1. In either case we set E1 = E ∪ {r}
and consider the linear functional f1 ∈ F defined (for an appropriate choice of
signs) by

f1 =
1√

n + 1

∑
i∈E1

±e∗i +
∞∑

i=n+2

wie
∗
mi

.

(In fact, the signs do not change for i ∈ E, and we use a plus sign for i = r.)
Putting α =

∑
i∈E |〈x, e∗i 〉|, we note that α ≤ n and obtain

〈x, f1〉 − 〈x, f〉 ≥ α + 1√
n + 1

− α√
n
− wn+1

=
1√

n + 1
−

( α
√

n
√

n + 1
+ 1

)
· wn+1 ≥ 0 .

So 〈x, f1〉 = |||x||| and |B \E1| = |B \E| − 1. Iterating this argument a total of
|B \E| times shows that without loss of generality we may assume that B ⊆ E.
Thus, as explained above, (ei) has Property (A) and hence is 1-greedy.

We now show that (ei) is not (2− ε)-unconditional. To that end, let (ni)∞i=0

be a rapidly increasing sequence of integers with n0 = 0. Consider the sequence
(xi)∞i=1 defined by

xi =
1√

ni − ni−1

ni∑
j=ni−1+1

ej .

Then |||xi||| = ‖xi‖`2,1 = 1, and, provided (ni) increases sufficiently rapidly, we
obtain ∣∣∣∣∣∣∣∣∣ N∑

i=1

xi

∣∣∣∣∣∣∣∣∣ > N − 1 (N ≥ 1)
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by applying the functional f =
∑∞

i=1 wie
∗
i . On the other hand, we also have

∣∣∣∣∣∣∣∣∣ N∑
i=1

(−1)ixi

∣∣∣∣∣∣∣∣∣ ≤ N + 4
2

(N ≥ 1) .

To see this, let f ∈ F be given by (7) and write f = g + h, where g =
1√
n

∑
i∈E ±e∗i and h =

∑∞
i=n+1 wie

∗
mi

. For each i = 1, . . . , N we have

|〈xi, g〉| ≤ min{n, ni}√
n
√

ni − ni−1
and

0 ≤ 〈xi, h〉 ≤ ‖xi‖`2,1 = 1 ,

and hence ∣∣∣〈 N∑
i=1

(−1)ixi, g
〉∣∣∣ ≤ 3

2
and

∣∣∣〈 N∑
i=1

(−1)ixi, h
〉∣∣∣ ≤ N + 1

2
,

where for the first inequality we need (ni) to increase sufficiently rapidly.
Thus, we have obtained

lim
N→∞

∣∣∣∣∣∣ ∑N
i=1 xi

∣∣∣∣∣∣∣∣∣∣∣∣ ∑N
i=1(−1)ixi

∣∣∣∣∣∣ = 2 ,

which implies that (ei) is not (2− ε)-unconditional for any ε > 0.

The following more general result is proved in similar fashion.

Theorem 4.2. Let 1 ≤ q < p < ∞. Then there is a renorming of Lorentz space
`p,q for which the unit vector basis is 1-greedy but not 1-unconditional.

5. A 1-greedy basis need not be symmetric

In this section we answer the most important problem raised in [1], Prob-
lem 6.1, which asks whether there exists a 1-greedy basis that is not symmetric
in an infinite-dimensional Banach space. We give a positive answer by con-
structing an example based on the space `2,1 used in the previous section. This
will prove Theorem A.

As before, we consider the weight sequence wi =
√

i−
√

i− 1, i = 1, 2, . . . .
This time F will denote the collection of all formal sums f of the form

f =
1√
n

∑
i∈E

±e∗i +
1
2

∞∑
i=n+1

±wie
∗
mi

, (8)
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for any choice of signs, where n ≥ 1, |E| = n, m1 < m2 < . . . are positive
integers, and {mi : i > n}∩E = ∅. We then define a norm ‖·‖ on c00 by setting

‖x‖ = sup
f∈F

〈x, f〉 for x ∈ c00 .

It is straightforward that (ei) is a normalized 1-unconditional basis for the com-
pletion of (c00, ‖·‖).

Theorem 5.1. With respect to ‖·‖, the unit vector basis (ei) is 1-greedy and
not symmetric.

Proof. An argument similar to the first part of the proof of Theorem 4.1 shows
that (ei) satisfies Property (A), and hence it is 1-greedy. Indeed, let x = y +∑

i∈B ±ei for some choice of signs, where ‖y‖`∞ < 1, B ∩ supp(y) = ∅ and
|supp(y)| < ∞. Suppose that 〈x, f〉 = ‖x‖, where f is given by (8) for an
appropriate choice of signs. As in the proof of Theorem 4.1, it suffices to show
that f may be chosen so that B ⊂ E. Property (A) will then follow immediately.

Assume that in fact B 6⊂ E, and fix r ∈ B\E. If r = mj for some j > n, then
set m1

i = mi for i < j and m1
i = mi+1 for i ≥ j. Otherwise, if r /∈ {mi : i > n},

then we set m1
i = mi for all i ∈ N. In either case we set E1 = E ∪ {r},

α =
∑

i∈E |〈x, e∗i 〉|, and consider the linear functional f1 ∈ F defined (for an
appropriate choice of signs) by

f1 =
1√

n + 1

∑
i∈E1

±e∗i +
1
2

∞∑
i=n+2

±wie
∗
mi

.

Noting that α ≤ n, we obtain

〈x, f1〉 − 〈x, f〉 ≥ α + 1√
n + 1

− α√
n
− 1

2
wn+1 −

1
2
wn+2 ≥ 0 .

As before, this completes the proof that (ei) has Property (A) and is 1-greedy.
It remains to show that (ei) is not symmetric.

Fix k ∈ N and choose a rapidly increasing sequence n1 < n2 < · · · < nk of
positive integers. Let E1 < E2 < · · · < Ek and F1 < F2 < · · · < Fk be finite
subsets of N with |Ei| = |Fk+1−i| = ni such that

k⋃
i=1

Ei =
k⋃

i=1

Fi =
{

1, 2, . . . ,
∑k

i=1 ni

}
.

Set

x =
k∑

i=1

1√
ni

1Ei and y =
k∑

i=1

1√
nk+1−i

1Fi .

We show that ‖x‖ ≥ k
3 and ‖y‖ ≤ 3. Since y is a rearrangement of x, and since

k ∈ N is arbitrary, it will follow that (ei) is not symmetric.
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Since e∗1 + 1
2

∑∞
i=2 wie

∗
i ∈ F , we have

‖x‖ ≥ 1
2

k∑
i=1

√
n1 + · · ·+ ni −

√
n1 + · · ·+ ni−1√

ni
≥ k

3

provided n1, . . . , nk increases sufficiently fast.
Next, assume that ‖y‖ = 〈y, f〉 where f is given by (8). Write f = g + 1

2h
where g = 1√

n

∑
i∈E e∗i and h =

∑∞
i=n+1 wie

∗
mi

. Since

〈
1√
ni

1Fk+1−i
, g

〉
≤ min{n, ni}√

ni · n
= min

{√
n
ni

,
√

ni

n

}
,

it follows that |〈y, g〉| ≤ 3/2, provided the ni increase sufficiently fast.
For each j = 1, . . . , k let pj = |Fj ∩ {mi : i > n}|. Observe that

〈
1√

nk+1−j
1Fj , h

〉
≤

√
pj

√
nk+1−j

.

It follows that if pj

nk+1−j
< 4−j for all j, then |〈y, h〉| ≤ 1. Otherwise there

is a least value of j, which we denote by j0, such that pj

nk+1−j
≥ 4−j . Set

i0 =
⌊
4−j0nk+1−j0

⌋
+ 1. Then

〈
1√

nk+1−j
1Fj , h

〉
≤


2−j if j < j0

1 if j = j0

wi0
√

nk+1−j if j > j0 .

Thus, assuming the ni were suitably chosen, we obtain |〈y, h〉| ≤ 3.
The above estimates yield ‖y‖ = 〈y, g〉+ 1

2 〈y, h〉 ≤ 3, as claimed.

6. A 1-greedy basis need not be subsymmetric

In this final section we construct a normalized 1-greedy basis that is not
subsymmetric. This example is more involved than the previous ones, and so
we divided the section into four subsections. We first fix our notation repeating
some of the earlier definitions. Next we describe a general procedure for con-
structing 1-greedy bases starting with a given norm on c00. We then apply this
procedure to norms on c00 ⊕ c00 that are 1-symmetric in each co-ordinate. In
the final subsection we specialize to the norm ‖·‖`2 + ‖·‖`2,1 and prove that the
resulting 1-greedy basis is not subsymmetric.

6.1. Notation.
As usual, (ei) denotes the unit vector basis of c00 with biorthogonal func-

tionals (e∗i ). Let x, y ∈ c00. The following is a list of notation that will be used
in this section.
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• M(x) =
{
k ∈ N : |〈x, e∗k〉| = ‖x‖`∞

}
.

• For A ⊂ N write Ax =
∑
k∈A

〈x, e∗k〉ek.

• Define |x| by 〈|x|, e∗k〉 = |〈x, e∗k〉|, k ∈ N.

• Define x · y by 〈x · y, e∗k〉 = 〈x, e∗k〉〈y, e∗k〉, k ∈ N.

• Write x ≤ y if 〈x, e∗k〉 ≤ 〈y, e∗k〉 for all k ∈ N.

• Given t ∈ R, write x ≤ t to mean 〈x, e∗k〉 ≤ t for all k ∈ N.

• Write x
dist≡ y if there exists a permutation π : N → N such that 〈y, e∗k〉 =

〈x, e∗π(k)〉 for all k ∈ N.

• Write x ∼ y if y is a greedy rearrangement of x, i.e., if we can write x =
z + λ ε · 1A and y = z + λ η · 1B , where ε : A → {±1}, η : B → {±1} are
functions on finite sets A,B, and A ∩ supp(z) = B ∩ supp(z) = ∅, |A| = |B|
and ‖z‖`∞ ≤ λ.

Thus M(x) denotes the set of co-ordinates of x of maximum modulus. Next,
a subset A of N is identified with the projection onto it. The following four
pieces of notation define the standard lattice structure of c00. Note that for
A ⊂ N and x ∈ c00 we have Ax = 1A · x, where 1A =

∑
k∈A ek denotes, as

usual, the indicator function of A. In the last line we repeated the definition of
greedy rearrangement in a slightly different form.

6.2. Greedification
Given a seminorm ‖·‖ on c00, we define f : c00 → R by

f(x) = inf
{
‖y‖ : y∼x

}
,

and we then define |||·||| on c00 by

|||x||| = inf
{ m∑

i=1

‖x′i‖ : m ≥ 0, x =
m∑

i=1

xi, xi∼x′i

}

= inf
{ m∑

i=1

f(xi) : m ≥ 0, x =
m∑

i=1

xi

}
.

Note that |||·||| is a seminorm on c00 dominated by ‖·‖. We shall write G
(
‖·‖

)
for |||·|||.

Starting with a seminorm ‖·‖ on c00, we define a sequence of seminorms
‖·‖(n) recursively as follows. We set ‖·‖(0) = ‖·‖, and for n ∈ N we define
‖·‖(n) = G

(
‖·‖(n−1)

)
. We then let ‖·‖(∞) be the pointwise limit of the sequence
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(
‖·‖(n)

)
. Observe that ‖·‖(∞) is a seminorm with respect to which the unit

vector basis satisfies Property (A): if x∼y then ‖x‖(∞) = ‖y‖(∞).
The notation above will be fixed for the rest of this subsection. We write

KS = K
‖·‖
S , KU = K

‖·‖
U and ∆ = ∆‖·‖ for the the suppression-unconditional,

unconditional and democratic constants, respectively, of the unit vector basis
(ei) with respect to ‖·‖, which take values in R+ ∪ {∞} in general. These
constants as well as Property (A) were defined in the Introduction with respect
to a norm, but they clearly make sense for seminorms, too.

Routine verification gives the following result.

Proposition 6.1. (i) Assume that ‖·‖ dominates another seminorm ‖·‖′ on
c00. Then G(‖·‖) dominates G(‖·‖′).

(ii) If (ei) has Property (A) with respect to ‖·‖, then |||·||| = ‖·‖. It follows that
‖·‖(∞) = ‖·‖.

(iii) For x ∈ c00 and A ⊂ N we have f(Ax) ≤ KSf(x). It follows that K
|||·|||
S ≤

K
‖·‖
S .

(iv) For x ∈ c00 and ε : N → {±1} we have f(ε · x) ≤ KUf(x). It follows that
K
|||·|||
U ≤ K

‖·‖
U .

(v) For x ∈ c00 we have ‖x‖ ≥ f(x) ≥ 1
KS(1+4∆)‖x‖. It follows that ‖x‖ ≥

|||x||| ≥ 1
KS(1+4∆)‖x‖.

(vi) If K
‖·‖
S = 1, then

|||x||| = inf
{ m∑

i=1

f(xi) : m ≥ 0, x =
m∑

i=1

xi and supp(xi) ⊂ supp(x) ∀ i
}

.

The point about the “greedification” procedure is to produce 1-greedy bases.
This is an easy consequence of properties (i), (ii) and (iii) above, the charac-
terization of 1-greedy bases (Theorem 0.2) and the observation above that (ei)
always has Property (A) with respect to ‖·‖(∞).

Corollary 6.2. Assume that K
‖·‖
S = 1 and ‖ei‖ = 1 for all i ∈ N. Then ‖·‖(∞)

is a norm on c00 that dominates the c0-norm, and moreover (ei) is a normalized
1-greedy basis with respect to ‖·‖(∞).

Remark. Recall from the Introduction the (still open) problem raised by Albiac
and Wojtaszczyk [1, Problem 6.2] which asks if there is an equivalent renorming
φ, say, of Lp[0, 1] (1 < p < ∞) with respect to which the Haar basis (hi)
is (normalized and) 1-greedy. Assume that such an equivalent norm φ exists.
Denote by ‖·‖p the Lp-norm, and consider the equivalent norm∥∥∥∑

aihi

∥∥∥ = sup
A⊂N

∥∥∥∑
i∈A

aihi

∥∥∥
p

,
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with respect to which (hi) is normalized and suppression 1-unconditional. The
above corollary and Proposition 6.1(i) and (ii) then tell us that (hi) is normalized
and 1-greedy with respect to the equivalent norm ‖·‖(∞). In other words, if
there is a positive answer to [1, Problem 6.2], then the greedification procedure
produces that positive answer.

We now continue with the general discussion of greedification. We say that
(ei) is strictly unconditional with respect to ‖·‖ if the following holds:

∀ x, y ∈ c00

(
|x| ≤ |y| and |x| 6= |y|

)
=⇒ ‖x‖ < ‖y‖ .

Note that this implies K
‖·‖
U = 1. The next result shows that greedification

preserves strict unconditionality under certain conditions.

Proposition 6.3. Assume that in the definition of f and |||·||| the infimum is
always attained. If, in addition, (ei) is strictly unconditional with respect to ‖·‖,
then the same holds with respect to |||·|||.

Proof. Assume that |x| = A|y| for some A 6⊃supp(y). We show that |||x|||< |||y|||,
and the result then follows by convexity.

Write x = ε · Ay for suitable ε : N → {±1}. By assumption we have |||y||| =∑
‖y′i‖ for some y′i∼yi,

∑
yi = y.

Let xi = ε ·Ayi so that x =
∑

xi. It is easy to see, as explained below, that

∀ i ∃ εi : N → {±1} ∃Ai ⊂ N such that

x′i = εi ·Aiy
′
i ∼ xi and

(
Ai ⊃ supp(y′i) ⇐⇒ A ⊃ supp(yi)

)
.

(9)

Since K
‖·‖
U = 1, it follows that ‖x′i‖ ≤ ‖y′i‖ for all i. Moreover, since A 6⊃supp(y),

there exists j such that A 6⊃ supp(yj), and hence Aj 6⊃ supp(y′j) and ‖x′j‖<‖y′j‖.
Thus

|||x||| ≤
∑

‖x′i‖ <
∑

‖y′i‖ = |||y||| .

This completes the proof.
To see (9) fix i, and write yi = z + λη · 1B and y′i = z + λη′ · 1B′ , where

η : B → {±1} and η′ : B′ → {±1} are functions on finite sets, |B| = |B′|,
B ∩ supp(z) = B′ ∩ supp(z) = ∅ and λ ≥ ‖z‖`∞ . Note that

xi = ε ·Az + λε · η · 1A∩B .

Fix B′′ ⊂ B′ such that |B′′| = |A ∩ B|. Set A′ =
(
A ∩ supp(z)

)
∪ B′′ and

x′i = ε ·A′y′i. Then
x′i = ε ·Az + λε · η′ · 1B′′ ∼ xi .

We also have |supp(yi)| = |supp(y′i)| and |A′| = |A′∩ supp(y′i)| = |A∩ supp(yi)|.
Hence A ⊃ supp(yi) if and only if A′ ⊃ supp(y′i). Thus εi = ε and Ai = A′ will
do.

As a corollary we obtain
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Proposition 6.4. Assume that in the definition of f and |||·||| the infimum is
always attained and that (ei) is strictly unconditional with respect to ‖·‖. Let
x ∈ c00 and assume that |||x||| =

∑
f(xi), where x =

∑
xi. If in addition x ≥ 0,

then xi ≥ 0 for all i.

Proof. As before, K
‖·‖
U = 1 by strict unconditionality, and so f(z) = f(|z|) for

all z ∈ c00. If xj has negative coefficients for some j, then
∣∣ ∑

xi

∣∣ 6= ∑
|xi| and,

by the previous proposition, we have

|||x||| =
∑

f(xi) =
∑

f(|xi|) ≥
∣∣∣∣∣∣∣∣∣ ∑

|xi|
∣∣∣∣∣∣∣∣∣ >

∣∣∣∣∣∣∣∣∣ ∑
xi

∣∣∣∣∣∣∣∣∣ ,

which is a contradiction.

6.3. Norms on c00 ⊕ c00.
The definitions and results of Subsections 6.1 and 6.2 extend to c00(S) for

any countable set S. In particular, we can take S = N t N (where t denotes
disjoint union) in which case c00(S) is identified with c00 ⊕ c00 in the obvious
way. The unit vector basis of c00(S) is (es)s∈S , where es : S → R is the indicator
function of {s}. This basis does not necessarily come with a natural ordering
but as we only consider unconditional norms, the order is irrelevant.

Throughout this subsection we work with a fixed norm ‖·‖ on c00⊕c00 which

satisfies the following symmetry property: given x1, x2, y1, y2 ∈ c00, if |x1|
dist≡

|x2| and |y1|
dist≡ |y2|, then ‖(x1, y1)‖ = ‖(x2, y2)‖. The resulting function f and

seminorm |||·||| are defined as in Subsection 6.2.
The symmetry assumption on the norm implies that the infimum in the

definition of f is always attained. More precisely, given x, y ∈ c00

either ∃E ⊂ M(x) ∃E′ ⊂ N such that |E| = |E′|, E′ ∩ supp(y) = ∅ and

f(x, y) = ‖(x− Ex, y + λ1E′)‖

where λ = ‖x‖`∞ = ‖x‖`∞ ∨ ‖y‖`∞ ,

or ∃F ⊂ M(y) ∃F ′ ⊂ N such that |F | = |F ′|, F ′ ∩ supp(x) = ∅ and

f(x, y) = ‖(x + λ1F ′ , y − Fy)‖

where λ = ‖y‖`∞ = ‖x‖`∞ ∨ ‖y‖`∞ .

We say that E (respectively, F ) is a set of moving coordinates of (x, y) on the
left-hand side (respectively, right-hand side).

The following is an easy consequence of the above observation.

Proposition 6.5. Let x1, x2, y1, y2 ∈ c00. Assume that |x1|
dist≡ |x2| and |y1|

dist≡
|y2|. Then f(x1, y1) = f(x2, y2) and |||(x1, y1)||| = |||(x2, y2)|||.

The main result of this subsection is
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Theorem 6.6. The infimum in the definition of |||·||| is always attained.

The precise statement of the theorem is as follows: given x, y ∈ c00, there
is a decomposition (x, y) =

∑
(xi, yi) such that |||(x, y)||| =

∑
f(xi, yi); we will

call such a decomposition a norm-attaining decomposition of (x, y). The proof
takes a number of steps.

Lemma 6.7. Assume that (x1, y1) and (x2, y2) have an identical set E of mov-
ing coordinates on the left-hand side, and that there exists ε : E → {±1} with
ε · Exi = |Exi| for i = 1, 2. Then

f(x1 + x2, y1 + y2) ≤ f(x1, y1) + f(x2, y2) .

The same holds if E is a moving set of coordinates on the right-hand side and
ε · Eyi = |Eyi| for i = 1, 2.

Proof. Fix E′ ⊂ N with |E| = |E′| and E′ ∩
(
supp(y1) ∪ supp(y2)

)
= ∅. Then

f(xi, yi) = ‖(xi − Exi, yi + λi1E′)‖

where λi = ‖xi‖`∞ = ‖xi‖`∞ ∨ ‖yi‖`∞ (i = 1, 2). Note that ε · Exi = |Exi| =
λi1E . It follows that ε ·E(x1 +x2) = (λ1 +λ2)1E and λ1 +λ2 = ‖(x1 +x2, y1 +
y2)‖`∞ . Hence(

x1 + x2 − E(x1 + x2), y1 + y2 + (λ1 + λ2)1E′
)
∼ (x1 + x2, y1 + y2)

and

f(x1 + x2, y1 + y2) ≤
∥∥(

x1 + x2 − E(x1 + x2), y1 + y2 + (λ1 + λ2)1E′
)∥∥

≤ ‖(x1 − Ex1, y1 + λ11E′)‖+ ‖(x2 − Ex2, y2 + λ21E′)‖

= f(x1, y1) + f(x2, y2) .

Corollary 6.8. Given x, y ∈ c00, there exists N ∈ N (depending only on
|supp(x)| and |supp(y)|) such that

|||(x, y)||| = inf
{ N∑

i=1

f(xi, yi) : (x, y) =
N∑

i=1

(xi, yi),

supp(xi) ⊂ supp(x) and supp(yi) ⊂ supp(y) ∀ i
}

.

Proof. Assume that (x, y) =
∑

i∈I(xi, yi) for some index set I, where supp(xi) ⊂
supp(x) and supp(yi) ⊂ supp(y) for all i. Write I as a disjoint union of sets
LE,ε, E ⊂ supp(x), ε : E → {±1}, and RF,ε, F ⊂ supp(y), ε : F → {±1}, so
that if i ∈ LE,ε then E is a set of moving coordinates of (xi, yi) on the left-hand
side and ε ·Exi = |Exi|, and if i ∈ RF,ε then F is a set of moving coordinates of
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(xi, yi) on the right-hand side and ε ·Fyi = |Fyi|. Then by the previous lemma
we have∑

E⊂supp(x)

ε : E→{±1}

f
( ∑

i∈LE,ε

(xi, yi)
)

+
∑

F⊂supp(y)

ε : F→{±1}

f
( ∑

i∈RF,ε

(xi, yi)
)
≤

∑
i∈I

f(xi, yi)

from which the result follows by Proposition 6.1(vi).

Proof of Theorem 6.6. Let x, y ∈ c00 and let N ∈ N be given by Corollary 6.8.
Choose x

(n)
i , y

(n)
i for 1 ≤ i ≤ N and n ∈ N such that (x, y) =

∑N
i=1

(
x

(n)
i , y

(n)
i

)
for all n ∈ N, supp

(
x

(n)
i

)
⊂ supp(x), supp

(
y
(n)
i

)
⊂ supp(y) for all i, n, and

N∑
i=1

f
(
x

(n)
i , y

(n)
i

)
→ |||(x, y)||| .

After passing to subsequences, we may assume that x
(n)
i → xi and y

(n)
i → yi as

n → ∞ for each i. This uses the fact that ‖·‖ dominates some multiple of the
`∞-norm on c00 ⊕ c00.

Fix i. After passing to further subsequences, we may assume that
(
x

(n)
i , y

(n)
i

)
has a set E of moving coordinates on, say, the left-hand side for all n ∈ N. Fix
E′ ⊂ N with |E′| = |E| and E′ ∩ supp(y) = ∅. Then

f
(
x

(n)
i , y

(n)
i

)
=

∥∥(
x

(n)
i − Ex

(n)
i , y

(n)
i + λ

(n)
i 1E′

)∥∥
where λ

(n)
i =

∥∥(
x

(n)
i , y

(n)
i

)∥∥
`∞

.

Now ‖(xi, yi)‖`∞ = limn λ
(n)
i = λi, say, and |Ex

(n)
i | = λ

(n)
i 1E → λi1E . It

follows that

f(xi, yi) ≤ ‖(xi − Exi, yi + λi 1E′)‖ = lim
n

f
(
x

(n)
i , y

(n)
i

)
.

Since i was arbitrary, we obtain

|||(x, y)||| = lim
n

N∑
i=1

f
(
x

(n)
i , y

(n)
i

)
≥

N∑
i=1

f(xi, yi) ≥ |||(x, y)||| ,

and this completes the proof.

6.4. A 1-greedy non-subsymmetric basis
We let ‖·‖ denote the norm on c00⊕ c00 defined by ‖(x, y)‖ = ‖x‖`2 +‖y‖`2,1

for x, y ∈ c00. The definition of the Lorentz space `2,1 was recalled in Section 4.
We next define f and |||·||| as in Subsection 6.2. As explained at the beginning
of Subsection 6.3, these definitions make sense for norms on c00(S) for any
countable set S including S = N t N, in which case c00(S) is identified with
c00 ⊕ c00 in the obvious way.

The following establishes Theorem B, which is the main result of this section.
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Theorem 6.9. |||·||| is a norm on c00⊕c00 equivalent to ‖·‖`2+‖·‖`2,1 . Moreover,
the unit vector basis of c00 ⊕ c00 is normalized, 1-greedy but not subsymmetric
with respect to |||·|||.

Remark. What this theorem tells us is that the greedification process applied
to ‖·‖ terminates after just one iteration, i.e., ‖·‖(∞) = |||·|||.
The main step in the proof will be showing the existence of norm-attaining de-
compositions, as defined after Theorem 6.6, of a particularly pleasant form. To
begin with, we collect in a proposition what we already know about f and |||·|||.
First we note the following properties of ‖·‖:

• symmetry property: if |x1|
dist≡ |x2| and |y1|

dist≡ |y2|, then ‖(x1, y1)‖ =
‖(x2, y2)‖;

• the unit vector basis of c00 ⊕ c00 is normalized and 1-unconditional, and so
K
‖·‖
S = K

‖·‖
U = 1;

• “strict unconditionality”: if |x| ≤ |y| and |x| 6= |y|, then ‖x‖<‖y‖;

• `2-domination: ‖(x, y)‖ ≥ ‖(x, y)‖`2 =
(
‖x‖2`2 + ‖y‖2`2

)1/2; in particular, if
supp(x) ∩ supp(y) = ∅, then ‖(x, y)‖ ≥ ‖x + y‖`2 ;

• For A ⊂ N we have ‖1A‖`2,1 =
√
|A|; it follows that the unit vector basis is

democratic with ∆‖·‖ =
√

2.

Using Propositions 6.1, 6.4, 6.5 and Theorem 6.6 we obtain

Proposition 6.10. (Properties of |||·|||.)

(i) Symmetry property: if |x1|
dist≡ |x2| and |y1|

dist≡ |y2|, then f(x1, y1) =
f(x2, y2) and |||(x1, y1)||| = |||(x2, y2)|||.

(ii) For all x, y ∈ c00 there exists a norm-attaining decomposition (x, y) =∑
(xi, yi) with supp(xi) ⊂ supp(x) and supp(yi) ⊂ supp(y) for all i. More-

over, if x ≥ 0, y ≥ 0, then xi ≥ 0, yi ≥ 0 for all i.

(iii) `2-domination: |||(x, y)||| ≥ ‖(x, y)‖`2 . In particular, if ‖x‖`∞ ≤ λ and
A ⊂ N, then |||(x, λ1A)||| = f(x, λ1A) = ‖(x, λ1A)‖`2 =

(
‖x‖2`2 +λ2|A|

)1/2.

(iv) ‖·‖ and |||·||| are equivalent. More precisely, ‖z‖ ≥ |||z||| ≥ 1
1+4

√
2
‖z‖ for

all z ∈ c00 ⊕ c00.

Corollary 6.11. The unit vector basis of c00⊕c00 is normalized, 1-unconditional
and not subsymmetric with respect to |||·|||.

Remark. Thus, to prove Theorem 6.9, it is sufficient to show, by Theorem 0.2,
that the unit vector basis of c00⊕c00 satisfies Property (A) with respect to |||·|||.
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Remark. Let y ∈ c00 with y ≥ 0. We can write y =
∑m

i=1 λi1Ai where m ≥
0, λi > 0 for all i and ∅ 6= A1 ( A2 ( · · · ( Am ⊂ N. This decomposition
is unique and we shall call it the wedding cake decomposition of y. Note that
M(y) = A1, ‖y‖`∞ =

∑m
i=1 λi and ‖y‖`2,1 =

∑m
i=1‖λi1Ai

‖`2 . This motivates
the following attempt at finding norm-attaining decompositions.

Let x ∈ c00 be another vector with x ≥ 0. Set λ = ‖x‖`∞ ∨ ‖y‖`∞ and
λ0 = λ−

∑m
i=1 λi. This yields a decomposition

(x, y) = (x0, 0) +
m∑

i=1

(xi, λi1Ai
) , where xi = λi

λ x , i = 0, 1, . . . ,m .

Note that ‖xi‖`∞ ≤ λi for i = 1, . . . ,m, and hence (assuming, as we may, that
supp(x) ∩ supp(y) = ∅)

|||(x, y)||| ≤ ‖x0‖`2 +
m∑

i=1

‖xi + λi1Ai
‖`2 .

It turns out that this is not a norm-attaining decomposition in general but, as
the next two results show, a norm-attaining decomposition exists where on the
right-hand side we use the wedding cake decomposition.

Theorem 6.12. Let x, y ∈ c00 with x ≥ 0, y ≥ 0. Then there exists a norm-
attaining decomposition (x, y) =

∑
(xi, yi) such that

(i) For all i, either yi = 0 or there exist λi > 0 and Ai ⊂ N (Ai 6= ∅) such
that yi = λi1Ai and xi ≤ λi.

(ii) For all i, j with yi 6= 0 and yj 6= 0, we have Ai ⊂ Aj or Aj ⊂ Ai.

(iii) Given k, l ∈ N, if 〈x, e∗k〉 ≤ 〈x, e∗l 〉, then 〈xi, e
∗
k〉 ≤ 〈xi, e

∗
l 〉 for all i. In

particular, M(x) ⊂ M(xi) for all i.

Proof. By the symmetry properties of ‖·‖, f and |||·|||, we may assume without
loss of generality that supp(x) ∩ supp(y) = ∅.

(i) Let u, v ∈ c00 with supp(u) ∩ supp(v) = ∅, u ≥ 0, v ≥ 0 and v 6= 0. We
show that there is a decomposition (u, v) =

∑
(ui, vi) such that ∀ i either vi = 0

or ∃λi > 0, Ai ⊂ N (Ai 6= ∅) such that vi = λi1Ai and ui ≤ λi, and moreover

f(u, v) ≥
∑

f(ui, vi) .

Then (i) will follow: start with any norm-attaining decomposition of (x, y), as
given by Proposition 6.10(ii), and replace each term (u, v) in that decomposition
by a further decomposition as above.

Let λ = ‖u‖`∞ ∨‖v‖`∞ and let v =
∑m

i=1 λi1Ai be the wedding cake decom-
position of v. Set λ0 = λ−

∑m
i=1 λi.

We consider two cases. First we assume that ‖u‖`∞ ≤ ‖v‖`∞ (which implies
that λ0 = 0), and that (u, v) has a set F of moving coordinates on the right-hand
side. Fix any F ′ ⊂ N with |F ′| = |F | and F ′ ∩ supp(u) = ∅ so that

f(u, v) = ‖(u + λ1F ′ , v − Fv)‖ .
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Note that F ⊂ A1 and
∑m

i=1 λi1Ai\F is the wedding cake decomposition of
v − Fv (we omit the first term if F = A1). Set ui = λi

λ u and vi = λi1Ai for
i = 1, . . . ,m. Then (u, v) =

∑m
i=1(ui, vi), ui ≤ λi for all i, and

f(u, v) = ‖(u + λ1F ′ , v − Fv)‖ = ‖u + λ1F ′‖`2 + ‖v − Fv‖`2,1

=
m∑

i=1

∥∥∥λi

λ

(
u + λ1F ′

)∥∥∥
`2

+
m∑

i=1

‖λi1Ai\F ‖`2

=
m∑

i=1

‖(ui + λi1F ′ , λi1Ai\F )‖ ≥
m∑

i=1

f(ui, vi) ,

which proves the claim. In the second case we assume that ‖u‖`∞ ≥ ‖v‖`∞ and
(u, v) has a set E of moving coordinates on the left-hand side. Fix any E′ ⊂ N
with |E′| = |E| and E′ ∩ supp(v) = ∅ so that

f(u, v) = ‖(u− Eu, v + λ1E′)‖ .

Note that λ01E′+
∑m

i=1 λi1Ai∪E′ is the wedding cake decomposition of v+λ1E′

(with the first term omitted if λ0 = 0 or E′ = ∅). Set ui = λi

λ u and vi = λi1Ai

for i = 0, 1, . . . ,m (where A0 = ∅, and so v0 = 0). Then (u, v) =
∑m

i=0(ui, vi)
and ui ≤ λi for all i = 0, 1, . . . ,m, and moreover

f(u, v) = ‖(u− Eu, v + λ1E′)‖ = ‖u− Eu‖`2 + ‖v + λ1E′‖`2,1

=
m∑

i=0

‖ui − Eui‖`2 +
m∑

i=0

‖λi1Ai∪E′‖`2

=
m∑

i=0

‖(ui − Eui, λi1Ai∪E′)‖ ≥
m∑

i=0

f(ui, vi) ,

which completes the proof of (i).
For (ii) we argue by contradiction. Assume that for some i, j the sets Ai, Aj

are not comparable. Without loss of generality assume that λi ≤ λj and note
that

f(xi, λi1Ai) + f(xj , λj1Aj ) = f(xi, λi1Ai) + f
(

λi

λj
xj , λi1Aj

)
+ f

(
λj−λi

λj
xj , (λj − λi)1Aj

)
.

Next write (u,1A) and (v,1B) for
(

1
λi

xi,1Ai

)
and

(
1
λj

xj ,1Aj

)
, respectively,

and assume, without loss of generality, that ‖u‖2`2 + |A| ≤ ‖v‖2`2 + |B|. Set
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r = |A\B|. Then (u,1A) + (v,1B) = (u,1A∩B) + (v,1A∪B), and

f(u,1A) + f(v,1A) = ‖u + 1A‖`2 + ‖v + 1B‖`2

=
(
‖u‖2`2 + |A|

)1/2

+
(
‖v‖2`2 + |B|

)1/2

>
(
‖u‖2`2 + |A| − r

)1/2

+
(
‖v‖2`2 + |B|+ r

)1/2

= f(u,1A∩B) + f(v,1A∪B) .

It follows that

f(xi, λi1Ai) + f(xj , λj1Aj ) > f(xi, λi1Ai∩Aj ) + f
(

λi

λj
xj , λi1Ai∪Aj

)
+ f

(
λj−λi

λj
xj , (λj − λi)1Aj

)
.

which contradicts the assumption that (x, y) =
∑

(xi, yi) was a norm-attaining
decomposition.

It remains to show (iii). Let k, l ∈ N and assume that 〈x, e∗k〉 ≤ 〈x, e∗l 〉 but
〈xi, e

∗
k〉 > 〈xi, e

∗
l 〉 for some i. Then there exists j such that 〈xj , e

∗
k〉< 〈xj , e

∗
l 〉.

Fix η > 0. Define x′i by 〈x′i, e∗k〉 = 〈xi, e
∗
k〉 − η, 〈x′i, e∗l 〉 = 〈xi, e

∗
l 〉 + η, and

〈x′i, e∗m〉 = 〈xi, e
∗
m〉 for m 6= k, l. Similarly, define x′j by 〈x′j , e∗k〉 = 〈xj , e

∗
k〉 +

η, 〈x′j , e∗l 〉 = 〈xj , e
∗
l 〉 − η, and 〈x′j , e∗m〉 = 〈xj , e

∗
m〉 for m 6= k, l. Finally, set

x′h = xh for h 6= i, j. Then (x, y) =
∑

(x′h, y′h) and, provided η > 0 is sufficiently
small, we have∑

f(x′h, y′h) =
∑

‖x′h + y′h‖`2 <
∑

‖xh + yh‖`2 =
∑

f(xh, yh)

which contradicts the assumption that (x, y) =
∑

(xi, yi) was a norm-attaining
decomposition.

Theorem 6.13. Let x, y ∈ c00 with x ≥ 0, y ≥ 0. Let y =
∑m

i=1 λi1Ai

be the wedding cake decomposition of y. Then there exists a norm-attaining
decomposition (x, y) =

∑
i∈I(xi, yi) such that either

(i) I = {0, 1, 2, . . . ,m}, x0 6= 0, y0 = 0 and yi = λi1Ai , xi ≤ λi for i =
1, . . . ,m.

(ii) I = {1, 2, . . . ,m}, yi = λi1Ai , xi ≤ λi for i = 1, . . . ,m.

Moreover, if ‖x‖`∞ ≥ ‖y‖`∞ , then ‖xi‖`∞ = λi for all i = 1, . . . ,m.

Remark. The first part of Theorem 6.13 will be an easy consequence of Theo-
rem 6.12. What it shows is that finding |||(x, y)||| is finding the minimum of a
convex function on a compact convex set in Euclidean space:

|||(x, y)||| = min
{∑

i∈I

‖xi + yi‖`2 :
∑
i∈I

xi = x, 0 ≤ xi ≤ λi, M(x) ⊂ M(xi) ∀ i
}
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(where λ0 = ∞ if (i) holds). The second part of the Theorem is what is impor-
tant here: it shows that if ‖x‖`∞ ≥ ‖y‖`∞ , then the minimum is attained on a
certain face of this compact, convex set. There seems to be no nice geometric
description of where the minimum occurs. The knowledge of this special face
turns out to be sufficient for verifying Property (A).

Proof of Theorem 6.13. As usual, we will assume that supp(x) ∩ supp(y) = ∅.
Start with a norm-attaining decomposition (x, y) =

∑
i∈I(xi, yi) satisfying (i),

(ii) and (iii) of Theorem 6.12. Note that if for some i 6= j we have supp(yi) =
supp(yj), then we may replace the terms (xi, yi) and (xj , yj) by the single term
(xi + xj , yi + yj) to obtain a new decomposition (x, y) =

∑
h∈I′(x

′
h, y′h) such

that
∑

h∈I′ f(x′h, y′h) ≤
∑

h∈I f(xh, yh). Indeed, we have

f(xi, yi) + f(xj , yj) = ‖xi + yi‖`2 + ‖xj + yj‖`2

≥ ‖xi + xj + yi + yj‖`2 = f(xi + xj , yi + yj) .

Moreover, the new decomposition also satisfies (i), (ii) and (iii) of Theorem 6.12.
The first part of 6.13 now follows easily.

Now assume that ‖x‖`∞ ≥ ‖y‖`∞ . If 0 /∈I (i.e., if we are in alternative (ii)),
then set x0 = y0 = 0. Now define µi = ‖xi‖`∞ for i = 0, 1, . . . ,m. Since
M(x) ⊂ M(xi) for all i, it follows that

‖x‖`∞ =
m∑

i=0

µi ≤ µ0 +
m∑

i=1

λi = µ0 + ‖y‖`∞ ≤ µ0 + ‖x‖`∞ .

Hence if µ0 = 0, then µi = λi for all i = 1, . . . ,m, and the theorem follows.
Otherwise, set

εi =
λi − µi

µ0
for i = 1, . . . ,m .

Note that
m∑

i=1

εi =
‖y‖`∞ − ‖x‖`∞ + µ0

µ0
≤ 1 .

Define

x̄i = xi + εix0 , i = 1, . . . ,m ,

x̄0 =
(
1−

m∑
i=1

εi

)
x0 .

Then
∑m

i=0 x̄i = x, and for each i = 1, . . . ,m we have

〈x̄i, e
∗
k〉 = µi + εiµ0 = λi if k ∈ M(x)

〈x̄i, e
∗
k〉 = 〈xi, e

∗
k〉+ εi〈x0, e

∗
k〉

≤ µi + εiµ0 = λi if k /∈M(x) ,
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and thus ‖x̄i‖`∞ = λi. Finally, we have

f(x̄0, 0) +
m∑

i=1

f(x̄i, λi1Ai) = ‖x̄0‖`2 +
m∑

i=1

‖x̄i + λi1Ai‖`2

< ‖x0‖`2 +
m∑

i=1

‖xi + λi1Ai
‖`2

unless εi = 0 for all i.

Remark. It is not difficult to see from the above proof that alternative (i) holds
if and only if ‖x‖`∞ > ‖y‖`∞ .

Proof of Theorem 6.9. By Proposition 6.10(iv) and Corollary 6.11, it suffices to
verify that the unit vector basis of c00 ⊕ c00 satisfies Property (A) with respect
to |||·|||. In fact, using Proposition 6.10(i), it is enough to show the following
claim. Let x, y ∈ c00 and A ⊂ N; assume that supp(x), supp(y) and A are
pairwise disjoint, and that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1; then

|||(x + 1A, y)||| = |||(x,1A + y)||| .

We begin with the proof of the inequality |||(x+1A, y)||| ≤ |||(x,1A +y)||| which
only really uses Theorem 6.12(i). Let

(x,1A + y) = (x0, 0) +
m∑

i=1

(xi, λi1Ai)

be a norm-attaining decomposition, where 0 ≤ xi ≤ λi for all i = 0, 1, . . . ,m
(and λ0 = ∞). Then

|||(x,1A + y)||| = ‖x0‖`2 +
m∑

i=1

‖xi + λi1Ai‖`2

= f(x0, 0) +
m∑

i=1

f(xi + λi1A, λi1Ai\A)

≥ |||(x + 1A, y)||| ,

since (x + 1A, y) = (x0, 0) +
∑m

i=1(xi + λi1A, λi1Ai\A).
We now turn to the reverse inequality. Let y =

∑m
i=1 λi1Ai be the wedding

cake decomposition of y. By Theorem 6.13 there is a norm-attaining decompo-
sition

(x + 1A, y) = (x0 + u0, 0) +
m∑

i=1

(xi + ui, λi1Ai
)

where 0 ≤ xi ≤ x, 0 ≤ ui ≤ 1A for all i = 0, 1, . . . ,m, and moreover xi ≤
λi, ui ≤ λi for i = 1, . . . ,m. By Theorem 6.12(iii) and by the last part of
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Theorem 6.13 we have ui = λi1A for i = 1, . . . ,m, and u0 = λ01A, where
λ0 =

(
1−

∑m
i=1 λi

)
. It follows that

|||(x + 1A, y)||| = ‖x0 + u0‖`2 +
m∑

i=1

‖xi + ui + λi1Ai
‖`2

= f(x0, u0) +
m∑

i=1

f(xi, ui + λi1Ai
)

≥ |||(x,1A + y)||| .

This completes the proof.

We finish this subsection with a simple consequence.

Corollary 6.14. There is a renorming of `2 with respect to which the unit
vector basis is 1-greedy but not 1-symmetric.

Proof. Let X be the completion of the subspace{
(x, y) : x, y ∈ c00, supp(y) ⊂ {1}

}
of c00 ⊕ c00 with respect to |||·||| (i.e., we take all vectors on the left-hand side
together with the span of e1 on the right-hand side). It follows from Proposi-
tion 6.10(iii) that |||(x, 0)||| = ‖x‖`2 for all x ∈ c00, and hence |||·||| restricted
to X is equivalent to the `2-norm. The unit vector basis of X is 1-greedy by
Theorem 6.9. We show that it is not 1-symmetric by computing |||(2e2, e1)|||. It
follows from Theorem 6.13 (see also the subsequent remark) that

|||(2e2, e1)||| = f(e2, 0) + f(e2, e1) = ‖e2‖`2 + ‖e1 + e2‖`2 = 1 +
√

2 ,

which differs from, say, |||(2e2 + e1, 0)||| =
√

5.

Remark. Albiac and Wojtaszczyk gave a renorming of c0 with respect to which
the unit vector basis is 1-greedy but not 1-symmetric [1, Example 5.6].
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