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Abstract

We consider the X -Greedy Algorithm and the Dual Greedy Algorithm in a finite-
dimensional Banach space with a strictly monotone basis as the dictionary. We show that
when the dictionary is an initial segment of the Haar basis in L p[0, 1] (1 < p < ∞) then
the algorithms terminate after finitely many iterations and that the number of iterations is
bounded by a function of the length of the initial segment. We also prove a more general
result for a class of strictly monotone bases.

1. Introduction

Greedy algorithms in Hilbert space are known to have good convergence properties. The
first general result in this direction was obtained by Huber [6], who proved convergence
of the Pure Greedy Algorithm (PGA) in the weak topology of a Hilbert space H and
conjectured that the PGA converges strongly in H . Huber’s conjecture was proved by
Jones [7].

Our interest in this paper is in convergence results for greedy algorithms in a Banach
space X (see [12]). We say that D ⊂ X is a dictionary if the linear span of D is norm-dense

† The first three authors were supported by the NSF.
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in X and ‖ϕ‖ = 1 for all ϕ ∈ D. (Usually, but not here, D is also assumed to be symmetric.)
For some of the algorithms that have been proposed, e.g. the Weak Chebyshev Dual Greedy
Algorithm [2, 11] or the Weak Greedy Algorithm with Free Relaxation [13], it is known that
uniform smoothness of X guarantees strong convergence of these algorithms for an arbitrary
dictionary D. Rate of convergence results have also been proved [11, 13].

We are mainly concerned with two natural generalizations of the PGA to the Banach space
setting, namely the X-Greedy Algorithm (XGA) and the Dual Greedy Algorithm (DGA) (see
[12]). These algorithms generate a sequence of greedy approximants (Gn) to an initial vector
x . The updated approximant Gn+1 is obtained from Gn by best one-term approximation of
the residual x − Gn in the direction of a particular dictionary element ϕn ∈ D which satisfies
a certain selection criterion. Precise definitions will be given below.

Livshits [8] constructed a dictionary in a smooth Banach space for which the XGA fails
to converge. No general convergence results for the strong topology are known for the XGA
and the DGA for the class of uniformly smooth Banach spaces. In [3] convergence was
proved (for an arbitrary dictionary) for the weak topology in uniformly smooth Banach
spaces with the so-called W N Property. In particular, weak convergence was proved in
uniformly smooth Banach spaces which are uniformly convex and have a 1-unconditional
basis. Unfortunately, L p[0, 1] (p � 2) does not enjoy the W N Property, so these results
cannot be applied to L p[0, 1].

An important advance was made by Ganichev and Kalton [4] who proved strong con-
vergence of the DGA in L p[0, 1] for an arbitrary dictionary. More precisely, they intro-
duced a geometrical property called Property �, proved strong convergence of the DGA in
Banach spaces with Property �, and showed that all subspaces of quotient spaces of L p[0, 1]
(1 < p < ∞) enjoy Property �. In [5] property � was characterized via the notion of a
‘tame’ convex function, and using this characterization several other important spaces were
shown to enjoy Property �.

The arguments used by Ganichev and Kalton do not seem to yield convergence results
for the XGA. In particular, convergence of the XGA in L p[0, 1] is an open question. This
is surprising because the XGA yields the best one-term approximation at each step. Even
for the important special case of this problem in which the dictionary is the Haar basis of
L p[0, 1] very little seems to be known.

Problem 1·1. Suppose that the dictionary is the Haar basis in L p[0, 1] (p � 2). Does the
XGA converge strongly to the initial vector x? Does it converge in the weak topology?

We attacked the finite-dimensional analogue of this problem and obtained the following
theorem, which is a corollary of our main result (Theorem 3·6 below).

THEOREM 1·2. Let 1 < p < ∞ and let (h(p)

i )∞
i=0 be the normalized Haar basis for

L p[0, 1]. Then, for each m � 0, there exists a positive integer N (p, m) such that, for the
dictionary (h(p)

i )m
i=0, the XGA and DG A terminate in at most N (p, m) iterations for every

initial vector in the linear span of (h(p)

i )m
i=0.

We present an example of a non-monotone basis of the two-dimensional Euclidean space
for which the XGA does not terminate. When the dictionary is a strictly monotone finite
basis we show that for every initial vector the XGA and DGA terminate after finitely many it-
erations. To get a uniform bound on the number of iterations that is independent of the initial
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vector, as in Theorem 1·2, we isolate a particular property (Property P) of the Haar basis
and prove the existence of a uniform bound for all strictly monotone bases with Property P.

The paper is organized as follows. The greedy algorithms which we consider are defined
in the next section. Our main result is proved in Section 3. The final section contains two
estimates for the Haar basis which lead to a refinement of Theorem 1·2 in the range p > 2.

2. Definitions and notation

First we recall some notation and terminology from Banach space theory. We denote the
unit sphere {x ∈ X : ‖x‖ = 1} of X by SX . We say that Fx ∈ X � is a norming functional for
a nonzero x ∈ X when ‖Fx‖X� = 1 and Fx(x) = ‖x‖; by the Hahn-Banach theorem, each
x ∈ X has at least one norming functional. X is smooth if Fx is unique.

It is known that the norm of a smooth finite-dimensional Banach space is uniformly
Fréchet differentiable, i.e.

‖x + y‖ = 1 + Fx(y) + ε(x, y)‖y‖ (1)

for all x, y ∈ X with ‖x‖ = 1, where ε(x, y) → 0 uniformly for (x, y) ∈ SX × X as
‖y‖ → 0.

A basis (ei)
m
i=1 of an m-dimensional Banach space X is said to be strictly monotone if∥∥∥∥∥

i0∑
i=1

ai ei

∥∥∥∥∥ �
∥∥∥∥∥

m∑
i=1

ai ei

∥∥∥∥∥
for all 1 � i0 < m and (ai) ⊂ R with equality only if ai = 0 for i = i0 + 1, . . . , m. The
dual basis (e∗

i )
m
i=1 ⊂ X∗ is defined by e∗

i (e j ) = δi, j . The basis is normalized if ‖ei‖ = 1 for
i = 1, . . . , m. Note that if (ei)

m
i=1 is a normalized monotone basis then for all (ai) ⊂ R, we

have

1

2
max

1�i�m
|ai | �

∥∥∥∥∥
m∑

i=1

ai ei

∥∥∥∥∥ �
m∑

i=1

|ai |. (2)

Let us recall the definition of the Haar basis functions defined on [0, 1]. Let h0 ≡ 1. For
n � 0 and 0 � k < 2n , we define hi for i = 2n + k thus:

hi =

⎧⎪⎨
⎪⎩

1 on [k/2n, (2k + 1)/2n+1)

−1 on [(2k + 1)/2n+1, (k + 1)/2n)

0 elsewhere.

The Haar basis is a strictly monotone basis of L p[0, 1] (equipped with its usual norm ‖ · ‖p)
for 1 < p < ∞.

The algorithms which we consider in this paper all arise from the repeated application of
a greedy step to a nonzero residual vector y ∈ X . Let us describe the general form of this
greedy step.

(i) Select ϕ(y) ∈ D by applying a selection procedure (which depends on the particu-
lar algorithm in question) to y. In general the selection procedure will allow many
possible choices for ϕ(y).

(ii) Then select λ(y) ∈ R to minimize ‖y − λφ(y)‖ over λ.

Starting with an initial vector x ∈ X , we generate a sequence of residuals (xn) as follows.

(i) Set x0 := x .
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(ii) For n � 1, apply the greedy step to the residual y = xn−1 to obtain ϕn := ϕ(xn−1) ∈
D and λn := λ(xn−1) ∈ R.

(iii) Set xn := xn−1 − λnϕn to be the updated residual.

The algorithm is said to converge (strongly) if ‖xn‖ → 0 as n → ∞. It is said to terminate
after N steps if xN = 0. For n � 1, the nth greedy approximant is defined by Gn =∑n

i=1 λiϕi . Note that Gn = x − xn and that x = ∑∞
i=1 λiϕi (resp. x = ∑N

i=1 λiϕi ) if the
algorithm converges (resp. terminates after N steps).

Two important greedy algorithms of this type are the weak X-Greedy Algorithm (WXGA)
and the Weak Dual Greedy Algorithm (WDGA) (see [12]). In both cases a weakness para-
meter τ ∈ (0, 1) is specified in advance. For the WXGA with weakness parameter τ the
greedy step is as follows. Given a nonzero x ∈ X , we select ϕ ∈ D to satisfy

‖x‖ − min
λ∈R

‖x − λϕ(x)‖ � τ

(
‖x‖ − inf

λ∈R
ϕ∈D

‖x − λϕ‖
)

. (3)

We can also set τ = 1 in the above when it can be shown that the infimum in (3) is attained,
e.g. if D is finite or if D is a monotone basis for X ; the case τ = 1 is the X-Greedy Algorithm
(XGA) discussed in the Introduction.

For the WDGA with weakness parameter τ the greedy step is as follows. Given a nonzero
y ∈ X , choose ϕ(y) ∈ D such that

|Fy(ϕ(y))| � τ sup
ϕ∈D

|Fy(ϕ)|.

The case τ = 1, when it makes sense, is the Dual Greedy Algorithm (DGA) discussed in the
Introduction. Smoothness of X guarantees that the residuals satisfy ‖xn‖ < ‖xn−1‖ for both
the W XG A and the W DG A.

3. Main results

PROPOSITION 3·1. Suppose that X is a finite-dimensional smooth Banach space. Then
there exists γ ∈ (0, 1) such that the greedy steps of both the WXGA and WDGA applied to
any nonzero y ∈ X satisfy

‖y − λ(y)ϕ(y)‖ � γ ‖y‖. (4)

Proof. First we consider the WDGA with weakness parameter τ . By compactness of SX

and continuity of the mapping y → Fy , there exists δ > 0 such that

sup{|Fy(φ)| : φ ∈ D} � δ (y ∈ SX ).

Hence, the WDGA applied to y ∈ SX selects ϕ(y) ∈ D such that |Fy(ϕ(y))| � τδ. By
uniform Fréchet differentiability of the norm there exists η > 0 such that for all y ∈ SX and
for all z ∈ X with ‖z‖ � η, we have |ε(y, z)| � τδ/2 in (1), and hence

‖y − z‖ = 1 − Fy(z) + ε(y, −z)‖z‖
� 1 − Fy(z) + τδ

2
η.

Setting z = ±ηϕ(y) for the appropriate choice of signs yields Fy(z) � ητδ, and hence

‖y − z‖ � 1 − ητδ

2
.
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By homogeneity we get for all nonzero y ∈ X

‖y − λ(y)ϕ(y)‖ �
(

1 − ητδ

2

)
‖y‖. (5)

Setting τ = 1 in the above yields an estimate for the DGA. Since the greedy step of the
XGA produces a residual with the smallest norm, it follows that the same estimate must also
hold for the XGA. But this implies that (5) also holds for the WXGA with parameter τ .

We turn now to consider the case in which X is m-dimensional (1 � m < ∞) and the
dictionary is a strictly monotone normalized basis B = (ei)

m
i=1 for X . We shall say that the

algorithm is norm-reducing with constant γ (0 < γ < 1) if (4) holds for the greedy step.

PROPOSITION 3·2. Suppose that the algorithm is norm-reducing with constant γ . Then,
for each initial vector x ∈ X, the algorithm terminates after finitely many steps.

Proof. The proof is by induction on m. The result is trivial if m = 1, so suppose m > 1
and that x = ∑m

i=1 ai ei . If am = 0, then by monotonicity of B the algorithm will never select
em , so the result follows by induction. So suppose that am � 0. If the algorithm selects em

at the nth step, then by strict monotonicity the new residual xn satisfies e∗
m(xn) = 0, i.e. the

last coefficient is set equal to zero, and the result follows by induction. Thus to conclude
the proof it suffices to show that em is eventually selected. But if em is never selected then
e∗

m(xn) = am for all n � 1, so by (2)

γ n‖x‖ � ‖xn‖ � 1

2
max

1�i�m
|e∗

i (xn)| � |am |
2

,

which is a contradiction when n is larger than ln(2‖x‖/|am |)/ ln(γ −1).

Example 3·3. Monotonicity of the basis is essential. Indeed, consider the basis B =
{(1, 0), (1/

√
2, 1/

√
2)} of 2-dimensional Euclidean space. It is easily seen that the XGA

does not terminate unless the initial vector is a multiple of one of the basis vectors.

Problem 3·4. The estimate n � ln(2‖x‖/|am |)/ ln(γ −1) for the number of steps required
for the algorithm to select em clearly depends on x and becomes unbounded as am → 0. Is
there a uniform bound N which is independent of the initial vector x?

We shall now provide a sufficient condition which guarantees a positive answer to this
question. Then we verify that the initial segments of the Haar basis satisfy this condition.

Definition 3·5. Let B = (ei)
m
i=1 be a normalized monotone basis for X. We say that B

has Property P with constant ζ > 0 if the following condition is satisfied: for all x =∑m
i=1 ai ei ∈ X and for all 1 � i0 � m − 1, we have

|t0| � ζ

m∑
i=i0+1

|ai |,

where t0 minimizes the mapping t �→ ‖ ∑i0−1
i=1 ai ei + tei0 + ∑m

i=i0+1 ai ei‖.

Now we can state our main result.

THEOREM 3·6. Suppose that X is m-dimensional, that B is a strictly monotone basis for
X which has Property P with constant ζ , and that the algorithm is norm-reducing with con-
stant γ . Then there exists a positive integer N (m, γ, ζ ) such that the algorithm terminates
in at most N steps for every initial vector x ∈ X.



524 DILWORTH, ODELL, SCHLUMPRECHT AND ZSÁK

The proof of Theorem 3·6 requires some combinatorial notation which we shall now
describe. For positive integers r and s, with r � s, the integer interval {n ∈ N : r � n � s}
will be denoted by [r, s]. If I1 and I2 are integer intervals we write I2 < I1 if max I2 <

min I1, and we say they are consecutive if min I1 = max I2 + 1.
For 1 � k � m, an interval partition of [1, m] is a k-tuple P = (I1, . . . , Ik) of consecutive

integer intervals I1, . . . , Ik such that min Ik = 1, max I1 = m, and Ik < Ik−1 < · · · < I1.
The collection P(m) of all interval partitions of [1, m] is readily seen to have cardinality
2m−1. We endow P(m) with the lexicographical ordering ≺, i.e., if P1 = (I1, . . . , Ir ) and
P2 = (J1, . . . , Js) are two interval partitions then P1 ≺ P2 if, for some t � 1, we have
card Iu = card Ju for 1 � u < t and card It < card Jt . Note that ([1, m]) is the maximum
element of (P(m), ≺).

Next we associate to each y = ∑m
i=1 ai ei ∈ X an interval partition P(y) = (I1, . . . , Ik) ∈

P(m) by ‘backwards induction’ as follows:

(i) m ∈ I1;

(ii) Suppose that 1 � i < m and that i + 1 ∈ I j . Then

i ∈
{

I j if |ai | � (1 + ζ )m−i
∑ j

r=1 |amax Ir |.
I j+1 otherwise.

(6)

It may be helpful to explain the intuition behind this definition. The definition of P(y) begins
with I1. Working backwards from i = m ∈ I1, then i is placed in the same interval I j as
i+1 if the coefficient |ai | is not too much larger (roughly speaking) than the later coefficients
|ai+1|, . . . , |am |. But if |ai | is much larger than the later coefficients then a new interval I j+1

is begun for which i = max I j+1. Note that

‖y‖ �
m∑

i=1

|ai |

=
k∑

j=1

∑
i∈I j

|ai |
(7)

�

⎛
⎝ k∑

j=1

|amax I j |
⎞
⎠ m∑

i=1

(1 + ζ )m−i

� m
(1 + ζ )m

ζ
max

1� j�k
|amax I j |.

LEMMA 3·7. For each initial vector y ∈ X with P(y) = (I1, . . . , Ik) there exists i0 ∈
{max I j : 1 � j � k} such that the algorithm selects ei0 in at most n0 steps, where

n0 � 1 +
⌊

ln(2m(1 + ζ )m/ζ )

ln(1/γ )

⌋
. (8)

Proof. Let i0 be defined by

|ai0 | = max{|ai | : i ∈ {max I j : 1 � j � k}}.
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Suppose that ei0 is first selected at the (n0)th step. Then the residual yn0−1 satisfies by (2)
and (7)

|ai0 |
2

� ‖yn0−1‖ � γ n0−1‖y‖ � γ n0−1m
(1 + ζ )m

ζ
|ai0 |,

and the result follows.

LEMMA 3·8. Suppose that when applied to y the algorithm selects ei0 and produces a
residual z. Let P(y) = (I1, . . . , Ik) and P(z) = (J1, . . . , Jl). Then either i0 = m or

P(y)

{
≺ P(z) if i0 ∈ {max I j : 2 � j � k},
= P(z) otherwise.

Proof. We may assume that i0 < m. Suppose that i0 + 1 ∈ Jj0 . Let y = ∑m
i=1 ai ei

and z = ∑m
i=1 bi ei . Clearly, bi = ai if i � i0. Thus by (6), Jj = I j for j < j0 and

max Jj0 = max I j0 . Since B has Property P with constant ζ , and using the estimate |ai | �
(1 + ζ )m−i (

∑ j0
j=1 |amax I j |) for i > i0 which follows from (6), we get

|bi0 | � ζ

m∑
i=i0+1

|ai |

� ζ

(
m∑

i=i0+1

(1 + ζ )m−i

) ⎛
⎝ j0∑

j=1

|amax I j |
⎞
⎠

� (1 + ζ )m−i0

⎛
⎝ j0∑

j=1

|bmax J j |
⎞
⎠ .

Thus, by (6), i0 ∈ Jj0 . In particular, if i0 � I j0 (in which case i0 = max I j0+1), then
card(Jj0) > card(I j0), so P(y) ≺ P(z). On the other hand, if i0 ∈ I j0 , then using the
facts that bi = ai if i � i0 and that i0 � max Jj0 , it follows again from (6) that P(y) = P(z).

Proof of Theorem 3·6. The proof is by induction on m. Let x ∈ X . We may assume that
e∗

m(x) � 0. It suffices to give a bound independent of x for the number of steps required
for the algorithm to select em . Let P(x) = (I1, . . . , Ik). Then by Lemma 3·7 the algorithm
selects either em or ei0 , where i0 ∈ {max I j : 2 � j � k}, in at most n0 steps. In the latter
case, by Lemma 3·8, P(x) ≺ P(xn0). Repeating the argument with x replaced by xn0 , we
find that either em is selected in the first 2n0 steps or P(xn0) ≺ P(x2n0). After a total of
at most card(P(m)) − 1 = 2m−1 − 1 iterations of this argument, we find that either em is
selected in the first (2m−1 − 1)n0 steps or P(x(2m−1−1)n0) = ([1, m]), the maximum element
of P(m). In the latter case, by Lemma 3·7, em will be selected in at most a further n0 steps.
In conclusion, em will be selected in at most 2m−1n0 steps. This leads to the estimate

N (m, γ, ζ ) = n0

m∑
i=1

2i−1 = (2m − 1)n0. (9)

Our next goal is to show that all initial segments of the Haar basis for L p[0, 1] (1 < p <

∞) have property P with constant ζ depending on m and p. In the next section we prove
that if p > 2 then ζ may be chosen independently of m.
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LEMMA 3·9. Let 1 < p < ∞ and let h(p)

i = hi/‖hi‖p (i � 0). For each m � 1 there
exists a positive constant C(m, p) such that, for all M ∈ R, if |a1| � C(m, p)

∑m
j=2 |a j |,

then ∥∥∥∥∥M +
m∑

i=1

ai h
(p)

i

∥∥∥∥∥
p

�
∥∥∥∥∥M +

m∑
i=2

ai h
(p)

i

∥∥∥∥∥
p

. (10)

Proof. If M = 0 we can take C(m, p) = 2 by an easy triangle inequality calculation. If
M � 0 then by homogeneity of the norm we may assume that M = 1. By expanding in a
Taylor series, we see that there exist positive constants b1, . . . , bm such that∥∥∥∥∥1 +

m∑
i=1

ai h
(p)

i

∥∥∥∥∥
p

p

=
∫ 1

0

∣∣∣∣∣1 +
m∑

i=1

ai h
(p)

i

∣∣∣∣∣
p

dt

= 1 +
m∑

i=1

bi a
2
i + o

(
m∑

i=1

a2
i

)
.

Thus there exists 0 < ε < 1 such that if |a1| = ∑m
i=2 |ai | < ε then (10) is satisfied. By

convexity of the mapping

t �→
∥∥∥∥∥1 + th(p)

1 +
m∑

i=2

ai h
(p)

i

∥∥∥∥∥
p

,

it follows that (10) is also satisfied whenever
∑m

i=2 |ai | < ε and |a1| �
∑m

i=2 |ai |. Now
suppose that

∑m
i=2 |ai | � ε. If

|a1| � (2 + 2/ε)

m∑
i=2

|ai | � 2 + 2
m∑

i=2

|ai |,

then by the triangle inequality∥∥∥∥∥1 +
m∑

i=1

ai h
(p)

i

∥∥∥∥∥
p

� |a1| − 1 −
m∑

i=2

|ai |

� 2 + 2
m∑

i=2

|ai | − 1 −
m∑

i=2

|ai |

= 1 +
m∑

i=2

|ai |

�
∥∥∥∥∥1 +

m∑
i=2

ai h
(p)

i

∥∥∥∥∥
p

.

Thus, C(m, p) = 2 + 2/ε works.

PROPOSITION 3·10. Let 1 < p < ∞. For each m � 1, the initial segment (h(p)

i )m
i=0 of

the Haar basis for L p[0, 1] has property P with constant ζ = C(m, p).

Proof. Let 0 � i0 < m. Suppose t0 minimizes the function

t �→
∥∥∥∥∥

i0−1∑
i=0

ai h
(p)

i + th p
i0

+
m∑

i=i0+1

ai h
(p)

i

∥∥∥∥∥
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for fixed coefficients (ai) ⊂ R. Suppose that hi0 is supported on the dyadic interval I and let
M be the (constant) value assumed by

∑i0−1
i=0 ai h

(p)

i on I . Then t0 minimizes the function

t �→
∫

I

∣∣∣∣∣M + th(p)

i0
+

m∑
i=i0+1

ai h
(p)

i

∣∣∣∣∣
p

dx .

Lemma 3·9 obviously transfers from [0, 1] to I . So

|t0| � C(p, m)

m∑
i0+1

|ai |.

Note that in view of the preceding result the initial segments of the Haar basis in L p[0, 1]
satisfy the hypotheses of Theorem 3·6. Thus, Theorem 1·2 is a special case of Theorem 3·6.

4. Further results

In this section we present some more precise estimates for the Haar basis. First we estim-
ate the norm-reducing constant γ . Then we show that for p > 2 the constant ζ for Property
P may be chosen to be independent of m.

Recall that the modulus of smoothness ρX (t) of a Banach space X is defined for 0 < t � 1
by

ρX (t) = sup
{‖x + y‖ + ‖x − y‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = t

}
(see [9, p. 59]). The modulus of smoothness for L p[0, 1] satisfies

ρL p[0,1](t) �
{

cpt p if 1 < p � 2,

cpt2 if 2 � p < ∞,

where cp is a constant (see [9, p. 63]).

PROPOSITION 4·1. Suppose that m � 1 and that A ⊆ N has cardinality m. For DA :=
(h(p)

i )i∈A and X A := spanDA ⊂ L p[0, 1] we have that the DGA and XGA are norm-reducing
with constant

γ �
{

1 − c′
pm p/(2−2p) if 1 < p � 2,

1 − c′
pm(2−2p)/p if 2 < p < ∞,

where c′
p is a constant depending only on p.

Proof. The XGA produces the greatest norm reduction at each step, so it suffices to prove
the result for the DGA. For convenience let c denote a constant depending only on p whose
precise value may change from line to line. First we consider the case 1 < p � 2. Let
y = ∑

i∈A ai h
(p)

i ∈ SX A and let Fy = ∑
i∈A bi h

(q)

i ∈ SX∗
A
, where q = p/(p − 1). Note that

‖Fy‖q � ‖Fy‖X∗
A

= 1.

The Haar basis in Lq[0, 1] satisfies an upper 2-estimate for q > 2 (see [1]). Thus,∑
i∈A |bi |2 � c, and since card A = m we get

|bi0 | := max
i∈A

|bi | � c√
m

.
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We may assume that bi0 > 0. Thus, for t � 0, we have∥∥∥y + th(p)

i0

∥∥∥
p

� Fy

(
y + th(p)

i0

)
= 1 + tbi0 � 1 + ct√

m
.

Hence ∥∥∥y − th(p)

i0

∥∥∥
p

� 2 −
∥∥∥y + th(p)

i0

∥∥∥
p
+ 2ρL p[0,1](t)

� 2 −
(

1 + ct√
m

)
+ 2cpt p

= 1 − ct√
m

+ 2cpt p.

Choosing t to minimize 1 − (ct/
√

m)+ 2cpt p yields γ � 1 − cm p/(2−2p). The case p > 2 is
proved similarly using the fact that the Haar basis in Lq[0, 1] satisfies an upper q-estimate
for q < 2.

PROPOSITION 4·2. Suppose that 2 < p < ∞. Then for all y ∈ span(hi)
∞
i=2, we have

‖1 + t‖y‖ph1 + y‖p � ‖1 + y‖p

provided |t | � max(4, 2(p−3)/2
√

p(p − 1)).

Proof. If ‖y‖p > 1 then the result holds for |t | � 4 by the triangle inequality. So assume
‖y‖p � 1. For p � 2, f (x) = |x |p is twice differentiable. Thus, by the Mean Value
Theorem, for all x ∈ R there exists 0 < θ(x) < 1 such that

|1 + x |p = 1 + px + p(p − 1)

2
x2|1 + θ(x)x |p−2.

Thus, for all y ∈ span(hi )
∞
i=2 with ‖y‖p � 1, we have∫ 1

0
|1 + y(s)|p ds � 1 + p

∫ 1

0
y(s) ds + p(p − 1)

2

∫ 1

0
y(s)2|1 + |y(s)||p−2 ds

= 1 + 0 + p(p − 1)

2

∫ 1

0
y(s)2|1 + |y(s)||p−2 ds

� 1 + p(p − 1)

2
‖y‖2

p ‖1 + |y|‖p−2
p

(by Hölder’s inequality for the conjugate indices p/2 and p/(p − 2))

� 1 + 2p−2

(
p(p − 1)

2

)
‖y‖2

p,

using the fact that ‖y‖p � 1 in the last line. Hence

‖1 + y‖p � (1 + 2p−3 p(p − 1)‖y‖2
p)

1/p. (11)

On the other hand, since p > 2, we have

‖1 + t‖y‖ph(p)

1 + y‖p � ‖1 + t‖y‖ph(p)

1 + y‖2

� ‖1 + t‖y‖ph(p)

1 ‖2 (12)

= (1 + t2‖y‖2
p)

1/2.

Combining (11) and (12) yields the result.
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COROLLARY 4·3. Let 2 < p < ∞. Every finite subsequence of the Haar basis for
L p[0, 1] has property P with constant

ζ = max(4, 2(p−3)/2
√

p(p − 1)).

Combining Proposition 4·1 with Corollary 4·3, and using the estimates (8) and (9) for
the number of iterations, yields the following strengthening of Theorem 1·2 in the range
p > 2 in which the initial segment of the Haar basis of length m is replaced by any subset
of cardinality m.

THEOREM 4·4. Let 2 < p < ∞ and let m � 1. Then, for all A ⊂ N of cardinality m, the
XGA and DGA terminate in at most O(2mm ln m) iterations for the dictionary DA and for
every initial vector in X A.

Remark 4·5. We do not know whether or not the last result holds also for 1 < p < 2.
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