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Abstract
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1. Introduction

Let X be an infinite-dimensional Banach space and let (ei) be a Markushevich basis for X

with biorthogonal sequence (e∗
i ). The Thresholding Greedy Algorithm (TGA) was introduced

by Temlyakov [11] for the trigonometric system and subsequently extended to the Banach space
setting by Konyagin and Temlyakov [8]. See [13] and the recent monograph [14] for the history of
the problem and for background information on greedy approximation. The algorithm is defined
as follows. For x ∈ X and n � 1, let An(x) ⊂ N be the indices corresponding to a choice of n

largest coefficients of x in absolute value, i.e. An(x) satisfies

min
{∣∣e∗

i (x)
∣∣: i ∈An(x)

}
� max

{∣∣e∗
i (x)

∣∣: i ∈ N \An(x)
}
.

Then Gn(x) := ∑
i∈An(x) e

∗
i (x)ei is called an nth greedy approximant to x. The TGA is said to

converge if Gn(x) → x. We say that (ei) is quasi-greedy (QG) if there exists K < ∞ such that
for all x ∈ X and n � 1, we have ‖Gn(x)‖ � K‖x‖. Wojtaszczyk [15, Theorem 1] proved that
(ei) is QG if and only if the TGA converges for all initial vectors x ∈ X.

It is known [4, Remark 6.3] that the Haar basis (normalized in L1[0,1]) is not quasi-greedy,
i.e., that for certain initial vectors x the TGA does not converge. Recently, however, Gogyan
discovered a weak thresholding version of the TGA for the Haar basis which converges. The
new algorithm defined in [7] is of the following general type which we call branch greedy. Fix
a weakness parameter τ with 0 < τ < 1. For each x ∈ X, we define inductively an increasing
sequence (Aτ

n(x)) of sets of n coefficient indices such that

min
{∣∣e∗

i (x)
∣∣: i ∈Aτ

n(x)
}

� τ max
{∣∣e∗

i (x)
∣∣: i ∈ N \Aτ

n(x)
}
.

Such index sets will be generated by a weak thresholding procedure. Gogyan proved for his
algorithm that the branch greedy approximants Gτ

n (x) := ∑
i∈Aτ

n(x) e
∗
i (x)ei converge to x and

are uniformly bounded, i.e., that ‖Gτ
n (x)‖ � K(τ)‖x‖, where K(τ) is a constant.

The motivation for the term “branch greedy” comes from the fact that weak thresholding
generates a tree of possible choices for the coefficients. A branch greedy algorithm is simply
a procedure for selecting a branch of this tree. In Section 2 we try to formulate a reasonable
and widely applicable definition of branch greedy algorithm. Then our goal is to study conver-
gence and best approximation properties of branch greedy algorithms. In Section 3 we study
the analogue of Wojtaszczyck’s theorem on the equivalence of convergence of the TGA and the
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QG property [15]. We identify some sufficient conditions for this equivalence to hold for branch
greedy algorithms and we show that the equivalence does not hold in general.

In Section 4 we define a system to be branch quasi-greedy (BQG) if the branch greedy ap-
proximants are uniformly bounded. Gogyan’s result shows that the Haar basis for L1[0,1] is
BQG but not QG. We show that the QG property is equivalent to the BQG property together with
an additional “partial unconditionality” type condition (see e.g. [5]). This fact is used repeatedly
in the subsequent sections. As an application of this result we show that every weakly null BQG
sequence contains a QG subsequence, which sheds some light on an important open problem
concerning partial unconditionality.

The remainder of the paper concerns the best n-term approximation for branch greedy algo-
rithms. Recall that the error in the best n-term approximation to x (using (ei)) is given by

σn(x) := inf

{∥∥∥∥x −
∑
i∈A

aiei

∥∥∥∥: (ai) ⊂ R, |A| = n

}
,

and the error in the best projection of x onto a subset of (ei) of size at most n is given by

σ̃n(x) := inf

{∥∥∥∥x −
∑
i∈A

e∗
i (x)ei

∥∥∥∥: |A| � n

}
.

Then (ei) is said to be greedy with constant C [8] if

∥∥x − Gn(x)
∥∥ � Cσn(x) (n � 1, x ∈ X),

and almost greedy (AG) with constant C [3] if

∥∥x − Gn(x)
∥∥ � Cσ̃n(x) (n � 1, x ∈ X).

Temlyakov [12] proved that the Haar system for Lp[0,1]d (1 < p < ∞, d � 1) is greedy, which
provides an important theoretical justification for the use of thresholding in data compression.
We refer the reader to [16] for other examples of greedy bases.

Konyagin and Temlyakov [8] gave a very useful characterization of greedy bases. They proved
that a system is greedy if and only if it is unconditional and democratic. The democratic property
is defined as follows. We say that (ei) is democratic with constant � if, for all finite A,B ⊂ N
with |A| � |B|, we have ∥∥∥∥∑

i∈A

ei

∥∥∥∥ � �

∥∥∥∥∑
i∈B

xi

∥∥∥∥.

We recall that (ei) is unconditional with constant K if, for all choices of signs, we have∥∥∥∥∥
∞∑
i=1

±e∗
i (x)ei

∥∥∥∥∥ � K‖x‖ (x ∈ X).

We introduce the classes of branch greedy systems in Section 5 and branch almost greedy
systems in Section 6. It turns out, however, that the characterizations discussed above remain
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valid, so that the class of branch greedy (resp. branch almost greedy) systems coincides with
the class of greedy (resp. almost greedy) systems. At the expense of some extra complexity
in the proofs, we have formulated all our results for finite systems, thereby avoiding infinite-
dimensional arguments that are not valid in the finite-dimensional setting. In particular, we obtain
quantitative estimates that are independent of dimension for many of the various constants that
arise: for example, we can estimate the democratic and quasi-greedy constants in terms of the
branch almost greedy constant and the weakness parameter τ . None of our estimates here involve
the basis constant of the system. It follows that our infinite-dimensional results are valid for
general biorthogonal systems.

The last section, which is the most technical, concerns the branch analogue of the notion of
semi-greedy system introduced in [2]. Let us recall that (ei) is semi-greedy with constant C if
for all x ∈ X and n � 1 there exist scalars ai (i ∈An(x)) such that∥∥∥∥x −

∑
i∈An(x)

aiei

∥∥∥∥ � Cσn(x).

Several questions remain open for semi-greedy systems. In particular, we are not able to show
without extra hypotheses that a branch semi-greedy system is semi-greedy. Moreover, our quan-
titative results involve the basis constant of the system and in some cases also the cotype q

constant of X. In the infinite-dimensional setting we can show that if X has finite cotype and
(ei) is a branch semi-greedy Schauder basis then (ei) is almost greedy. This implies the equiv-
alence of the semi-greedy and branch semi-greedy properties for Schauder bases of spaces with
finite cotype.

2. Branch greedy algorithms

Let X be a finite-dimensional or separable infinite-dimensional Banach space. Let (ei) ⊂ X

be a semi-normalized system, that is, a � ‖ei‖ � b for positive constants a and b. We assume
that (ei) is a bounded Markushevich basis for X with biorthogonal functionals (e∗

i ), that is,
supi�1 ‖e∗

i ‖ = M < ∞, (ei) has dense linear span, and (e∗
i ) is total, i.e. the mapping sending

x ∈ X to its coefficient sequence (e∗
i (x)) is one–one. The support of x is defined by supp(x) :=

{i: e∗
i (x) �= 0}. For every finite A ⊂ N, we denote by PA the projection PA(x) := ∑

i∈A e∗
i (x)ei .

If A is co-finite, we define PA := I − PN\A. Now fix a weakness parameter τ with 0 < τ < 1.
For all 0 �= x ∈ X, define

Aτ (x) :=
{
i ∈ N:

∣∣e∗
i (x)

∣∣ � τ max
i�1

∣∣e∗
i (x)

∣∣}.

Let Gτ : X \ {0} → N be any mapping which satisfies the following conditions:

(a) Gτ (x) ∈Aτ (x);
(b) Gτ (λx) = Gτ (x) for all λ �= 0;
(c) If Aτ (y) =Aτ (x) and e∗

i (y) = e∗
i (x) for all i ∈Aτ (x) then Gτ (y) = Gτ (x).

Here Gτ (x) is to be interpreted as the index of the first coefficient of x that is selected by the
algorithm. Subsequent coefficients are then selected by iterating the algorithm on the residuals.
Condition (a) simply says that the coefficients are selected by weak thresholding with weakness
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parameter τ . Condition (b) is a natural homogeneity assumption. Condition (c) says that the
choice of the next coefficient should depend only on the set of coefficients (indexed by Aτ (x))
which satisfy the weak thresholding criterion.

Every such mapping Gτ generates a “branch greedy algorithm” as follows. For each finitely
supported (resp., infinitely supported) vector x ∈ X define the “branch greedy ordering”
ρτ

x : {1,2, . . . , | supp(x)|} → N (resp., ρτ
x : N → N) inductively:

(i) If x �= 0 then ρτ
x (1) = Gτ (x);

(ii) For i � 2, if | supp(x)| � 2 then

ρτ
x (i) = Gτ

(
x −

i−1∑
j=1

e∗
ρτ

x (j)(x)eρτ
x (j)

)
.

Henceforth we shall drop the subscript x from ρτ
x when there is no ambiguity. Finally, we define

the branch greedy approximations Gτ
n (x) as follows (setting e∗

ρτ (i)(x) := 0 if i > | supp(x)|):

Gτ
n (x) =

n∑
i=1

e∗
ρτ (i)(x)eρτ (i) (n � 1).

Set Gτ
0 (x) := 0 for convenience.

Note that (ρτ (i)) is a generalization of the greedy ordering (ρ(i)), which corresponds to τ = 1
and simply rearranges the coefficients of x in decreasing order of magnitude:∣∣e∗

ρ(1)(x)
∣∣ �

∣∣e∗
ρ(2)(x)

∣∣ � · · · ,
choosing the smallest index in case of a tie [2, p. 577].

3. Convergence

In this section we consider the following two desirable properties of the branch greedy algo-
rithms defined above:

(A) Convergence of the algorithm, i.e., Gτ
n (x) → x for all x ∈ X.

(B) Uniform boundedness of the approximants, i.e., there exists K < ∞ such that ‖Gτ
n (x)‖ �

K‖x‖ for all n � 1 and x ∈ X.

Proposition 3.1. (A) and (B) are not equivalent in general.

Proof. It suffices to observe that Gogyan’s algorithm for the normalized Haar basis in L1[0,1]
(see [7] or Example 3.2 below) can be modified slightly so that the modified algorithm satis-
fies (A) but not (B). Rather than giving a precise definition of the mapping Gτ we give a more
informal description of the algorithm. To that end, let (fk) be the leftmost branch of the Haar
basis, i.e., fk = 2k−1(χ[0,2−k ] − χ(2−k,21−k]). First we modify the algorithm for vectors of the

form xn = ∑2n
k=1 fk (n � 1). For such special vectors and their scalar multiples we modify the

definition of the mapping Gτ so that the first n branch greedy approximants of xn are given by
Gτ

k (xn) := ∑k
j=1 f2j−1 for 1 � k � n. To ensure that conditions (b) and (c) remain satisfied it
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is also necessary to modify the definition of Gτ accordingly on all scalar multiples of vectors of
the form xn − Gτ

k (xn) + y (1 � k � n − 1), where xn − Gτ
k (xn) and y are disjointly supported

with respect to the Haar basis and all the Haar coefficients of y are smaller than τ . For all other
vectors the definition of Gτ is unchanged. The modified algorithm satisfies conditions (a)–(c) of
Section 2, but ‖xn‖ � 2 and ‖Gτ

n (xn)‖ � n/4 (see [4, Remark 6.3]). Hence property (B) does
not hold. However, for each fixed x ∈ L1[0,1], there is at most one value of n for which a
residual of x for Gogyan’s algorithm will be equal to a scalar multiple of a vector of the form
xn−Gτ

k (xn)+y. So after finitely many iterations the modified algorithm coincides with Gogyan’s
algorithm and hence converges to x. So property (A) holds. �

The main result of this section is that (A) and (B) are equivalent for a natural class of branch
greedy algorithms. To that end we consider two conditions:

(H1) For all finite A ⊂ N there exists a finite A ⊂ N such that A ⊆ A and for all x, y ∈ X such
that supp(x − y) ⊂ A, we have that for all m � 1 there exists n � 1 such that

Gτ
m(x)|N\A = Gτ

n (y)|N\A,

i.e. Gτ
m(x) and Gτ

n (y) agree on the complement of A.
(H2) For all x, y ∈ X, if supp(x −y) is finite then there exist m1,m2 ∈ N such that x −Gτ

m1
(x) =

y − Gτ
m2

(y). (Note that this implies that for all k � 0, x − Gτ
m1+k(x) = y − Gτ

m2+k(y).)

It is easily seen that the TGA (using the greedy ordering) satisfies (H1), with A = A, and (H2).
The branch greedy algorithm for the Haar system in L1[0,1] defined by Gogyan [7] belongs to
the following class of algorithms satisfying (H1).

Example 3.2. Let ≺ be any tree ordering on N, i.e. ≺ is a partial order such that for every n ∈ N
the initial segment {m ∈ N: m ≺ n} is finite and totally ordered. If m � n, let [m,n] denote the
segment {i ∈ N: m � i � n}. For x ∈ X, recall that ρx(1) is the smallest integer i0 at which
i �→ |e∗

i (x)| is maximized. We define Gτ (x) as follows: Gτ (x) � ρx(1) and [Gτ (x), ρx(1)] is the
largest segment such that |e∗

i (x)| � τ |e∗
ρx(1)(x)| for all i ∈ [Gτ (x), ρx(1)].

Proposition 3.3. The branch greedy algorithm determined by Gτ in Example 3.2 satisfies (H1).

Proof. For a given finite set A ⊂ N, let A := ⋃
i∈A{j ∈ N: j � i}. Clearly, A is finite. Suppose

that x, y ∈ X satisfy supp(x −y) ⊆ A. We shall prove by induction that for all m � 0 there exists
nm � 1 such that

Gτ
m(x)|N\A = Gτ

nm
(y)|N\A. (1)

Setting n0 := 0 handles the case m = 0. Suppose the result holds for m. If ρτ
x (m + 1) ∈ A then

Gτ
m+1(x)|N\A = Gτ

m(x)|N\A, so we can take nm+1 := nm. If ρτ
x (m + 1) ∈ N \ A, let

nm+1 := min
{
k > nm: ρτ

y (k) ∈ N \ A
}
.

It follows easily from the definition of Gτ and (1) that ρτ
x (m + 1) = ρτ

y (nm+1), which gives (1)
with m replaced by m + 1. �
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Remark 3.4. It is an instructive exercise to check that the algorithm described in Proposition 3.1
does not satisfy (H1) and hence is not in contradiction with Theorem 3.7 below.

Lemma 3.5. (H1) ⇒ (H2).

Proof. Suppose that x, y ∈ X and that A := supp(x − y) is finite. We may assume that supp(x)

is infinite, otherwise (H2) is trivially satisfied. Let A be the set postulated by (H1). Let

δ := min
{∣∣e∗

i (x)
∣∣, ∣∣e∗

i (y)
∣∣: i ∈ A ∩ supp(x), j ∈ A ∩ supp(y)

}
. (2)

Since supp(x) is infinite, we may choose m ∈ N such that 0 < |e∗
ρτ (m)(x)| < τδ/2. Clearly, i0 :=

ρτ (m) /∈ A. By (H1) there exists k ∈ N such that

Gτ
k (y)|N\A = Gτ

m(x)|N\A. (3)

Since i0 /∈ A, we have

0 <
∣∣e∗

i0

(Gτ
k (y)

)∣∣ = ∣∣e∗
i0

(Gτ
m(x)

)∣∣ <
τδ

2
,

which when combined with (2) implies that

Gτ
m(x)|A = x|A and Gτ

k (y)|A = y|A.

Combining the latter with (3) and using the fact that supp(x − y) = A ⊂ A, we deduce that
x − Gτ

m(x) = y − Gτ
k (y). Hence (H2) is satisfied. �

Proposition 3.6. If the algorithm satisfies (H2) then (B) ⇒ (A).

Proof. Suppose that (H2) and (B) hold. Given x ∈ X and ε > 0, choose a finitely supported z ∈ X

with ‖x − z‖ < ε. Applying (H2) to x and to y := x − z (noting that supp(y − x) = supp(z) is
finite) there exist m1,m2 ∈ N such that for all k � 0

x − Gτ
m1+k(x) = x − z − Gτ

m2+k(x − z).

Now applying (B), we have that for all k � 0,

∥∥x − Gτ
m1+k(x)

∥∥ � ‖x − z‖ + ∥∥Gτ
m2+k(x − z)

∥∥ � (1 + K)ε.

Hence Gτ
n (x) → x. �

The following theorem generalizes [15, Theorem 1].

Theorem 3.7. If the algorithm satisfies (H1) then (A) ⇔ (B).
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Proof. Suppose that (H1) is satisfied. Then (B) ⇒ (A) follows from Lemma 3.5 and Proposi-
tion 3.6.

For the converse, we shall assume that (A) holds but that (B) does not hold and obtain a
contradiction. First we claim that given a finite A ⊂ N and given K > 0 there exist a finite set
B ⊂ N disjoint from A and x ∈ X such that ‖x‖ = 1, supp(x) ⊂ B , and ‖Gτ

k (x)‖ � K for some
k � 1. Let A be the finite set given by (H1) and let M be the maximum of the norms of the (finitely
many) finite-dimensional projections PΩ (Ω ⊂ A). Since (B) does not hold, given K1 > 0 there
exists x1 ∈ X such that ‖x1‖ = 1 and ‖Gτ

m(x1)‖ � K1 for some m � 1. Let x2 = x1 − PA(x1).
Then ‖x2‖ � ‖x1‖ + ‖PA‖‖x1‖ � 1 + M . Since supp(x1 − x2) ⊂ A, it follows from (H1) that
there exists k ∈ N such that

PN\A
(Gτ

k (x2)
) = PN\A

(Gτ
m(x1)

)
.

Now PA(Gτ
k (x2)) = PΩ(x1), where Ω = A ∩ supp(Gτ

k (x2)), so

∥∥PA

(Gτ
k (x2)

)∥∥ � M‖x1‖ = M.

Hence

∥∥Gτ
k (x2)

∥∥ �
∥∥PN\A

(Gτ
k (x2)

)∥∥ − ∥∥PA

(Gτ
k (x2)

)∥∥
= ∥∥PN\A

(Gτ
m(x1)

)∥∥ − ∥∥PA

(Gτ
k (x2)

)∥∥
�

∥∥PN\A
(Gτ

m(x1)
)∥∥ − M

�
∥∥Gτ

m(x1)
∥∥ − 2M

� K1 − 2M.

Let x3 = x2/‖x2‖. Then ‖Gτ
k (x3)‖ � (K1 − 2M)/(M + 1). Let

δ := min
{∣∣e∗

i

(Gτ
k (x3)

)∣∣: i ∈ supp
(Gτ

k (x3)
)}

. (4)

Choose a finite set B1 ⊂ N such that

∣∣e∗
i (x3)

∣∣ � τδ

2
(i ∈ N \ B1). (5)

Note that supp(Gτ
k (x3)) ⊆ B1. Since supp(x3) is disjoint from A and since A∪B1 is finite, it fol-

lows that, given η > 0, using the fact that (ei) is a bounded Markushevich basis, we may choose
a finite set B disjoint from A with B1 ⊆ B , and we may choose x4 ∈ X such that supp(x4) ⊆ B ,
‖x3 − x4‖ < η, and

x4|B1 = x3|B1 . (6)

It follows that for all i ∈ N \ B1, we have

∣∣e∗
i (x4)

∣∣ �
∣∣e∗

i (x3)
∣∣ +

(
sup
i∈N

∥∥e∗
i

∥∥)
‖x3 − x4‖ � τδ

2
+

(
sup
i∈N

∥∥e∗
i

∥∥)
η � 3τδ

4
(7)
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provided η is sufficiently small. It follows from (4), (5), (6), and (7) that for 0 � j < k,

Aτ
(
x3 − Gτ

j (x3)
) =Aτ

(
x4 − Gτ

j (x4)
)
.

This implies, in conjunction with (6) and with assumption (c) concerning ρτ , that

Gτ
j (x4) = Gτ

j (x3) (1 � j � k).

Hence ‖Gτ
k (x4)‖ � (K1 − 2M)/(M + 1) and ‖x4‖ � 1 + η. Since K1 can be chosen arbitrarily

large, x5 = x4/‖x4‖ verifies the claim.
Having established the claim we can choose disjointly and finitely supported vectors xn and

positive integers kn (n � 1) such that ‖xn‖ � 2−n, ‖Gkn(xn)‖ � n, and

max
{∣∣e∗

i (xn+1)
∣∣: i ∈ N

}
� τ

2
min

{∣∣e∗
i (xn)

∣∣: i ∈ supp(xn)
}
.

Let x = ∑∞
i=1 xi and let mi = | supp(xi)|. Clearly, for n � 1,

Gτ
m1+···+mn+kn+1

(x) = x1 + · · · + xn + Gτ
kn+1

(xn+1).

Hence

∥∥Gτ
m1+···+mn+kn+1

(x)
∥∥ �

∥∥Gτ
kn+1

(xn+1)
∥∥ −

∞∑
i=1

‖xi‖

� (n + 1) − 1 = n.

This is the desired contradiction to (A). �
4. Branch quasi-greedy systems

Henceforth we shall formulate most of our results in the finite-dimensional setting for greater
precision. Let (ei)

N
i=1 be an algebraic basis for an N -dimensional normed space X. Let (e∗

i )
N
i=1

be the corresponding biorthogonal functionals. We shall assume as above that a � ‖ei‖ � b for
fixed positive constants a and b. For a fixed weakness parameter τ ∈ (0,1), we shall consider a
branch greedy algorithm determined by a mapping Gτ as described above.

Definition 4.1. We say that (ei) is branch quasi-greedy with weakness parameter τ (BQG(τ ))
and constant K if for all x ∈ X and 0 � k � N , we have

∥∥Gτ
k (x)

∥∥ � K‖x‖.

We begin with an important observation which shows that the definition of a BQG(τ ) system
is only meaningful for bounded biorthogonal systems.

Proposition 4.2. Suppose that (ei)
N
i=1 is BQG(τ ) with constant K . Then ‖e∗

i ‖ � K
aτ

for all i.
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Proof.

∣∣e∗
i (x)

∣∣ � 1

τ

∣∣e∗
ρτ (1)(x)

∣∣ �
‖Gτ

1 (x)‖
τa

� K‖x‖
τa

. �
There exist BQG systems that are not QG, e.g. the Haar basis for L1[0,1] [7]. The following

slightly technical definition captures the gap between the two notions.

Definition 4.3. Let 0 < τ < 1. Then (ej )
N
j=1 has property P(τ) if there exists C < ∞ such that

for all A ⊂ {1, . . . ,N} and for all scalars (ai)i∈A, with 1 � |ai | � 1/τ 2, we have

max±

∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � C

∥∥∥∥∑
i∈A

aiei

∥∥∥∥. (8)

Proposition 4.4. Suppose that (ei)1�i�N is BQG(τ ) with constant K and has property P(τ)

with constant C. Then (ei) is QG with constant K(1 + 2C

τ 2 ).

Proof. Fix n � 1, and let m be the least integer such that (ρ(i))ni=1 ⊆ (ρτ (i))mi=1. Thus, either
Gτ

m(x) = Gn(x) (in which case ‖Gn(x)‖ � K‖x‖) or

Gτ
m(x) = Gn(x) +

l∑
i=k

ηiaρτ (i)eρτ (i),

where

k = min
{
i � m: ρτ (i) /∈ {

ρ(1), ρ(2), . . . , ρ(n)
}}

,

� = max
{
i � m: ρτ (i) /∈ {

ρ(1), ρ(2), . . . , ρ(n)
}}

< m,

and

ηi =
{

0 if ρτ (i) ∈ {ρ(1), ρ(2), . . . , ρ(n)},
1 if ρτ (i) /∈ {ρ(1), ρ(2), . . . , ρ(n)} for i = k, k + 1, . . . , �.

By the choice of m, we have ρτ (l + 1) = ρ(j) for some 1 � j � n. Hence for k � i � l, we
have

τ |aρ(n)| � τ |aρτ (l+1)| � |aρτ (i)| � 1

τ
|aρτ (k)| � 1

τ
|aρ(n)|,

so

|aρ(n)|
τ

� |aρτ (i)|
τ 2

� 1

τ 2

|aρ(n)|
τ

.

Thus, using property P(τ) for the second inequality, we have
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∥∥∥∥∥
l∑

i=k

ηiaρτ (i)eρτ (i)

∥∥∥∥∥ � |aρ(n)|
τ

max±

∥∥∥∥∥
l∑

i=k

±eρτ (i)

∥∥∥∥∥
� C

τ 2

∥∥∥∥∥
l∑

i=k

aρτ (i)eρτ (i)

∥∥∥∥∥
= C

τ 2

∥∥Gτ
l (x) − Gτ

k−1(x)
∥∥

� 2KC

τ 2
‖x‖.

Thus,

∥∥Gn(x)
∥∥ �

∥∥Gτ
m(x)

∥∥ +
∥∥∥∥∥

l∑
i=k

ηiaρτ (i)eρτ (i)

∥∥∥∥∥ � K

(
1 + 2C

τ 2

)
‖x‖. �

The last result has a converse.

Proposition 4.5. Suppose that (ei) is QG. Then (ei) has P(τ) for all 0 < τ < 1 with a uniform
constant. Moreover, for every branch greedy algorithm, we have ‖Gτ

n (x)‖ � K(τ)‖x‖ for all
n � 1 and x ∈ X.

Proof. It is proved in [2, pp. 70–71] that if (ei) is quasi-greedy with constant K and (ai)i∈A are
scalars such that |ai | � 1 then

max±

∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � 4K2
∥∥∥∥∑

i∈A

aiei

∥∥∥∥.

Hence (ei) has P(τ) for all 0 < τ < 1 with uniform constant 4K2. The second asser-
tion follows the fact that weak thresholding with respect to a quasi-greedy basis is bounded
with constant K(τ) depending on the weakness parameter τ and the quasi-greedy constant
[9, pp. 312–314]. �

Next we give an application of Proposition 4.4 to infinite-dimensional spaces.

Corollary 4.6. Suppose that (xi)
∞
i=1 is a weakly null semi-normalized BQG(τ ) basic sequence

in an infinite-dimensional Banach space. Then (xi) has a quasi-greedy subsequence.

Proof. It follows from Elton’s partial unconditionality theorem [6] that there exist a subsequence
(yi) and a constant K(τ) such that for all finite sets E ⊂ N and scalars (ai)i∈E satisfying 1 �
|ai | � 1/τ 2, we have

∥∥∥∥∑
i∈E

±aiyi

∥∥∥∥ � K(τ)

∥∥∥∥∑
i∈E

aiyi

∥∥∥∥.
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By convexity, ∥∥∥∥∑
i∈E

±yi

∥∥∥∥ � max±

∥∥∥∥∑
i∈E

±aiyi

∥∥∥∥ � K(τ)

∥∥∥∥∑
i∈E

aiyi

∥∥∥∥.

Hence (yi)
∞
i=1 is BQG(τ ) and has property P(τ) with constant K(τ). Thus, (yi) is quasi-greedy

by Proposition 4.4. �
Remark 4.7. It is an open question whether or not every semi-normalized weakly null sequence
(xi) in a Banach space has a quasi-greedy subsequence (see [5]). (The answer is positive if the
Banach space does not have c0 as a spreading model [2, Corollary 56].) By Corollary 4.6, whether
or not (xi) has a BQG(τ ) subsequence is an equivalent question.

5. Branch greedy systems

Definition 5.1. Let 0 < τ < 1. We say that (ei) is branch greedy with weakness parameter τ

(BG(τ )) and constant K if for all x ∈ X and 0 � k � N , we have∥∥x − Gτ
k (x)

∥∥ � Kσk(x),

where

σk(x) = min

{∥∥∥∥x −
∑
i∈A

aiei

∥∥∥∥: A ⊂ {1, . . . ,N}, |A| � k

}
.

Theorem 5.2. Suppose that (ei)
N
i=1 is BG(τ ) with constant K . Then (ei) is K-unconditional and

democratic with constant K(1 + 1
τ
).

Proof. To show unconditionality, suppose that x = ∑
i∈A aiei and that B ⊂ A. Let r :=

|A \ B|. Consider y = ∑
i∈B aiei + M

∑
i∈A\B ei , where M > 1

τ
maxi∈B |ai |. Clearly Gτ

r (x) =
M

∑
i∈A\B ei , and since x − y is an r-term approximation to y we have∥∥∥∥∑

i∈B

aiei

∥∥∥∥ � Kσr(y) � K
∥∥y − (y − x)

∥∥ = K‖x‖.

Thus, (ei) is K-unconditional. To show that (ei) is K(1 + 1
τ
)-democratic, let A,B satisfy |B| �

|A| := n. Consider x = θ
∑

i∈B\A ei + ∑
i∈A ei , where 0 < θ < τ . Then Gτ

n(x) = ∑
i∈A ei , so

θ

∥∥∥∥ ∑
i∈B\A

ei

∥∥∥∥ � Kσn(x) � K

∥∥∥∥∑
i∈A

ei

∥∥∥∥,

where the second inequality follows from the fact that |B \ A| � n. By unconditionality,
‖∑

i∈A∩B ei‖ � K‖∑
i∈A ei‖. Hence∥∥∥∥∑

i∈B

ei

∥∥∥∥ �
∥∥∥∥ ∑

i∈B\A
ei

∥∥∥∥ +
∥∥∥∥ ∑

i∈A∩B

ei

∥∥∥∥ � K

(
1 + 1

θ

)∥∥∥∥∑
i∈A

ei

∥∥∥∥.

Since θ < τ is arbitrary, we get that (ei) is democratic with constant K(1 + 1
τ
). �
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Corollary 5.3. If (ei) is BG(τ ) with constant K then (ei) is greedy with constant K +K4(1+ 1
τ
).

Proof. This follows from the result of Konyagin and Temlyakov that a basis is greedy if and
only if it is unconditional and democratic [8, Theorem 1] and from the estimate of the greedy
basis constant given in [16, Theorem 1] (see also [1]). �
6. Branch almost greedy systems

Definition 6.1. We say that (ei) is branch almost greedy with weakness parameter τ (BAG(τ ))
and constant K if for all x ∈ X and 0 � k � N , we have∥∥x − Gτ

k (x)
∥∥ � Kσ̃k(x),

where

σ̃k(x) = min
{∥∥x − PA(x)

∥∥: A ⊂ {1, . . . ,N}, |A| � k
}
.

Recall that the fundamental function (ϕn) of (ei) is defined by

ϕ(n) = sup

{∥∥∥∥∑
i∈A

ei

∥∥∥∥: |A| � n

}
.

Lemma 6.2. Let 0 < τ < 1. Suppose that (ej )
N
j=1 is BQG(τ ) with constant K and democratic

with constant �. Suppose also that (8) is satisfied with constant C for all A with |A| � N/2
and for all scalars (ai)i∈A, with 1 � |ai | � 1/τ 2. Then (ej )

N
j=1 has property P(τ) with constant

6KC�.

Proof. Suppose that |A| := k > N/2 and that x = ∑
j∈A aj ej where 1 � |aj | � 1

τ 2 (j ∈ A). Let
Gτ

[N/2](x) := ∑
j∈B aj ej . Then

∥∥∥∥∑
j∈B

aj ej

∥∥∥∥ = ∥∥Gτ
[N/2](x)

∥∥ � K‖x‖.

Since |B| = [N/2], we have by assumption that

C

∥∥∥∥∑
j∈B

aj ej

∥∥∥∥ �
∥∥∥∥∑

j∈B

ej

∥∥∥∥
� ϕ([N/2])

�

� ϕ(k)

3�
� 1

6�
max±

∥∥∥∥∑
j∈A

±ej

∥∥∥∥. �

Remark 6.3. Note that the proof only requires the democratic condition for sets of cardinality at
most N/2, i.e., that if |E| � |F | � N/2 then ‖∑

i∈E ei‖ � �‖∑
i∈F ei‖. This observation will

be needed in the proof of Theorem 6.4 below.
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Theorem 6.4. Suppose that (ei)
N
i=1 is BAG(τ ) with constant K . Then (ei)

N
i=1 is democratic

with constant 3(K2(1 + K)/τ 2)(1 + (K/τ)) and QG with constant (1 + K)(1 + 12K5(1 +
(K/τ))/τ 6).

Proof. First observe that for all x ∈ X and k � 0, we have

∥∥Gτ
k (x)

∥∥ �
∥∥x − Gτ

k (x)
∥∥ + ‖x‖ � Kσ̃k(x) + ‖x‖ � (K + 1)‖x‖.

Hence (ei)
N
i=1 is BQG(τ ) with constant K + 1. Next we prove that (8) is satisfied with constant

K2

τ 2 for all A with |A| � N/2 and for all scalars (ai)i∈A, with 1 � |ai | � 1/τ 2. Suppose that n :=
|A| � N/2 and that |ai | � 1 (i ∈ A). Choose D ⊂ {1, . . . ,N} such that A and D are disjoint and
|D| = |A|. Consider x = θ

∑
i∈D ei + ∑

i∈A aiei , where 0 < θ < τ . Then Gτ
n (x) = ∑

i∈A aiei ,
and hence

θ

∥∥∥∥∑
i∈D

ei

∥∥∥∥ � Kσ̃n(x) � K

∥∥∥∥∑
i∈A

aiei

∥∥∥∥. (9)

(For future reference, note that (9) is valid provided |D| � |A| and D ∩ A = ∅.) Now consider
y = ∑

i∈D ei + θ
∑

i∈A ±ei . Then Gτ
n (y) = ∑

i∈D ei , and hence

θ

∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � Kσ̃n(y) � K

∥∥∥∥∑
i∈D

ei

∥∥∥∥.

Combining these estimates, and letting θ ↓ τ , we get

max±

∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � K2

τ 2

∥∥∥∥∑
i∈A

aiei

∥∥∥∥. (10)

Next we prove that (ei)
N
i=1 is democratic. First suppose that |B| � n := |A| � N/2. Using (9)

with A replaced by A \ B and D replaced by B \ A (noting that |B \ A| � |A \ B|) for the first
inequality, and (10) for the third inequality, we get

∥∥∥∥ ∑
i∈B\A

ei

∥∥∥∥ � K

τ

∥∥∥∥ ∑
i∈A\B

ei

∥∥∥∥
� K

τ
max±

∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � K3

τ 3

∥∥∥∥∑
i∈A

ei

∥∥∥∥.

Similarly,

∥∥∥∥ ∑
i∈A∩B

ei

∥∥∥∥ � max±

∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � K2

τ 2

∥∥∥∥∑
i∈A

ei

∥∥∥∥.
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Thus,

∥∥∥∥∑
i∈B

ei

∥∥∥∥ �
∥∥∥∥ ∑

i∈B\A
ei

∥∥∥∥ +
∥∥∥∥ ∑

i∈A∩B

ei

∥∥∥∥ � K2

τ 2

(
1 + K

τ

)∥∥∥∥∑
i∈A

ei

∥∥∥∥,

and hence

ϕ(n) � K2

τ 2

(
1 + K

τ

)∥∥∥∥∑
i∈A

ei

∥∥∥∥.

Hence from Lemma 6.2 and Remark 6.3 we deduce that (ei) has property P(τ) with constant
(6K5/τ 4)(1 + K/τ), and then it follows from Proposition 4.4 that (ei) is QG with constant
(1 + K)(1 + (12K5/τ 6)(1 + K/τ)).

To complete the proof that (ei) is democratic, suppose that n > N/2 and that |A| = n. There
exists B ⊂ A with |B| = [N/2] such that Gτ

[N/2](
∑

i∈A ei) = ∑
i∈B ei . Then ‖∑

i∈B ei‖ � (1 +
K)‖∑

i∈A ei‖ and hence

ϕ(n) � 3ϕ
([N/2]) � 3

K2

τ 2

(
1 + K

τ

)∥∥∥∥∑
i∈B

ei

∥∥∥∥
� 3

K2(1 + K)

τ 2

(
1 + K

τ

)∥∥∥∥∑
i∈A

ei

∥∥∥∥.

This proves that (ei) is democratic with constant

3
K2(1 + K)

τ 2

(
1 + K

τ

)
. �

Corollary 6.5. If (ei)
N
i=1 is BAG(τ ) then (ei)

N
i=1 is AG with AG constant depending only on τ

and the BAG constant of (ei)
N
i=1.

Proof. This follows from the result [3, Theorem 33] that a quasi-greedy and democratic system
is almost greedy with constant depending only on the quasi-greedy and democratic constants of
the system. �
7. Branch semi-greedy systems

For x = ∑N
i=1 aiei and 1 � n � N , let us say that Λτ (x,n) ⊆ {1, . . . ,N} is a weak threshold-

ing set with weakness parameter τ if |Λτ (n, x)| = n and

min
{|ai |: i ∈ Λτ (x,n)

}
� τ max

{|ai |: i ∈ {1, . . . ,N} \ Λτ (x,n)
}
.

We begin with a weak thresholding version of [2, Theorem 32]. We omit the proof as only minor
changes to the proof given in [2] are required.
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Theorem 7.1. Let (ei)
N
i=1 be an AG system with QG constant K and democratic constant �.

Then, for all x ∈ X and weak thresholding sets Λτ (x,n), there exist scalars ci (i ∈ Λτ (x,n))
such that ∥∥∥∥x −

∑
i∈Λτ (x,n)

ciei

∥∥∥∥ �
(
1 + 3K + 16K2�/τ

)
σn(x).

Combining Theorem 6.4 and Corollary 6.5 yields the following.

Corollary 7.2. Suppose that (ei)
N
i=1 is BAG(τ ) with constant K . Then there exists a constant

C(K,τ) such that for all x ∈ X and weak thresholding sets Λτ (x,n), there exist scalars ci

(i ∈ Λτ (x,n)) such that ∥∥∥∥x −
∑

i∈Λτ (x,n)

ciei

∥∥∥∥ � C(K,τ)σn(x).

The following definition generalizes the notion of semi-greedy basis introduced in [2, Sec-
tion 3].

Definition 7.3. We say that (ei) is branch semi-greedy with weakness parameter τ (BSG(τ )) and
constant K if for all x ∈ X and 0 � k � N , there exist scalars c1, . . . , ck such that∥∥∥∥∥x −

k∑
i=1

cieρτ
x (i)

∥∥∥∥∥ � Kσk(x).

The remainder of this section provides a partial answer to the following open question: does
the BSG(τ ) property imply the BAG(τ ) property? The converse is true; in fact, by Corollary 7.2,
if the system is AG(τ ) then every branch satisfies the BSG(τ ) condition.

Our results involve the basis constant of (ei)
N
i=1, denoted β , which is defined as follows:

β := max

{∥∥∥∥∥
k∑

i=1

e∗
i (x)ei

∥∥∥∥∥: ‖x‖ = 1,1 � k � N

}
.

First we show that a BSG(τ ) Schauder basis is superdemocratic.

Theorem 7.4. Let (ei)
N
i=1 be a BSG(τ ) with constant K . Then (ei)

N
i=1 is superdemocratic, i.e.

there exists a constant C > 0 (depending only on K , τ , and β) such that for all D ⊆ {1, . . . ,N},
we have

ϕ
(|D|) � C min±

∥∥∥∥∑
i∈D

±ei

∥∥∥∥.

Proof. We assume for convenience that N is even. Suppose that A ⊆ {1, . . . ,N/2} and B ⊆
{N/2 + 1, . . . ,N} with |A| = |B| := k. For any choice of signs, consider

x := τ

2

∑
i∈A

±ei +
∑
i∈B

±ei .
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Since (ei)
N
i=1 is BSG(τ ) there exist scalars ci (i ∈ B) such that

∥∥∥∥τ

2

∑
i∈A

±ei +
∑
i∈B

ciei

∥∥∥∥ � Kσk(x),

where K is the BSG(τ ) constant. Hence∥∥∥∥∑
i∈A

±ei

∥∥∥∥ � 2Kβ

τ
σk(x) � 2Kβ

τ

∥∥∥∥∑
i∈B

±ei

∥∥∥∥.

Similarly, ∥∥∥∥∑
i∈B

±ei

∥∥∥∥ � 2K(β + 1)

τ

∥∥∥∥∑
i∈A

±ei

∥∥∥∥.

Combining these inequalities, we get

∥∥∥∥∑
i∈A

ei

∥∥∥∥ � 4K2β(1 + β)

τ 2

∥∥∥∥∑
i∈A

±ei

∥∥∥∥
and ∥∥∥∥∑

i∈B

ei

∥∥∥∥ � 4K2β(1 + β)

τ 2

∥∥∥∥∑
i∈B

±ei

∥∥∥∥.

For 1 � k � N/2, define

ψ(k) := max

{∥∥∥∥∑
i∈D

ei

∥∥∥∥: D ⊂ {1, . . . ,N/2} or D ⊂
{

N

2
+ 1, . . . ,N

}
, |D| � k

}
.

By the triangle inequality, ϕ(n) � 4ψ(n/2) � 4ϕ(n/2) for 1 � n � N provided n is even. From
the above, we obtain ∥∥∥∥∑

i∈D

±ei

∥∥∥∥ � τ 2

4K2β(1 + β)
ψ

(|D|)

for all D ⊂ {1, . . . ,N/2} and D ⊂ {N/2 + 1, . . . ,N}. For D ⊆ {1, . . . ,N}, set A := D ∩
{1, . . . ,N/2} and B := D ∩ {N/2 + 1, . . . ,N}. Then, provided |D| is even, we obtain

∥∥∥∥∑
i∈D

±ei

∥∥∥∥ � 1

2(1 + β)

(∥∥∥∥∑
i∈A

±ei

∥∥∥∥ +
∥∥∥∥∑

i∈B

±ei

∥∥∥∥
)

�
(

1

2(1 + β)

)(
τ 2

4K2β(1 + β)

)
ψ

(|D|/2
)

� τ 2

8K2β(1 + β)2

ϕ(|D|)
4

. �
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Minor adjustments to the previous proof yield the following stronger result which is needed
below.

Proposition 7.5. Let (ei)
N
i=1 be BSG(τ ) with constant K . There exists C > 0, depending only

on K , τ , and β , such that

ϕ
(|D|)min

i∈D
|ai | � C

∥∥∥∥∑
i∈D

aiei

∥∥∥∥
for all D ⊂ {1, . . . ,N} and all scalars ai (i ∈ D). In particular, (ei) has property P(τ) (with
constant depending only on K , τ , and β).

The greedy approximants have the semigroup property: Gm(Gn(x)) = Gm(x) for m � n and
x ∈ X. However, branch greedy approximants Gτ

m(x) satisfying our conditions (a)–(c) need not
have the semigroup property, and this complicates the proof of Theorem 7.7 below. The following
lemma circumvents this difficulty.

Lemma 7.6. Let (ei)
N
i=1 be BSG(τ ) with constant K . Suppose that 1 � n � N and that n/2 �

m � n. Then for all x ∈ X, we have∥∥Gτ
m(x)

∥∥ � C max
m�k�n

∥∥Gτ
k

(Gτ
n (x)

)∥∥,

where C depends only on K , τ , and β .

Proof. Let x := ∑N
i=1 aiei have branch greedy ordering ρτ . Let k be the least integer such that

supp(Gτ
k (Gτ

n (x))) ⊇ supp(Gτ
m(x)). Then Gτ

k (Gτ
n (x)) = ∑

i∈A aiei for some A ⊂ {1, . . . ,N}. From
the definition of k we get that

min
i∈A

|ai | � τ min
1�i�m

|aρτ (i)|. (11)

For some B ⊂ {1, . . . ,N} we have

Gτ
k

(Gτ
n (x)

) = Gτ
m(x) +

∑
i∈B

aiei . (12)

Note that by definition of the branch greedy ordering,

τ max
i∈B

|ai | � min
1�i�m

∣∣aρτ (i)
∣∣ (13)

and that |B| � n/2 � m � k. Combining (11) and (13), we have that τ 2 maxi∈B |ai | �
mini∈A |ai |. Hence, using Proposition 7.5, there exists C1(K, τ,β) such that∥∥∥∥∑

i∈B

aiei

∥∥∥∥ � 2
(

max
i∈B

|ai |
)
ϕ
(|B|)

� 2

τ 2

(
min
i∈A

|ai |
)
ϕ(k)
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� C1

τ 2

∥∥∥∥∑
i∈A

aiei

∥∥∥∥
= C1

τ 2

∥∥Gτ
k

(Gτ
n (x)

)∥∥.

Finally, (12) and the triangle inequality yield

∥∥Gτ
m(x)

∥∥ �
(

1 + C1

τ 2

)∥∥Gτ
k

(Gτ
n (x)

)∥∥. �
Finally, we give a partial answer to the open question raised after Definition 7.3 for a BSG(τ )

basis with estimates involving the cotype q constant of X. Let 2 � q < ∞. The cotype q con-
stant Cq of X is the smallest constant such that

(
n∑

j=1

‖xj‖q

) 1
q

� Cq

(
Aveεj =±1

∥∥∥∥∥
n∑

j=1

εj xj

∥∥∥∥∥
q) 1

q

(14)

for all x1, . . . , xn ∈ X and n ∈ N. We recall that an infinite-dimensional Banach space X has
finite cotype, i.e., Cq < ∞ for some q < ∞, if and only if there exist n ∈ N and ε > 0 such that
X does not contain a (1 + ε)-isomorphic copy of �n∞ [10].

Theorem 7.7. Let 2 � q < ∞. Suppose that (ei)
N
i=1 is BSG(τ ) with constant K . Then (ei)

N
i=1 is

AG with constant depending only on K , τ , β , q , and the cotype q constant Cq of X.

Proof. By the previous result the superdemocratic constant S depends only on K , β , and τ . It
is shown in [3, Proposition 41] that the fundamental function of a superdemocratic basis has the
lower regularity property, i.e. ϕ satisfies

ϕ(mn) � 1

S2Cq

m1/qϕ(n) (m,n � 1). (15)

We may assume that N is even. We shall not keep track of the constants, so C1,C2 etc., will
denote constants depending only on K , τ , β , q , and Cq . Recall that a system is AG if and only
if it is QG and democratic [3, Theorem 33]. Since (ei) is superdemocratic, it suffices to show
that (ei) is QG. Let F ⊂ {1, . . . ,N/2} and let n := |F |. Consider a vector x = ∑

i∈F aiei with
‖x‖ = 1 and supp(x) ⊂ F . Let ρτ be the branch greedy ordering for x and let 1 � k � n. Note
that |e∗

i (x − Gτ
k (x))| � |aρτ (k)|/τ (1 � i � N ). Hence

∥∥x − Gτ
k (x)

∥∥ � 2

τ
|aρτ (k)|ϕ(n − k).

By Proposition 7.5,

∥∥Gτ
k (x)

∥∥ � 1

C1

(
min

1�i�k
|aρτ (i)|

)
ϕ(k) � τ

C1
|aρτ (k)|ϕ(k).
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Hence

‖Gτ
k (x)‖ − 1

‖Gτ
k (x)‖ �

‖x − Gτ
k (x)‖

‖Gτ
k (x)‖ � 2C1

τ 2

ϕ(n − k)

ϕ(k)
.

By (15) the right-hand side tends to zero as k/n → 1. Hence there exists α < 1 (depending on
K , τ , β , q , and Cq ) such that ∥∥Gτ

k (x)
∥∥ � C2 for all k � αn. (16)

Now we iterate (16). Let n1 := [αn] and suppose k � α2n. By Lemma 7.6 and (16) we get

∥∥Gτ
k (x)

∥∥ � max
α2n�j�n1

C3
∥∥Gτ

j

(Gτ
n1

(x)
)∥∥

� C3C2
∥∥Gτ

n1
(x)

∥∥
� C3C

2
2 .

Clearly, we can continue iterating (16) in this way. Iterating m times, where αm � 1/2, we get∥∥Gτ
k (x)

∥∥ � C4 for all k � n/2. (17)

Fix 1 � k � n. Let A := {ρτ (1), . . . , ρτ (k)} and let B := {ρτ (k + 1), . . . , ρτ (2k)}. Choose D ⊆
{N/2 + 1, . . . ,N} with |D| = k and consider

y := τ

2

∑
i∈F\A

aiei + |aρτ (k)|
(∑

i∈D

ei

)
.

Then

σk(y) �
∥∥∥∥τ

2
x + |aρτ (k)|

(∑
i∈D

ei

)∥∥∥∥ � τ

2
+ |aρτ (k)|ϕ(k). (18)

Since (ei) is BSG(τ ) and D = {ρτ
y (i): 1 � i � k} there exist scalars ci (i ∈ D) such that

∥∥∥∥τ

2

∑
i∈F\A

aiei +
∑
i∈D

ciei

∥∥∥∥ � Kσk(y). (19)

(18) and (19) yield

τ

2

∥∥∥∥ ∑
i∈F\A

aiei

∥∥∥∥ � Kβ

(
τ

2
+ |aρτ (k)|ϕ(k)

)
.

Hence

∥∥Gτ
k (x)

∥∥ =
∥∥∥∥∑

i∈A

aiei

∥∥∥∥ � 1 + Kβ

(
τ

2
+ |aρτ (k)|ϕ(k)

)
. (20)
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Let z := x − ∑
i∈A aiei . Then σk(z) � ‖x‖ � 1. Since (ei) is BSG(τ ) there exist scalars (ci)

(i ∈ B) with ‖z − ∑
i∈B ciei‖ � Kσk(z) � K . Hence

∥∥∥∥∑
i∈A

aiei +
∑
i∈B

ciei

∥∥∥∥ =
∥∥∥∥x −

(
z −

∑
i∈B

ciei

)∥∥∥∥ � 1 + K. (21)

Let E := {i ∈ B: |ci | � τ 2|aρ(k)|}. Note that E ⊇ {i ∈ B: |ci | � τ min1�j�k |aρτ (j)|}. Hence
there exist E1 ⊆ E and m with k � m � 2k such that

∑
i∈A

aiei +
∑
i∈E1

ciei = Gτ
m

(∑
i∈A

aiei +
∑
i∈B

ciei

)
.

So (17) and (21) yield

∥∥∥∥∑
i∈A

aiei +
∑
i∈E1

ciei

∥∥∥∥ � C4(1 + K). (22)

On the other hand, Proposition 7.5 yields

τ 2|aρτ (k)|ϕ(k) � C1

∥∥∥∥∑
i∈A

aiei +
∑
i∈E1

ciei

∥∥∥∥. (23)

Combining (20), (22), and (23), we get ‖Gτ
k (x)‖ � C5. By Proposition 7.5 again, (ei) has prop-

erty P(τ). Thus, by the proof of Proposition 4.4, we get that the greedy approximants Gk(x)

satisfy ‖Gk(x)‖ � C6.
Similarly, we get ‖Gk(x

′)‖ � C5 for all x′ of the form x′ = ∑
i∈F ′ aiei , where F ′ ⊂ {N/2 +

1, . . . ,N}.
Finally, consider x = ∑N

i=1 aiei and set x = y + z, where y = ∑N/2
i=1 aiei and z =∑N

i=N/2+1 aiei . Then Gk(x) = Gk1(y) + Gk2(z), for some k1, k2 with k = k1 + k2. Thus,

∥∥Gk(x)
∥∥ �

∥∥Gk1(y)
∥∥ + ∥∥Gk2(z)

∥∥
� C6

(‖y‖ + ‖z‖)
� C6(1 + 2β)‖x‖.

Thus, (ei)
N
i=1 is greedy with constant C6(1 + 2β). �

Combining Theorem 7.2 and Theorem 7.7 yields the following.

Corollary 7.8. Let (en) be a Schauder basis for a Banach space of finite cotype. Then (en) is
semi-greedy if and only if (en) is BSG(τ ).
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