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Abstract We study the convergence of certain greedy algorithms in Banach spaces.
We introduce the WN property for Banach spaces and prove that the algorithms con-
verge in the weak topology for general dictionaries in uniformly smooth Banach
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spaces with the WN property. We show that reflexive spaces with the uniform Opial
property have the WN property. We show that our results do not extend to algorithms
which employ a ‘dictionary dual’ greedy step.

Keywords Greedy algorithms · Weak convergence · Uniformly smooth Banach
spaces · Uniform Opial property

Mathematics Subject Classification (2000) Primary 41A65 · Secondary 42A10 ·
46B20

1 Introduction

We study convergence in the weak topology of different greedy algorithms acting
in a uniformly smooth Banach space. The first result on convergence of a greedy
algorithm is the result of Huber [10]. He proved convergence of the Pure Greedy
Algorithm in the weak topology of a Hilbert space H and conjectured that the Pure
Greedy Algorithm converges in the strong sense (in the norm of H ). L. Jones [12]
proved this conjecture. The theory of greedy approximation in Hilbert spaces is now
well developed (see [20]). Our interest in this paper is in convergence results for
greedy approximation in Banach spaces. There is a number of open problems on
convergence (in the strong sense) of different greedy algorithms in Banach spaces
(see [20]).

Let X be a Banach space. We say that D ⊂ X is a dictionary if the following
conditions are satisfied: (i) the linear span of D is norm-dense in X; (ii) ‖g‖ = 1 for
all g ∈ D; (iii) D is symmetric, i.e. g ∈ D ⇐⇒ −g ∈ D.

For some algorithms (the Weak Chebyshev Greedy Algorithm ([6, 19]), the Weak
Greedy Algorithm with Free Relaxation ([22]) it is known that the uniform smooth-
ness of X guarantees strong convergence of these algorithms for each element f ∈ X

and any dictionary D in X. For other algorithms (the Weak Dual Greedy Algo-
rithm, the X-Greedy Algorithm) it is not known if uniform smoothness (even uni-
form smoothness with a power type modulus of smoothness) guarantees convergence
in the strong sense for each f ∈ X and all D.

There is a result of M. Ganichev and N. Kalton [8] that establishes strong con-
vergence of the Weak Dual Greedy Algorithm in a uniformly smooth Banach space
satisfying an extra condition �. In this paper we impose the following extra condi-
tion (the WN property) on a uniformly smooth Banach space and prove the weak
convergence of some greedy algorithms. This condition was used implicitly in [6].

For f ∈ X, f �= 0, let Ff ∈ X∗ denote a norming functional of f , i.e, ‖Ff ‖X∗ = 1
and Ff (f ) = ‖f ‖X .

Definition 1.1 X has the WN property if every sequence {xn} ⊂ X, with ‖xn‖X = 1,
is weakly null in X whenever the sequence {Fxn} is weakly null in X∗.

We prove weak convergence of the X-Greedy Algorithm for a uniformly smooth
Banach space satisfying the WN property. We note that there are no results on
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strong convergence of the X-Greedy Algorithm in nontrivial Banach spaces (infinite-
dimensional nonhilbertian spaces). We give an example that demonstrates that the
WN property does not imply the � property.

The use of the norming functional Ffm of a residual fm of a greedy algorithm after
m iterations for a search of an element from the dictionary to be added in approxima-
tion has proved to be very natural. Norming functionals for residuals are used in dual
type greedy algorithms. At a greedy step of a dual type greedy algorithm we look for
an element ϕm ∈ D satisfying

Ffm−1(ϕm) ≥ t sup
g∈D

Ffm−1(g), t ∈ (0,1]. (1)

In this paper we discuss the following modification of the greedy step (1): we look
for an element ϕm ∈ D satisfying

Fϕm(fm−1) ≥ t sup
g∈D

Fg(fm−1). (2)

It is known (see [21]) that the modification (2) is useful in the problem of exact recov-
ery of sparsely represented elements in the case of dictionaries with small coherence.
We show here that the modification (2) is not good for convergence of greedy approx-
imations with regard to general dictionaries.

Let us now describe the organization of the paper. Section 2 recalls the relevant de-
finitions from Banach space theory. In Sect. 3 we recall the definitions of the greedy
algorithms which are considered here and we present our main results on the weak
convergence of these algorithms in uniformly smooth spaces with the WN property.
We also show how the algorithms can easily be modified to obtain strong conver-
gence. In Sect. 4 we show that many classes of Banach spaces have the WN property,
e.g. the class of reflexive spaces with the uniform Opial property, and we exhibit ex-
amples of spaces which have the WN property but not the property � introduced by
Ganichev and Kalton [8]. Finally, we show that our results for general dictionaries do
not apply to algorithms which use (2) as the greedy step. In fact, we show that if X is
not isometric to a Hilbert space (and satisfies additional mild regularity conditions)
then there exists a dictionary in X for which such algorithms break down quite badly.

2 Definitions and Notation

We use standard Banach space notation and terminology as in [15]. In this section we
record some terminology which may not be completely standard.

2.1 Bases of Banach Spaces and Related Notions

Let {ei} be a (Schauder) basis for a real Banach space X and let {e∗
i } be its sequence

of biorthogonal functionals. For x, y ∈ X, we write x < y if the support of x is “to
the left” of the support of y, i.e. if

max{n ∈ N : e∗
n(x) �= 0} < min{n ∈ N : e∗

n(y) �= 0}.
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Definition 2.1 A basis {ei} for a Banach space X is uniformly reverse monotone
(URM) if there exists a function θ : (0,∞) → (0,∞) such that for all x < y, with
‖y‖ ≤ 1 and ‖x‖ ≥ ε, we have

‖y‖ ≤ ‖x + y‖ − θ(ε).

In Definition 2.1, the function θ may and shall be taken to be nondecreasing.
Let Pm : X → Span{ei}mi=1 denote the standard projection onto the span of the first

m basis elements and let Qm = I − Pm. The basis is monotone if ‖Pn‖ = 1 for all
n ≥ 1. Note that if yn

w→ 0, then for fixed m ∈ N,

lim
n→∞‖Pm(yn)‖ = 0. (3)

In much of what follows, we shall consider 1-unconditional bases; these bases
are unconditional bases with unconditional basis constant equal to 1, i.e. such that
‖∑

aiei‖ = ‖∑±aiei‖ for all choices of scalars and signs. We note that when
{ei} is a 1-unconditional basis, then ‖∑

i∈A aiei‖ ≤ ‖∑
aiei‖ for all A ⊂ N and

scalars {ai}.

2.2 Smoothness Properties of Banach Spaces

Here we recall some standard definitions pertaining to smoothness. Suppose X is a
real Banach space. Define for f,g ∈ X and for u ∈ R

ρf,g(u) = ‖f + ug‖ + ‖f − ug‖ − 2‖f ‖
2

.

The point f ∈ X is a point of Gâteaux smoothness if

lim
u↓0

ρf,g(u)

u
= 0 for all g ∈ X.

By the Hahn-Banach theorem, each f ∈ X has at least one norming functional Ff .
It is known that f is a point of Gâteaux smoothness if and only if its associated
norming functional Ff is unique. We say that a Banach space X is smooth (or X has
a Gâteaux differentiable norm) when every nonzero point in X is a point of Gâteaux
smoothness. See [5] for more information on smoothness. The assumption that every
nonzero point of X is a point of Gâteaux smoothness guarantees that for any nonzero
f ∈ X and any dictionary D,

inf
t∈R

g∈D
‖f − tg‖ < ‖f ‖.

Indeed, simply choose g ∈ D such that Ff (g) > 0. Then

‖f − tg‖ = ‖f ‖ − tFf (g) + o(t),
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so ‖f − tg‖ < ‖f ‖ for all sufficiently small t > 0. We will also consider uniformly
smooth Banach spaces. For each τ > 0, the modulus of smoothness of a Banach space
X is defined by

ρX(τ) = sup
{‖x + y‖ + ‖x − y‖

2
− 1 : x, y ∈ X,‖x‖ = 1,‖y‖ = τ

}

[16, p. 59]. We say that X is uniformly smooth if limτ→0
ρX(τ)

τ
= 0.

There are Gâteaux smooth Banach spaces which are not uniformly smooth. It is
known that a uniformly smooth Banach space is uniformly Fréchet differentiable, i.e.

‖x + y‖ = 1 + Fx(y) + ε(x, y)‖y‖ (4)

for all x, y ∈ X with ‖x‖ = 1, where ε(x, y) → 0 uniformly for (x, y) ∈ {x : ‖x‖ =
1} × X as ‖y‖ → 0.

2.3 Uniform Opial Property

This is a property which relates weak convergence with the geometry of the unit
sphere SX := {x ∈ X : ‖x‖ = 1}. We say that a Banach space has the uniform Opial
property if there exists a function τ(ε) > 0 defined for all ε > 0 such that for all
sequences yn

w→ 0, with ‖yn‖ = 1, and for all x �= 0 we have

lim inf
n→∞ ‖x + yn‖ ≥ 1 + τ(‖x‖). (5)

Clearly we may and shall assume that the function τ is nondecreasing. Also we
can obviously replace the condition ‖yn‖ = 1 in the definition by the condition
limn→∞ ‖yn‖ = 1. This property was introduced in [17] and turned out to be use-
ful in geometric fixed point theory (see e.g. [18]).

3 Weak Convergence of Greedy Algorithms

3.1 The Weak Dual Greedy Algorithm (WDGA)

We first review the WDGA from [20, p. 66] (see also [6, p. 491]). Let D be a dictio-
nary for X, and let 0 < t ≤ 1. To define the WDGA, first define f D

0 := f
D,t
0 := f .

Then, for each m ≥ 1, inductively define

(1) φD
m := φ

D,t
m ∈ D to be any element of D satisfying

Ff D
m−1

(
φD

m

) ≥ t sup
g∈D

Ff D
m−1

(g).

(2) Define am via
∥
∥f D

m−1 − amφD
m

∥
∥ = min

a∈R

∥
∥f D

m−1 − aφD
m

∥
∥.
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(3) Denote

f D
m := f D,t

m := f D
m−1 − amφD

m .

Using the same notation as in [6, p. 490], we define GD
n to be

GD
n = f − f D

n

and

f0 − GD
n = f − GD

n = f D
n .

The sequence {‖f D
m ‖} is nonnegative and nonincreasing since

min
a∈R

∥
∥f D

m − aφD
m+1

∥
∥ ≤ ∥

∥f D
m − 0φD

m+1

∥
∥.

Therefore, {‖fm‖} converges to some α ≥ 0. We say that the algorithm converges
strongly if α = 0. We note that the sequence {GD

n } resulting from the WDGA will be
bounded above in norm:

‖GD
n ‖ − ‖f ‖ ≤ ‖GD

n − f ‖ = ‖fn‖ ≤ ‖f ‖.

In [6], Dilworth, Kutzarova, and Temlyakov prove that the WDGA converges
strongly when applied to dictionaries {±φn}, where {φn} is a strictly suppression
1-unconditional basis for a Banach space X which has a Fréchet-differentiable norm.
Also it follows from [6, Theorem 6] that if X is uniformly smooth and has the WN
property then the WDGA converges weakly for any dictionary D. The strong conver-
gence of the WDGA was proved under a different hypothesis in [8].

3.2 The X-Greedy Algorithm (XGA) and the Weak X-Greedy Algorithm (WXGA)

Let 0 < t ≤ 1 be a weakness parameter. The following algorithm is called the WXGA
when 0 < t < 1 and is called the XGA when t = 1. In the case of the XGA we have
to add the assumption that the infimum in the first step is attained.

Let D be a dictionary for X.

(1) Choose φm ∈ D and λm ∈ R such that

‖fm−1‖ − ‖fm−1 − λmφm‖ ≥ t
(
‖fm−1‖ − inf

λ∈R

φ∈D
‖fm−1 − λφ‖

)
.

(2) Define fm = fm−1 − λmφm. We call fm the mth residual of f . The sequence
{‖fn‖} is decreasing.

(3) Set Gm := f − fm.

Theorem 3.1 Suppose that X is uniformly smooth and has the WN property. When
the XGA or the WXGA is applied to f ∈ X, then fn

w→ 0.
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Proof If ‖fn‖ ↓ 0 then fn converges strongly to zero and we are done. So suppose
that ‖fn‖ ↓ α, where α > 0. If {Ffn} is not weakly null, then some subsequence
{Ffnk

} converges weakly to F �= 0 (since uniformly smooth spaces are reflexive). We

shall now derive a contradiction by assuming that Ffnk

w→ F �= 0. Choose g ∈ D such
that F(g) = β > 0; hence Ffnk

(g) > β/2 for all sufficiently large k. Now we use
the aforementioned fact (see (4)) that uniformly smooth spaces are uniformly Fréchet
differentiable. For s > 0, (4) yields

‖fnk
− sg‖ = ‖fnk

‖ − sFfnk
(g) + sε

(
fnk

‖fnk
‖ ,−s

g

‖fnk
‖
)

≤ ‖fnk
‖ − sβ

2
+ sε

(
fnk

‖fnk
‖ ,−s

g

‖fnk
‖
)

for large k. Since ‖fn‖ ≥ α > 0, it follows that there exists s0 > 0 such that

‖fnk
− s0g‖ ≤ ‖fnk

‖ − s0β

4

for large k. As a result,

‖fnk
‖ − ‖fnk+1‖ ≥ t

s0β

4

for all sufficiently large k, which contradicts the assumption that ‖fn‖ ↓ α. Thus
{Ffn} is weakly null, and hence {fn} is weakly null by the WN property. �

We now look at a convergence result which does not require uniform smoothness.
Let (Xn,‖ · ‖n) be a Banach space for each n ≥ 1. The direct sum (

∑∞
n=1 ⊕Xn)�p

consists of all sequences {xn}n≥1 with xn ∈ Xn such that

‖{xn}‖ =
( ∞∑

n=1

‖xn‖p
n

) 1
p

< ∞.

Theorem 3.2 Suppose that each Xn is Gâteaux smooth and finite-dimensional. Then
the WXGA converges weakly in (

∑∞
n=1 ⊕Xn)�p , 1 < p < ∞.

Proof Suppose that {fn} is not weakly null. There is a subsequence {fnk
} such that

fnk

w→ g �= 0. Write fnk
= g+xk where xk

w→ 0. By passing to a further subsequence,
we may assume that ‖xk‖ → β ≥ 0.

Using the fact that (
∑∞

n=1 ⊕Xn)�p is Gâteaux smooth, choose φ0 ∈ D, s0 > 0, and
ε0 > 0 such that

‖g‖p − ‖g − s0φ0‖p = ε
p

0 .
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Then

lim
k→∞‖fnk

− s0φ0‖p = lim
k→∞‖g − s0φ0 + xk‖p

= ‖g − s0φ0‖p + βp

≤ ‖g‖p − ε
p

0 + βp

= lim
k→∞‖fnk

‖p − ε
p

0 .

Therefore, we can choose t0 > 0 which depends on the weakness parameter t such
that

‖fnk+1‖p ≤ ‖fnk
‖p − t0ε

p

0

for all sufficiently large k. However, this contradicts the fact that ‖fn‖ ↓ α > 0. �

Let us remark that characterizations of Besov spaces on [0,1] or T using coeffi-
cients of wavelet or similar decompositions show that Theorem 3.2 covers the case
of Besov spaces equipped with the appropriate norms.

3.3 Relaxed Greedy Algorithms

The following two greedy algorithms have been introduced and studied in [22]
(see [22] for historical remarks). We begin with the Greedy Algorithm with Weakness
parameter t and Relaxation r (GAWR(t, r)). In addition to the acronym GAWR(t, r)
we will use the abbreviated acronym GAWR for the name of this algorithm. We give
a general definition of the algorithm in the case of a weakness sequence τ .

3.3.1 GAWR(τ, r)

Let τ := {tm}∞m=1, tm ∈ [0,1], be a weakness sequence. We define f0 := f and
G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D is any element of D satisfying

Ffm−1(ϕm) ≥ tm sup
g∈D

|Ffm−1(g)|.

2). Find λm ≥ 0 such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
λ≥0

‖f − ((1 − rm)Gm−1 + λϕm)‖

and define

Gm := (1 − rm)Gm−1 + λmϕm.

3). Denote

fm := f − Gm.



J Fourier Anal Appl (2008) 14: 609–628 617

In the case τ = {t}, t ∈ (0,1], we write t instead of τ in the notation. We note that
in the case rk = 0, k = 1, . . . , when there is no relaxation, the GAWR(τ,0) coincides
with the Weak Dual Greedy Algorithm [20, p. 66] (see also [6, p. 491]). We will
also consider here a relaxation of the X-Greedy Algorithm (see [20, p. 39]) discussed
above that corresponds to r = 0 in the definition that follows.

3.3.2 X-Greedy Algorithm with Relaxation r (XGAR(r))

We define f0 := f and G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D and λm ≥ 0 are such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0

‖f − ((1 − rm)Gm−1 + λg)‖

and

Gm := (1 − rm)Gm−1 + λmϕm.

2). Denote

fm := f − Gm.

We note that practically nothing is known about convergence and rate of con-
vergence of the X-Greedy Algorithm. The following convergence result was proved
in [22].

Theorem 3.3 Let a sequence r := {rk}∞k=1, rk ∈ [0,1), satisfy the conditions

∞∑

k=1

rk = ∞, rk → 0 as k → ∞.

Then the GAWR(t, r) and the XGAR(r) converge in any uniformly smooth Banach
space for each f ∈ X and for all dictionaries D.

In this paper we discuss convergence of the GAWR(t, r) and the XGAR(r) under
assumption

∑∞
k=1 rk < ∞ that is not covered by Theorem 3.3.

Proposition 3.4 Suppose X is uniformly smooth and has the WN property. Let the
relaxation r = {rk} be such that

∑∞
k=1 rk < ∞. Then for the residual sequence {fm}

of both the GAWR(t, r) and the XGAR(r) we have fm
w→ 0.

Proof For both algorithms we have

Gm = (1 − rm)Gm−1 + λmϕm.

By the definition of λm one has

‖f − Gm‖ ≤ (1 − rm)‖fm−1‖ + rm‖f ‖ (6)
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and

‖fm−1‖ ≥ ‖fm‖ − rm‖f ‖.
The inequality (6) implies

‖fm‖ ≤ ‖f ‖. (7)

We now need the following simple lemma.

Lemma 3.5 Let a sequence {rk}, rk ∈ [0,1], be such that
∑∞

k=1 rk < ∞. Consider a
sequence {ak}, ak ∈ (0,A], that satisfies the inequalities

am−1 ≥ am − Arm, m = 2,3, . . . .

Then either am → 0 as m → ∞ or there exists an α > 0 such that am ≥ α for all m.

Proof Suppose the sequence {am} does not converge to 0. Then there exists a subse-
quence {ank

} such that

lim
k→∞ank

= γ > 0.

Therefore, ank
≥ γ /2 for k ≥ k0. For n ∈ [nk−1, nk) one has

an ≥ ank
− A

nk∑

j=n+1

rj . (8)

It is clear that there exists k1 such that for n > nk1 (8) implies an ≥ γ /4. This com-
pletes the proof. �

We return to the proof of Proposition 3.4. By Lemma 3.5 we obtain from (6)
and (7) that either ‖fm‖ → 0 or ‖fm‖ ≥ α > 0. It remains to prove that the inequality
‖fm‖ ≥ α > 0 implies that {Ffm} is weakly null and apply the WN property. The
proof of this statement repeats the argument from the proof of Theorem 3.1. �

3.4 Modified Algorithms

First we recall the definition of the modulus of convexity δX(ε) := δ(ε) of a Banach
space X (see [16, pp. 59-60]):

δ(ε) := inf
{

1 − ‖x + y‖
2

: x, y ∈ X,‖x‖ ≤ 1,‖y‖ ≤ 1,‖x − y‖ ≥ ε
}
, (9)

for 0 ≤ ε ≤ 2. X is said to be uniformly convex if δ(ε) > 0 for all ε > 0.
Suppose that X is a Banach space which has a positive modulus of convexity

δ(s) for at least one s ∈ (0,1). We consider any greedy algorithm which satisfies the
following two conditions:

• the algorithm converges weakly (for every f �= 0 in X, the residuals fn
w→ 0, or in

other words, Gn
w→ f );

• the norms of the residuals form a decreasing sequence {‖fn‖}.
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Now we shall modify a greedy algorithm which satisfies these two conditions. The
modified algorithm generates a sequence of residuals {f̃n} and a corresponding se-
quence of approximations {G̃n} such that ‖f̃n‖ → 0—that is, the modified algorithm
converges strongly.

We proceed to describe how to apply the modified algorithm to f = f0 ∈ X. Set
r0 := ‖f0‖ and f̃0 := f0. We write out the first two steps in detail and then proceed
to the inductive step.

Step 1: Apply the unmodified algorithm to f0 and generate the sequence of
residuals {(f0)n}. We know that (f0 − (f0)n)

w→ f0. The norm of X is lower semi-
continuous with respect to weak convergence, so

r0 = ‖f0‖ ≤ lim inf
n→∞ ‖f0 − (f0)n‖.

Since s ∈ (0,1), we can choose n0 such that

sr0 < ‖f0 − (f0)n0‖, (10)

and we use n0 to define the first residual

f̃1 := f0 + (f0)n0

2
. (11)

The first approximation of f is G̃1 := f0 − f̃1. We will now find an upper bound
for ‖f̃1‖ by considering the modulus of convexity δ(s). By definition, ‖f0

r0
‖ = 1,

and since the sequence of norms of residuals is decreasing, ‖ (f0)n0
r0

‖ ≤ 1. By (10),

‖f0
r0

− (f0)n0
r0

‖ > s. Therefore, by (9),

δ(s) ≤ 1 −
∥
∥
∥

f0

2r0
+ (f0)n0

2r0

∥
∥
∥,

which can be rewritten as

r0(1 − δ(s)) ≥
∥
∥
∥
f0 + (f0)n0

2

∥
∥
∥. (12)

Set r1 := ‖f̃1‖. We see that r1 ≤ r0(1 − δ(s)), and 0 < 1 − δ(s) < 1 by hypothesis.

Step 2: Apply the unmodified algorithm to f̃1, generating a sequence of residuals
{(f̃1)n}. Because (f̃1 − (f̃1)n)

w→ f̃1, we can choose n1 such that

sr1 < ‖f̃1 − (f̃1)n1‖. (13)

Set

f̃2 := f̃1 + (f̃1)n1

2
and G̃2 = f0 − f̃2.

We note that G̃2 = (f0 − f̃1) + (f̃1 − f̃2).
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As before, we bound ‖f̃2‖ using the modulus of convexity:

r1(1 − δ(s)) ≥ ‖f̃2‖.
Referring back to (12), we see that

r0(1 − δ(s))2 ≥ ‖f̃2‖.
Set r2 := ‖f̃2‖. Now we describe the inductive step.

Step k + 1: Assuming that we have found {f̃0, f̃1, . . . , f̃k} and the accompanying
norms {r0, r1, . . . , rk}, we apply the unmodified algorithm to f̃k in order to generate
the sequence of residuals {(f̃k)n}. Choose nk such that

srk < ‖f̃k − (f̃k)nk
‖.

Set

• f̃k+1 := f̃k+(f̃k)nk

2
• G̃k+1 := f0 − f̃k+1
• rk+1 := ‖f̃k+1‖.

Finally, arguing as before,

r0(1 − δ(s))k+1 ≥ ‖f̃k+1‖.
As a result ‖f̃n‖ → 0 as n → ∞, and the modified algorithm converges strongly.

Remark 3.6 Note that the “modification step” can and should be omitted if

‖(f̃k)nk
‖ ≤

∥
∥
∥
∥
f̃k + (f̃k)nk

2

∥
∥
∥
∥,

because in this case we would do better to set f̃k+1 := (f̃k)nk
instead, and then con-

tinue with the unmodified algorithm until the next modification step. So the modifi-
cation step need only be applied when it actually yields a better approximation than
the unmodified algorithm. Note also that to apply the modified algorithm it is only
necessary to store the value of f̃k in step k + 1 (in addition to the updated residuals).

Remark 3.7 In all the results of this section we have applied the WN property directly,
so in all results where this condition is assumed it can be dropped and the conclusion
“fn

w→ 0” replaced by “either ‖fn‖ → 0 or Ffn

w→ 0”.

4 Comments and Remarks

4.1 Banach Spaces with the WN Property

In this section we discuss which Banach spaces have the WN property. First of all it
is known that Lp[0,1] fails the WN property when p �= 2 (see e.g. [1] for p = 4). For
completeness we give a short proof of this fact.
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Example 4.1 Fix 1 < p < ∞ with p �= 2 and let q be the Hölder conjugate index. Let
{Xn} be a sequence of independent identically distributed random variables defined
on some separable probability space (�,�,P ) such that

P(Xn = a) = 2/3 and P(Xn = −2a) = 1/3,

where a = (3/(2 + 2q))1/q . Then ‖Xn‖q = 1, and, since E[Xn] = 0, {Xn} is a
monotone basic sequence in Lq(�) (by Jensen’s inequality). Since Lq(�) is a re-
flexive Banach space, it follows that {Xn} is weakly null. Now Xn is the norm-
ing functional for Yn ∈ Lp(�), where Yn = |Xn|q−1 sgn(Xn). But E[Yn] = (2 −
2q−1)aq−1/3 �= 0, so {Yn} is not weakly null in Lp(�). This shows that Lp(�) does
not have the WN property.

Theorem 4.2 Suppose X is a reflexive Banach space with the uniform Opial prop-
erty. Then X has the WN property.

Proof Assume it is not true that xn
w→ 0—that is, suppose {xn} is not weakly null,

where {xn} is as in Definition 1.1. By passing to a subsequence and relabelling, we
may assume (by reflexivity of X) that xn

w→ x, where x �= 0. Now, write xn = x + yn,
where yn

w→ 0. Once more passing to a subsequence and relabelling we may assume
that ‖yn‖ → c. If c > 0 then from the uniform Opial property we get

lim
n→∞

∥
∥
∥
xn

c

∥
∥
∥ = lim

n→∞
∥
∥
∥
x

c
+ yn

c

∥
∥
∥ ≥ 1 + τ(‖x‖/c),

which gives 1 ≥ c + cτ(‖x‖/c), so c < 1. (This is obviously also true if c = 0.)
However, since {Fxn} is weakly null, we have

1 = lim
n→∞Fxn(xn)

= lim
n→∞Fxn(x) + lim

n→∞Fxn(yn)

= 0 + lim
n→∞Fxn(yn)

≤ lim
n→∞‖yn‖ ≤ c < 1,

which is a contradiction. Therefore, {xn} ⊂ S(X) is weakly null whenever {Fxn} is
weakly null, as we wished to show. �

Our next result connects bases with the uniform Opial property.

Proposition 4.3 A Banach space with a URM basis has the uniform Opial property.

Proof Let us take yn
w→ 0 with ‖yn‖ = 1 for n = 1,2, . . . and x �= 0. Let us fix a

small δ > 0 and N such that ‖QN(x)‖ ≤ δ. We have

lim inf
n→∞ ‖x + yn‖ = lim inf

n→∞ ‖PN(x) + QN(yn) + QN(x) + PN(yn)‖
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≥ lim inf
n→∞ (‖PN(x) + QN(yn)‖ − ‖PN(yn)‖ − ‖QN(x)‖)

≥ lim inf
n→∞ (‖QN(yn)‖ + θ(‖PN(x)‖)) − lim sup

n→∞
‖PN(yn)‖ − δ.

Since yn
w→ 0 we have limn→∞ ‖PN(yn)‖ = 0 and limn→∞ ‖QN(yn)‖ = 1. We also

have ‖PN(x)‖ ≥ ‖x‖ − δ. Putting all this together we get

lim inf
n→∞ ‖x + yn‖ ≥ 1 + θ(‖x‖ − δ).

Since δ was arbitrary we get the uniform Opial condition with τ(ε) = θ(ε). �

Proposition 4.4 Suppose X is a uniformly convex Banach space with a 1-uncondi-
tional basis {ei}. Then the basis is URM.

Proof Fix 0 < ε ≤ 1. To verify the URM condition, suppose that x < y, ‖x‖ ≥ ε, and
‖y‖ ≤ 1. If ‖x‖ > 2 then ‖x + y‖ > 2 by 1-unconditionality, and hence ‖y‖ ≤ 1 ≤
‖x + y‖ − 1. So we may assume that ‖x‖ ≤ 2. By 1-unconditionality,

ε ≤ ‖x‖ ≤ ‖x + y‖ = ‖ − x + y‖,
and since y = 1

2 ((x + y) + (−x + y)) it follows that

‖y‖ ≤ ‖x + y‖
(

1 − δ

(
2‖x‖

‖x + y‖
))

≤ ‖x + y‖ − εδ

(
2ε

3

)

.

Hence θ(ε) ≥ εδ(2ε/3). �

There are many examples of Banach spaces which satisfy the hypotheses of Propo-
sition 4.4. One obvious example is �p . Other examples are described in Sect. 4.1.1
below.

4.1.1 Examples of Banach Spaces with the Uniform Opial Property and URM Bases

Some examples of spaces with the uniform Opial property are presented in [14].
Now we will discuss the case of Orlicz sequence spaces. We thank Anna Kamińska
for describing to us how to construct the Orlicz sequence spaces in Example 4.5. For
the relevant definitions and for more general theorems which imply the facts stated
below, see Chen [2] and Lindenstrauss and Tzafriri [15, Chap. 4].

Example 4.5 (Orlicz sequence spaces) Let M be an Orlicz function, M∗ its comple-
ment function, and lM its associated Orlicz sequence space. We equip lM with the
Luxemburg norm.

If M satisfies the �2 condition at zero and M(1) = 1 then the unit vector basis
{ei} of lM is a normalized 1-unconditional Schauder basis for lM . We now state some
important facts which ensure that lM is both uniformly smooth and uniformly convex
[2, 13]:
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• lM is uniformly convex if and only if M and M∗ satisfy �2 and the function M is
uniformly convex.

• lM is uniformly smooth if and only if M and M∗ satisfy �2 and the function M∗
is uniformly convex.

• If M and M∗ satisfy �2, then there exists M1 such that M1 and M∗
1 are uniformly

convex, and M1 is equivalent to M [2, Theorem 1.18, p. 12].

Putting these facts together, we can state the following. Suppose M(1) = 1. The
Orlicz sequence space lM is uniformly smooth and uniformly convex if and only if
M and M∗ satisfy �2 and are uniformly convex. In addition, {ei} is a normalized
1-unconditional basis. Orlicz sequence spaces with the uniform Opial property are
described in [4] and more general sequence spaces in [3].

Example 4.6 Lp[0,1], 1 < p < ∞, equipped with the square-function norm.
Let f = ∑∞

n=0 anhn be the expansion of f with respect to the Haar basis. The
norm defined by

|||f ||| =
[∫ 1

0

( ∞∑

n=0

a2
nhn(t)

2
) p

2
dt

] 1
p

is equivalent to the usual Lp norm by classical square function inequalities.
Clearly, (Lp[0,1], ||| · |||) is isometric to a subspace of the Lebesgue-Bochner space
Lp([0,1], �2), which in turn is isometric to a subspace of Lp([0,1],Lp[0,1])) since
�2 is isometric to a subspace of Lp[0,1] (e.g. as the span of a sequence of independent
identically distributed mean zero normal random variables). But Lp([0,1],Lp[0,1])
is naturally isometrically isomorphic to Lp([0,1]2) (by Fubini’s theorem), which in
turn is isometrically isomorphic to Lp[0,1] because [0,1] and [0,1]2 have isomor-
phic measure algebras. In conclusion, (Lp[0,1], ||| · |||) is isometric to a subspace of
Lp[0,1]. Moreover, (Lp[0,1], ||| · |||) contains a subspace isometric to �p spanned
by disjointly supported Haar functions. Since �p and Lp[0,1] have identical moduli
of convexity and smoothness, it follows that Lp[0,1] and (Lp[0,1], ||| · |||) also have
identical moduli of convexity and smoothness. In particular, (Lp[0,1], ||| · |||) is uni-
formly convex and uniformly smooth. Finally, {hn}∞n=0 is obviously a 1-unconditional
basis for (Lp[0,1], ||| · |||).

4.2 Property �

Let us recall that this property was used by Ganichev and Kalton [8] to prove the
strong convergence of the WDGA. Our aim in this section is to give an example of a
Banach space with a URM basis (hence with the WN property by Theorem 4.2 and
Proposition 4.3) failing property �. On the other hand it is proven in [8] that Lp[0,1]
has property � but (by Example 4.1) does not have the WN property for p �= 2.

Definition 4.7 A smooth Banach space X has property � if there is a constant β > 0
such that for any x, y ∈ X such that Fx(y) = 0, we have

‖x + y‖ ≥ ‖x‖ + βFx+y(y). (14)
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If we define ϕ(t) = ‖x + ty‖ − ‖x‖ then we know that

Fx+αy(y) = lim
h→0

‖x + (α + h)y‖ − ‖x + αy‖
h

= ϕ′(α),

so we can rewrite (14) as

ϕ(α) ≥ βαϕ′(α). (15)

The following lemma is proved for the sake of completeness. The result follows from
the work of Ganichev and Kalton [9] and is included here with their permission.

Lemma 4.8 If X is smooth and has property � then it is strictly convex.

Proof Assume that X is not strictly convex. So there are points x0 �= x1 such that
‖λx0 + (1 − λ)x1‖ = 1 whenever 0 ≤ λ ≤ 1. Clearly Fx0 = Fx1 , so for y = x1 − x0

we have Fx1(y) = Fx0(y) = 0. We consider the function ϕ(t) = ‖x0 + ty‖ − ‖x0‖
for t ≥ 0. Clearly ϕ is increasing, differentiable, and satisfies ϕ(t) = 0 for 0 ≤ t ≤ 1.
From (15) we get

ϕ(t) ≥ βtϕ′(t) ≥ βϕ′(t) (16)

for all t ≥ 1. Suppose ϕ(t0) = 0 for some t0 ≥ 1. Integration of (16) yields

β

2
ϕ(t0 + β/2) ≥ β

∫ t0+β/2

t0

ϕ′(t) dt = βϕ(t0 + β/2),

and hence ϕ(t0 + β/2) = 0. By a repeated application of the latter, starting with
t0 = 1, we get ϕ(t) = 0 for all t , which is impossible since ϕ(t) → ∞ as t → ∞. �

Now let is fix a concave C1 function H on [0,1) which has the following proper-
ties:

H(t) =
{

1 if 0 ≤ t ≤ 0.1,√
1 − t2 if 1√

2
≤ t ≤ 1,

and

H(t) < 1 if t > 0.1.

We define a Banach space E as R
2 equipped with the norm ‖ · ‖ such that

‖(x, y)‖ ≤ 1 ⇐⇒ |y| ≤ H(|x|).
The Banach space E is uniformly smooth (because H is C1) and the basis e1 =
(1,0), e2 = (0,1) is a 1-unconditional URM basis. From Lemma 4.8 we see that E

does not have property �. If we want to have an infinite-dimensional example it is
enough to take Xp = (

∑∞
n=1 E)p with 1 < p < ∞. One easily checks that the natural

basis in Xp is a 1-unconditional URM basis. Clearly Xp does not have property �

and it is known that it is uniformly smooth (because E is, see [7]).
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4.3 Dictionary Dual Greedy Step

In this section we want to discuss the following greedy step (for an otherwise un-
specified greedy algorithm) which we call the dictionary dual step. For a dictionary
D ⊂ X, weakness parameter 0 < t ≤ 1, and for x ∈ X we choose g0 ∈ D to satisfy

Fg0(x) ≥ t sup
g∈D

Fg(x). (17)

This greedy step was used in [21] for a special dictionary. One could also consider
the algorithm obtained by replacing (1) in the definition of the WDGA (see Sect. 3.1)
by (17).

Since in the case of a Hilbert space we have

Fg(x) = 〈g,x〉 = ‖x‖
〈

g,
x

‖x‖
〉

= ‖x‖Fx(g),

we see that (when t = 1) the dictionary dual greedy step in a Hilbert space coincides
with the dual greedy step. So the dictionary dual greedy step seems to be a good
generalization of the pure greedy algorithm from the Hilbert space to the Banach
space setting. Indeed, one could argue that it is easier to have the functionals Fg

computed once for each g belonging to the given dictionary than to have to compute
Fxn each time for vectors xn which may be arbitrary (as we must do in dual greedy
algorithms). The point which we want to make in this section is that for general
dictionaries the dual greedy step (17) may create serious problems.

Definition 4.9 We call a dictionary D a double dictionary if {Fg : g ∈ D} ⊂ X∗ is a
dictionary (i.e. linearly dense) for X∗.

The Haar and Walsh systems are double dictionaries in Lp[0,1] for 1 < p < ∞.
Every dictionary in a Hilbert space is a double dictionary since Hilbert spaces are
self-dual.

Proposition 4.10 Let X be separable, reflexive, smooth, strictly convex, and not iso-
metric to a Hilbert space with dimX ≥ 3. Then X contains a countable non-double
dictionary.

Proof First note that the assumptions on X also apply to X∗ by the well-known
duality between smoothness and strict convexity. Let us take V ⊂ X a subspace of
codimension 1 and let x∗

0 ∈ X∗ be a functional of norm 1 with kerx∗
0 = V . If the set

{Fv}v∈V is not linearly dense in X∗ then there exists a subspace Z ⊂ X∗ of codi-
mension 1 such that {Fv}v∈V ⊂ Z. This implies that Z norms V , i.e. for v ∈ V we
have

‖v‖ = sup
z∈SZ

|z(v)|. (18)

Let us consider a map q : X → Z∗ given by x �→ x | Z. From (18) we get that q | V

is an isometry from V into Z∗. Actually it must be onto Z∗ because q is onto and
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has one-dimensional kernel. This means that (q | V )−1 ◦q is a well defined norm-one
operator form X onto V which is the identity on V , so it is a norm-one projection.

Now if X satisfies the assumptions of the theorem then by a theorem of James [11]
X contains a one-codimensional subspace V which is not 1-complemented in X.
Thus we infer that the set {Fv}v∈V is linearly dense. From this set we can choose
a countable dictionary D which is also linearly dense by separability of X. Since
FFx = x (by smoothness of X∗) we see that {Fg : g ∈ D} ⊂ V . This means that X∗
contains a non-double dictionary. Thus, X also contains a non-double dictionary by
the self-duality of our assumptions. �

Now suppose that we have a non-double dictionary D in a Banach space X. We
have just proved in Proposition 4.10 that such a situation is quite common. Let us fix
x0 ∈ X, x0 �= 0 such that Fg(x0) = 0 for all g ∈ D. When we apply the dictionary dual
greedy step we may choose an arbitrary element g1 ∈ D. We do this and put x1 =
x0 − λg1 with the coefficient λ computed accordingly to our particular algorithm.
Applying (17) to x1 we get

|Fg1(x1)| = |λ| = sup
g∈D

|Fg(x1)|,

so g1 is again an allowed (actually the best) choice. This means that using (17) we can
not approximate x0. Note that this problem appears already in nice finite-dimensional
spaces (see Proposition 4.10).

To complement the previous result let us construct a two-dimensional example.
Let us considers �2

p , 1 < p < ∞, the space R
2 with the norm

‖(x, y)‖p = (|x|p + |y|p)1/p
.

Let us recall when we have equality in Hölder’s inequality. We have

x1x2 + y1y2 = (|x1|p + |y1|p
)1/p · (|x2|p + |y2|p

)1/p

if and only if x2 = C(sgnx1)|x1|p−1 and y2 = C(sgny1)|y1|p−1. This means that if
a = (x, y) then Fa = C(sgnx · |x|p−1, sgny · |y|p−1).

Lemma 4.11 Let p �= 2. For any vector a = (x, y) such that x · y �= 0 and |x| �= |y|
there are vectors g1, g2 such that:

Fg1(a) = 0; (19)

Fa(g2) = 0; (20)

Fg2(a) �= 0. (21)

Proof Without loss of generality a = (1, y) with y > 0 and y �= 1. Writing (19) for
g1 = (a1, b1) �= 0 (and assuming a1 ≥ 0) we get

a
p−1
1 + y(sgnb1)|b1|p−1 = 0,
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so a solution is given by g1 = (1,−y−1/(p−1)). Analogously we solve (20) for g2 =
(a2, b2) and we get a solution g2 = (1,−y1−p). Using those values we write the
left-hand side of (21) as

1 − y1−(p−1)2
.

Since y �= 1 and the exponent of y is nonzero (because p �= 2) we get (21). �

Now if we apply the dictionary dual greedy step (17) in �2
p to vector a and dic-

tionary D = {g1, g2} as given in Lemma 4.11 we must choose g2. But from (20) we
get ‖a + λg2‖ > ‖a‖ whenever λ �= 0. So any algorithm producing a decreasing se-
quence {fn} (as we assumed in Sect. 3.4) and using a dictionary dual greedy step
cannot converge.

Remark 4.12 We can make an infinite-dimensional example in �p by taking a dic-
tionary g1, g2, e3, e4, . . . . This is a basis and a double dictionary. Clearly, the vector
(x, y,0,0, . . . ) creates the same problem that was described above.
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