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Abstract. We present a solution for the largest regular m-gon contained
in a regular n-gon. We find that the answer depends critically on the co-
primality of m and n. We show that the optimal polygons are concentric
if and only if gcd(m, n) > 1. Our principal result is a complete solution
for the case where m and n share a common divisor. For the case of co-
prime m and n, we present partial results and a conjecture for the general
solution. Our findings subsume some special cases which have previously
been published on this problem.
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1. Introduction

In this paper we present solutions, and some conjectures, for the largest reg-
ular m-gon contained in a regular n-gon. The problem was posed to us by
Dr. Hallard Croft (retired from the University of Cambridge). The problem
posed by Croft is this: “A and B are regular, coplanar polygons, with respec-
tively m,n sides. A lies inside (closed) B. The name of the game is to maximize
(area A)/(area B). What can one say about the configurations that give a
(global) maximum? The cases m|n and n|m are trivial.”

The stated problem is a special case of the so-called “Polygon Containment
Problem” which is important in computational mathematics and has impor-
tant applications in industry (see e.g. [1]). In its full generality, the polygon
containment problem pertains to irregular polygons, not necessarily convex,
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and can only be solved by numerical algorithms, and most of the analysis
in [1] pertains to the complexity analysis of various algorithms. Our results
below, however, are purely analytical, although admittedly we study only the
special case of regular polygons. We also note in passing some results for reg-
ular polygons which give a higher packing density than circles in a plane (see
Remark 4.10).

We summarize our results as follows. Detailed proofs are given in subsequent
sections. We find that the answer depends crucially on the coprimality of m
and n. The optimal polygons are concentric if and only if k = gcd(m,n) > 1.
We present a complete answer to the problem when gcd(m,n) > 1 (concentric
polygons). Our results for k = 1 (coprime (m,n), nonconcentric polygons) are
more limited. We have results for m = 3 (triangle in polygon), n = 3 (polygon
in triangle) and m = 4 (square in polygon). The case n = 4 (polygon in square)
was solved by Dureisseix [3]. (Note that Dureisseix actually found the solution
in 1997, in an unpublished note.) We also present a conjecture for the general
solution for the case of coprime (m,n) (nonconcentric polygons).

Special cases of the above problem have appeared as puzzles in various places,
for example by Martin Gardner in Scientific American, specifically for the case
of a square or rectangle in a triangle. The two cases m = n ± 1 were solved
by Daley [2]. Note that Daley [2] also solved the case of m = n ± 2 for even
m and n; his results in this case are special cases of our general solution for
arbitrary non-coprime m and n.

2. General remarks

An equivalent formulation of the problem is to fix B, and to ask: for given fixed
n, what is the polygon A which maximizes �A/�B, for m = 3, 4, 5, . . .? We
have also seen papers on polygon containment which view the matter using
the opposing but equivalent way: fix the inner polygon and determine the
smallest enclosing polygon (this also maximizes the ratio of areas). We adopt
the former viewpoint in our calculations. Some preliminary definitions are also
required. For a regular polygon, a line joining the centre to a vertex is called
a radius and a line joining the centre to the midpoint of an edge is called an
apothem. Without loss of generality, we may fix B to have unit radius. Let
the radius of A be ρmn. Then the ratio of areas is

�A

�B
≡ Rmn = ρ2

mn

m

n

sin(2π/m)
sin(2π/n)

. (2.1)

Hence we must determine the maximal radius of A. The solution must then
specify the following: (i) the location of the centre of A, (ii) the orientation
of A, and (iii) the value of the radius of A. It is obvious that in the limit
m → ∞ (for fixed n) the polygon A approaches the inscribed circle of B and
the limiting radius and ratio of areas is given by

ρ∞n ≡ lim
m→∞ ρmn = cos

π

n
, R∞n ≡ lim

m→∞ Rmn =
π

n
cot

π

n
. (2.2)
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There are also obvious expressions for the limit n → ∞ for fixed m, which we
leave as an exercise for the reader.

3. Summary of results

We summarize our principal results below. The proofs of items 1–7 will be
given in Sect. 4 below, and the proofs of individual special cases (8, 9 and 10)
will be given in Sects. 5–7, respectively.

1. A and B are concentric iff k = gcd(m,n) > 1.
2. A and B are concentric and share a common vertex if and only if m|n.

A and B are concentric and share an edge of A if and only if n|m.
3. Consider concentric A and B (i.e. k > 1). If m/k is odd and n/k is even

then the optimal configurations are “radius to radius.” If m/k is even and
n/k is odd then the optimal configurations are “apothem to apothem.”
Both m/k and n/k are odd if and only if the optimal configurations
are simultaneously “radius to radius” and “apothem to apothem.” These
terms will be explained below.

4. For k > 1 (concentric polygons), A and B share a common axis of sym-
metry. The number of common axes of symmetry is k.

5. If m|n then A and B have m points of contact, consisting of all the ver-
tices of A. If k > 1 and m does not divide n then the number of points
of contact is 2k.

6. If (i) m|n or (ii) n is an odd multiple of m/2 (including n = m/2) then
A is inscribed in B. By “inscribed” we mean that every vertex of A lies
on the perimeter of B. If (i) n|m or (ii) m > n and m is an odd multiple
of n/2 then there is at least one, and at most two, point(s) of contact on
every edge of B.

7. Also for concentric A and B, the optimal radius of A is (recall B is
normalized to a unit radius)

ρmn =
cos(π/n)

cos(πk/mn)
. (3.1)

Set m = pn + q, where 0 ≤ q < n and p = 0, 1, 2, . . . (such that m ≥ 3).
For fixed n and q, the sequence {ρpn+q,n} is monotone decreasing with
limit cos(π/n) (see Eq. (2.2)). The ratio of areas is given by Eq. (2.1).
For q = 0 (so n|m), the sequence {Rpn+q,n} is monotone decreasing, but
for q > 0, the sequence {Rpn+q,n} is monotone increasing. In both cases,
limp→∞ Rpn+q,n = R∞n (see Eq. (2.2)).

8. m = 3: A maximal equilateral triangle A in a regular polygon B always
shares a vertex in common with the enclosing polygon. A and B also
share a common symmetry axis through the shared vertex.

9. n = 3: A maximal regular polygon A inside an equilateral triangle B
always shares an edge in common with the enclosing triangle. The apo-
them of the shared edge is a common axis of symmetry of A and B.
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10. m = 4: A maximal square A in a regular polygon B shares a vertex in
common with the enclosing polygon for the two cases (m,n) = (4, 5) and
(4, 9) only, i.e. square in pentagon and square in nonagon. In these cases
the square has three points of contact with the enclosing polygon. In
all other cases, the square has four points of contact with the enclosing
polygon, and the optimal configuration is “apothem to apothem.” In all
cases, A and B share a common axis of symmetry.

11. n = 4: Dureisseix [3] showed that for a maximal regular polygon A inside
a square B, the centre of the optimal polygon A lies on a diagonal of
the square B. That diagonal is a common axis of symmetry of A and
B. (Technically, we did not “prove” this, but we include his result for
completeness.)

12. We present a conjecture for the general solution for the case of coprime
(m,n). Our conjecture rests on a key assumption, which we have not
succeeded in proving.

4. Proofs of results in Sect. 3, nos. 1–7

In our derivations below, when we use the term ‘subtend’ the angle being sub-
tended is always at the origin. We also define the term ‘angle of incidence’ as
the angle between the radius of A which makes contact with B and the normal
to the corresponding edge of B.

Proposition 4.1. Suppose that m and n are coprime. Then there are no con-
centric optimal solutions.

Proof. Suppose that A and B are concentric and optimal. First suppose that
they do not have a common edge. Then all points of contact are vertices of A.
Fix a vertex of A that is a point of contact. Let θ > 0 be the angle (measured
counterclockwise) subtended by this point of contact with a vertex of B on
the same edge. Then no other point of contact can subtend an angle θ with
a vertex of B, for otherwise A and B would have a nontrivial rotational sym-
metry. Since A and B are concentric, any other point of contact must subtend
an angle −θ with a vertex of B, and there can be at most one such point of
contact. Hence there are at most two points of contact. But then A can clearly
be displaced slightly (see Corollary 5.3 below) so as to have no points of con-
tact, contradicting the optimality of A. Now suppose that A and B share an
edge of A. Then the endpoints of this edge are vertices of A that are symmet-
rically positioned around the midpoint of the edge of B. Since A and B are
concentric there cannot be any other points of contact, for otherwise A and B
would share a nontrivial rotational symmetry. Once again, we may displace A
slightly so that there are no points of contact, contradicting optimality. �
Proposition 4.2. Suppose that m and n have greatest common divisor k > 1.
Then all the optimal configurations are concentric.
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Proof. In this proof it is convenient to define A and B to be arbitrarily
oriented (not necessarily optimal) regular polygons centred at the origin with
m and n sides respectively. To derive a contradiction, suppose that x+A ⊂ B
is optimal for some nonzero x ∈ R

2. Let R be rotation through an angle of
2π/k, which is a common symmetry of A and B. Hence, for each 1 ≤ i ≤ k,
we have

Ri(x) + A = Ri(x + A) ⊂ Ri(B) = B.

So, by convexity,

A =
1
k

k∑

i=1

(Ri(x) + A) ⊂ B.

Hence A is also optimal. By convexity, tx+A is optimal for all 0 ≤ t ≤ 1. But
if A is optimal, then, for all sufficiently small t > 0, tx + A will have points of
contact in at most two edges of B which are necessarily parallel to x. Clearly,
tx + A must touch at least two edges of B, for otherwise tx + A can be dis-
placed slightly so that it has no points of contact with B, which contradicts
optimality of tx + A. Suppose that the only points of contact of tx + A and
B are vertices of tx + A. Then, by choosing t appropriately, we may assume
that tx + A and B do not share any common vertices. But then tx + A can be
displaced slightly so that it has no points of contact with B (see Corollary 5.3
below), contradicting maximality. It follows that tx+A shares a common edge
with B for all sufficiently small t > 0. Hence A shares a common edge with B
that is necessarily parallel to x. In particular, m ≥ n. Since A and B are con-
centric the midpoint of the edge of A coincides with the midpoint of the shared
edge of B. Since there is at least one vertex of A in any closed angular interval
of length 2π/m and since m ≥ n, it follows that on every edge of B there are
two vertices of A, where the corresponding radii of A make angles of incidence
±π/m with the normal to that edge of B. Hence every edge of B contains an
edge of A, so n|m. Clearly, tx + A will not be optimal in this case (in fact
tx + A will not be contained in B), which gives the desired contradiction. �
Definition 4.3. When A and B are concentric, let O denote their common
centre. To characterize the relative orientations of A and B, we define “radius
to radius” to mean a ray from O through both a vertex of A and a vertex
of B, and we define “apothem to apothem” to mean a ray from O through
both the midpoint of an edge of A and the midpoint of an edge of B. The
terms “radius to apothem” and “apothem to radius” are similarly defined in
the obvious way.

Proposition 4.4. A and B are concentric and share a common vertex if and
only if m|n. A and B are concentric and share an edge of A if and only if n|m.

Proof. Since k > 1, A and B are concentric. A and B can share a common
vertex only if m ≤ n. If A and B share a common vertex, the radius of A
equals the radius of B. It follows immediately that all the vertices of A are
also vertices of B, hence m|n. The converse is trivially true. This is a “radius–
radius” configuration. Next, A and B can share an edge of A only if m ≥ n.
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If A and B share an edge of A, then since A and B are concentric the midpoint
of the edge of A coincides with the midpoint of the shared edge of B and the
radii to the vertices of A make angles of incidence ±π/m with the normal to
the shared edge. Since there is at least one vertex of A in any closed angular
interval of length 2π/m, it follows that there are two vertices of A subtending
angles of ±π/m around the midpoint of every edge of B, and these vertices
must lie on the edges of B. Hence every edge of B contains an edge of A, so
n|m. The converse is trivially true. This is an “apothem–apothem” configura-
tion. Clearly A and B are concentric and share a vertex and also an edge of
A if and only if m = n. �
Theorem 4.5. Suppose that m and n have greatest common divisor k > 1.
If m/k is odd and n/k is even then the optimal configurations are “radius
to radius.” If m/k is even and n/k is odd then the optimal configurations
are “apothem to apothem.” Both m/k and n/k are odd if and only if the
optimal configurations are simultaneously “radius to radius” and “apothem to
apothem.”

Proof. By Proposition 4.2 optimal configurations of A and B are concentric. If
A and B have a common vertex or edge then the result follows from Proposi-
tion 4.4. Hence we may assume that all points of contact are vertices of A that
are interior points of edges of B. Suppose that one point of contact subtends
an angle of θ > 0 (measured counterclockwise) with a vertex of B belonging
to the same edge. If all points of contact subtend the same angle θ > 0 with
vertices of B on their edges then we can rotate A slightly so that it remains
contained in B but no longer has any points of contact. This would contradict
the optimality of A. Hence there exists a second point of contact which does
not subtend an angle of θ. Since A and B are concentric it follows that this
second point of contact subtends an angle of −θ with a vertex of B on its edge.
Hence there exist 0 ≤ r < m and 0 ≤ s < n such that

2θ +
2πr

m
=

2πs

n
.

By repeatedly cycling through vertices of A, taken r at a time, we find that
for every odd number � there exists a vertex of A which subtends an angle of
�θ with a vertex of B. Let M := m/k and N := n/k. First consider the case
where M is odd. Note that

θ =
(−rn

m
+ s

)
π

n
=

(−rN

M
+ s

)
π

n
.

Hence

Mθ = (−rN + sM)
π

n
.

Since M is odd we can set � := M and it follows that there exists a vertex of
A which subtends an angle of (sM − rN)π/n with a vertex of B. Note that
sM − rN is an integer of undetermined parity. If sM − rN is odd we get a
“radius of A to apothem of B” configuration. Such a configuration cannot be
optimal since in this case A is contained in the inscribed circle of B. Hence the

Author's personal copy



Croft’s problem on optimally nested regular polygons

optimal configuration occurs when sM −rN is even. In this case the configura-
tion is “radius to radius” as desired. If M and N are both odd then a “radius
to radius” configuration is simultaneously “apothem to apothem” since

(
1 + 2

(M − 1)
2

)
π

m
= M

π

m
= N

π

n
=

(
1 + 2

(N − 1)
2

)
π

n
.

Now consider the case where M is even and N is odd. Note that

θ =
(
−r +

sm

n

) π

m
=

(
−r +

sM

N

)
π

m
.

Hence

Nθ = (−rN + sM)
π

m
.

Since N is odd we can set � := N and it follows that there exists a vertex of A
which subtends an angle of (−rN +sM)π/m with a vertex of B. If −rN +sM
is even we get a “radius to radius” configuration. But since M is even and N
is odd, we have

M

2

(
2π

m

)
= N

(π

n

)
=

π

n
+

N − 1
2

(
2π

n

)
,

and hence this “radius to radius” configuration is simultaneously a “radius of
A to apothem of B” configuration. The latter configuration cannot be optimal
since then A would be contained in the inscribed circle of B. So the optimal
configuration occurs when −rN + sM is odd, which gives an “apothem of A
to radius of B” configuration. Since

M

2

(
2π

m

)
=

π

n
+

N − 1
2

(
2π

n

)
,

it follows that this configuration is at the same time “apothem to apothem”
as claimed.

It is now easily seen that in all cases the angle of incidence of the radius of A
which makes contact with B and the normal to the corresponding edge of B
is ±φmn, where

φmn =
πk

mn
. (4.1)

�
It is immediate that the optimal radius of A is

ρmn =
cos(π/n)
cos φmn

=
cos(π/n)

cos(πk/mn)
.

This is Eq. (3.1). The following corollary is also an immediate consequence of
Eq. (4.1).

Corollary 4.6. If k > 1 then A and B share a common axis of symmetry. The
number of common axes of symmetry is k.
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Corollary 4.7. If m|n then A and B have m points of contact, consisting of all
the vertices of A. If k > 1 and m does not divide n then the number of points
of contact is 2k.

Proof. The case m|n is trivial, so assume m does not divide n. The proof of
Theorem 4.5 shows that the points of contact are of two types: those sub-
tending an angle φmn (type φmn) and those subtending an angle −φmn (type
−φmn) with a midpoint of an edge of B. Now rotation through 2π/k is a com-
mon symmetry of both polygons, so there are at least k points of contact of
each type. On the other hand, any two points of contact of the same type must
subtend an angle at the centre that is a common multiple of 2π/m and 2π/n,
and hence is a multiple of 2π/k. So there are exactly k points of contact of
type φmn and k points of contact of type −φmn. �
Corollary 4.8. (a) If (i) m|n or (ii) n is an odd multiple of m/2 (including

n = m/2) then A is inscribed in B.
(b) If (i) n|m or (ii) m > n and m is an odd multiple of n/2 then there is at

least one, and at most two, point(s) of contact on every edge of B.

Proof.

(a) If m|n, we have seen in the proof of Proposition 4.4 that all the vertices of
A are also vertices of B. If n = m/2 then n|m so every edge of B contains
an edge of A, but this implies that A is inscribed in B since m = 2n. If
n > m and n is an odd multiple of m/2 then k = gcd(m,n) = m/2 and
so the number of points of contact is 2k, which is m. Since in this case
A and B do not share a vertex, it follows that every vertex of A is in
contact with an interior point of an edge of B.

(b) If n|m, we have seen in the proof of Proposition 4.4 that every edge of B
contains an edge of A, so there are two vertices of A on every edge of B.
If m > n and m is an odd multiple of n/2 then k = gcd(m,n) = n/2 and
so the number of points of contact is 2k, which is n. So n vertices of A
are in contact with B. Since in this case A and B do not share an edge or
a vertex, it follows that each edge of B contains exactly one vertex of A.

�
Corollary 4.9. Set m = pn + q, where 0 ≤ q < n and p = p∗, p∗ + 1, . . ., where
p∗ is the smallest integer such that p∗n + q ≥ 3. Then for fixed n and q and
p = p∗, p∗ + 1, . . . we have the following:

(a) The sequence {ρpn+q,n} is monotone decreasing with limit cos(π/n) (see
Eq. (2.2)).

(b) For q = 0 (so n|m), the ratio of areas {Rpn+q,n} is a monotone decreasing
sequence, with limit R∞n (see Eq. (2.2)).

(c) For q > 0, the sequence {Rpn+q,n} is monotone increasing with
limit R∞n.

Proof. We note that k = gcd(q, n) and is fixed as p varies. The proof of (a)
is immediate, by inspection of Eq. (3.1) as m increases for fixed n and k. To
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prove (b), note that k = n so

Rmn =
m

n

sin(2π/m)
sin(2π/n)

cos2 π/n

cos2 π/m
=

m

n

tan(π/m)
tan(π/n)

. (4.2)

Define α = π/m, so α ∈ (0, π/3] for m ≥ 3 and Rmn ∝ R′ ≡ tan α/α. Then

dR′

dα
=

α sec2 α − tan α

α2
=

2α − sin(2α)
2α2 cos2 α

≥ 0. (4.3)

Hence Rmn is a decreasing function of α as α ↓ 0. To prove (c), we employ a
similar argument. We define β = k/n. Then

Rmn =
m

n

sin(2π/m)
sin(2π/n)

cos2(π/n)
cos2(πβ/m)

. (4.4)

Then Rmn ∝ R′′ ≡ sin(2α)/α cos2(αβ). We now establish that dR′′/dα < 0,
noting that β is fixed, β ∈ (0, 1

2 ], sin(αβ) < sin α and cos(αβ) > cos α. Then

dR′′

dα
=

2 cos(2α)
α cos2(αβ)

− sin(2α)
α2 cos2(αβ)

+
2β sin(2α) sin(αβ)

α cos3(αβ)

<
2 cos(2α)

α cos2(αβ)
− sin(2α)

α2 cos2(αβ)
+

sin(2α) sin α

α cos α cos2(αβ)

=
2(α − tan α) cos2 α

α2 cos2(αβ)
< 0. (4.5)

Hence Rmn is a increasing function of α as α ↓ 0. In all cases, the limits as
m → ∞ are obvious. �
Remark 4.10. It may be of interest to observe that Corollary 4.9 implies the
following consequence for dense packings of identical regular polygons in the
plane. In the special case n = 6 and m = 6p (p = 1, 2, . . .), a packing of the
plane using identical regular (6p)-gons, arranged in a hexagonal tiling, has a
higher packing density than that of identical circles. The special case of 12-gons
is known as the ‘truncated hexagonal’ tiling. The proof is immediate, since for
p = 1, 2, . . ., the area ratio of the (6p)-gons is a monotone decreasing sequence
with limit equal to that of the inscribed circle of a hexagon.

5. Triangle in polygon (m = 3)

The following lemma is the key to our results in this section. (It is an applica-
tion of van Schooten’s theorem [4].)

Lemma 5.1. Let T1 and T2 be triangles with T2 ⊂ T1. Suppose that T1 and
T2 do not share a vertex. Then T2 may be moved (by an arbitrarily small
displacement) into the interior of T1.

Proof. If one vertex of T2 is contained in the interior of T1, then clearly we
may translate T2 slightly so that it is entirely contained in the interior of T1.
If T1 and T2 share an edge then we may translate T2 slightly, parallel to the
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shared edge, so that the third vertex moves into the interior of T1. So we may
assume that all three vertices of T2 lie on the interiors of the three edges of T1.

Suppose that two vertices of T2,A and B say, may slide slightly in both direc-
tions along sides of T1 which emanate from a vertex C′ of T1. Van Schooten’s
theorem [4] asserts that as A and B slide freely the third vertex C of T2 describes
a portion of an ellipse whose centre is the vertex C′ of T1. In particular, if the
third side A′B′ of T1 is tangential to this ellipse at C, then the ellipse and T1

will be on the same side of A′B′. So C will move into the interior of T1 as A
and B slide slightly away (in either direction) from their initial positions. On
the other hand, if A′B′ is transverse to the ellipse at C, then we may slide A
and B in one direction so that C moves into the interior of T1.

Finally, suppose that no two vertices of T2 may slide freely in both directions
along the corresponding sides of T1. This implies that each side of T2 is per-
pendicular to a corresponding side of T1. But then we may rotate T2 slightly
about any one of its vertices so that the other two vertices move into the
interior of T1. �
Proposition 5.2. Suppose that T is a triangle, P is a convex polygon, and
T ⊆ P . If T and P do not share a vertex or part of an edge then T may be
moved (by an arbitrarily small displacement) into the interior of P .

Proof. We may suppose as before that the vertices of T are interior points of
edges of P . Suppose that the three edges of P containing the vertices of T
may be extended to form a triangle (necessarily containing T ). By Lemma 5.1
we may move T into the interior of the larger triangle by an arbitrarily small
displacement. In particular, fixed small neighbourhoods of the vertices of T are
moved into the interior of P whenever the displacement is sufficiently small.
This implies, provided the displacement is sufficiently small, that the whole
of T will be moved into the interior of P . On the other hand, if two of the
edges diverge away from the third edge or are parallel, then we may translate
T slightly, parallel to one or other of the diverging edges and away from the
third edge, so that the vertex of T on the third edge moves into the interior of
P . �
The next corollary will be used in the case m = 4 and in the case of coprime
m and n considered below.

Corollary 5.3. Suppose that P1 and P2 are convex polygons with P2 ⊆ P1. If
P1 and P2 do not share a vertex or part of an edge and at most three verti-
ces of P2 are on edges of P1, then P2 may be moved (by an arbitrarily small
displacement) into the interior of P1.

Proof. Let T be a triangle formed by the vertices of P2 which are on edges of
P1 (if any) and any other vertices of P2 (if needed). By Proposition 5.2 we
may displace T slightly so that T moves into the interior of P1. Provided this
displacement is sufficiently small it follows that the displaced copy of P2 will
be contained in the interior of P1. �
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Corollary 5.4. Suppose that 3 = m < n. Then A and B share a vertex and a
common axis of symmetry through that vertex.

Proof. Clearly A and B cannot share part of an edge. By optimality, it is not
possible to move A into the interior of B. Hence by Proposition 5.2 A and B
share a vertex. Since A is equilateral and all its vertices lie on edges of B it
follows that A and B have a common axis of symmetry through the shared
vertex. �
The radius of A is straightforward to determine. We omit the details. We may
assume that n is of the form 3j ± 1 as the case where m is divisible by 3 is
covered by Theorem 4.5. In terms of the notation of Eq. (2.1), the radius for
n = 3j ± 1 is given by

ρ3n =
cos(π/n) + cos(π/3n ∓ π/3)
cos(π/3n) + cos(π/3n ∓ π/3)

. (5.1)

Since the polygons share a vertex, the optimal configurations are all “radius to
radius.” If n is odd, the optimal configurations are also “apothem to apothem.”

6. Polygon in triangle (n = 3)

Corollary 6.1. Suppose that 3 = n < m. Then A and B share an edge and
share the axis of symmetry perpendicular to that edge.

Proof. To derive a contradiction, suppose that A and B do not share an edge.
Clearly, A and B cannot share a vertex. But at most three vertices of A lie on
edges of B (since B is a triangle). Hence by Corollary 5.3 A may be moved
into the interior of B, contradicting optimality. Consider the axis of symme-
try of A through the midpoint of the shared edge. If that axis is translated
perpendicularly to the shared edge until it coincides with the parallel axis of
symmetry of B, then the half of A which moves towards the axis of symmetry
of B will (by convexity) remain contained in A. Hence, by symmetry, the other
half of A will also be contained in B after the translation. Now A and B share
an axis of symmetry. Clearly, this is the unique optimal configuration sharing
that edge. �
The radius of A is also straightforward to determine, and we again omit the
details. Clearly m must be of the form 3j ± 1. In terms of the notation of
Eq. (2.1), the answer is, setting j3 = [m/3] (the largest integer less than or
equal to m/3)

ρm3 =
3/2

cos(π/m) − 2 cos(π/m + 2πj3/m + π/3)
. (6.1)

Curiously, this formula also works if m is divisible by 3, i.e., it is applicable
for all m ≥ 3, for fixed n = 3. Since the polygons share an edge, the opti-
mal configurations are all “apothem to apothem.” If m is odd, the optimal
configurations are also “radius to radius.”
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7. Square A inside regular polygon B(m = 4, n > 4)

In this section we find the largest square A (i.e., m = 4) contained in a regular
polygon B with n > 4 sides. (The case n = 3 was considered above.) The con-
figurations considered will be shared-vertex, radius–apothem and apothem–
apothem. We assume n is odd, for otherwise m and n are both even, and the
solution is given by Theorem 4.5. Use Fig. 1 as a reference. (The square with a
shared vertex is optimal.) It shows shared-vertex and apothem–apothem con-
figurations (it is easy to visualize the radius–apothem case). The solution for
(m,n) = (4, 5) (square in pentagon) is shown in Fig. 2a. We shall show that
(m,n) = (4, 5) and (m,n) = (4, 9) are the only two cases where the optimal
solution has a shared vertex and only three points of contact.

By Corollary 5.3 if A and B do not share a vertex then every vertex of the
square A is a point of contact with B. It will first be shown that A and
B share a common axis of symmetry (which we henceforth take to be the
x-axis). Then we know that the optimal A will be one of these three candi-
dates: shared-vertex, radius–apothem, or apothem–apothem. Our goal is then
to find expressions for the radius of A in the three configurations and to deter-
mine which is the largest.

Figure 1 A square in a nonagon, i.e., (m,n) = (4, 9),
showing candidates for the shared-vertex and apothem–apo-
them configurations. The square with a shared vertex is opti-
mal
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(a) (b)

(c) (d)

Figure 2 Examples of square in polygon, i.e., m = 4, for
nonconcentric polygons, i.e., odd n. Here n = 5, 9, 7, 13 in a,
b, c and d respectively, where a and b demonstrate the two
exceptional cases where the polygons share a common vertex
(and the polygons have three points of contact). The cases
c and d are representative of all the other cases of odd n,
i.e., apothem–apothem configuration and four points of con-
tact (hence the square is inscribed in the outer polygon)

7.1. Proof of existence of common axis of symmetry

Definition 7.1. Let L1 and L2 be two straight lines in the complex plane
which pass through the origin and which are not perpendicular to each other.
For z ∈ C we define a non-negative function F (z) as follows. The positively
(resp. negatively) oriented perpendicular distance

√
F (z) from z to L1 and L2

is defined to be the common length of two perpendicular line segments of equal
length emanating from z and terminating on L1 and L2 in points x and y such
that the triangle with vertices (x, y, z) taken in that order is positively (resp.
negatively) oriented.

Lemma 7.2. If w0 �= 0 and w1 �= 0 then F (w0 + tw1) is a positive quadratic
function of t ∈ R.
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Proof. Assume without loss of generality that
√

F (z) is the positively oriented
perpendicular distance. Suppose L1 = {xa : x ∈ R} and L2 = {yb : y ∈ R}. For
z ∈ C, let x(z)a and y(z)b be the endpoints on L1 and L2 of the perpendicular
line segments of equal length emanating from z. Then

z =
x(z)a + y(z)b

2
+ i

(
y(z)b − x(z)a

2

)
(7.1)

and

F (z) = |z − x(z)a|2.
Provided b/a is not purely imaginary, i.e., provided L1 and L2 are not per-
pendicular to each other, Eq. (7.1) has a unique solution (x(z), y(z)) for each
z ∈ C. Setting z = w0 + tw1 in Eq. (7.1) and taking real and imaginary parts
we find that x(z) = mt + c for some m, c ∈ R. Hence

F (w0 + tw1) = |(w0 − ca) + t(w1 − ma)|2,
which is a positive quadratic function of t. �
Proposition 7.3. Suppose that A is the largest square contained in B. Then A
and B share an axis of symmetry.

Proof. We may assume n is odd. If A and B share a vertex, it is clear that
there is a common axis of symmetry through that vertex. So we may assume
that A and B do not share a vertex. It follows from Corollary 5.3 that every
corner of A lies on the interior of an edge of B.

Let us identify any fixed edge of B with the unit interval [0, 1]. As x increases
from 0 to 1 the corresponding point (also denoted x) on the edge of B moves
counterclockwise from one vertex to an adjacent vertex. From each point y on
B there is a unique pair of perpendicular chords of equal length emanating
from y whose endpoints p(y) and q(y) lie on edges of B. Let

√
F (y) be the

common length of these chords. Restricting attention to the edge [0, 1], there
exist 0 < x0 < x1 < 1, symmetrically placed about 1/2, such that p(x0) and
q(x1) are vertices of B. On each of the three subintervals [0, x0], [x0, x1], and
[x1, 1], we see that

√
F (x) is an oriented ‘perpendicular distance’ from the

point x to the pair of lines formed by extending the edges containing p(x) and
q(x). By Lemma 7.2 the restriction of F (x) to each subinterval is a positive
quadratic function. It follows that in each subinterval F (x) has at most one
stationary value which is necessarily a local minimum. This implies that the
nonempty level sets of F (x) (0 ≤ x ≤ 1) consist of k ‘pairs’ (1 ≤ k ≤ 3) of
points symmetrically placed about 1/2. (Recall that a level set of a function
is the set of points at which the function assumes a prescribed value.) Let x∗

denote the other member of the pair containing x, i.e., the reflection of x in
1/2. (Note that x∗ = x if x = 1/2.)

Now consider the optimal square A. Note that F (y) takes the same value at
all four corners of A. The level set S corresponding to this common value
of F (y) consists of k pairs, where 1 ≤ k ≤ 3. First suppose k = 3, so that
S = {a, a∗, b, b∗, c, c∗}. We shall say that two points y1, y2 on B are of the
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same type if y2 is a rotation of y1 through an integer multiple of 2π/n, i.e.,, y1

and y2 are in the same relative positions on their respective edges.

Suppose that two adjacent corners x and y of A are of the same type, a, say.
Clearly, p(x) and p(y) are of the same type as each other, and q(x) and q(y)
are also of the same type as each other, and all are corners of A. But p(x) is of
type a and q(y) is also of type a since x and y are adjacent corners of type a.
So all four corners of A are of the same type. But this forces n to be divisible
by 4 since as we move around B from one corner of A to an adjacent corner of
A we always pass through the same number of vertices of B. This contradicts
our assumption that n is odd.

Next suppose that two diagonally opposite corners x and y of A are of the
same type a, say. Since p(x) and p(y) will also be of the same type, this forces
the other two corners of A to be of the same type, b say. So moving counter-
clockwise around A we pass through vertices of type abab in that order. But
this forces n to be even, since we move from an a type to a b type twice and
from a b type to an a type twice. This again contradicts our assumption that
n is odd.

So we have shown that no two corners of A are of the same type. Then since
S has six elements, it follows from the pigeon-hole principle that the types of
two corners of A must from a pair {a, a∗}, say. The perpendicular bisector of
the line joining these two corners will be a common axis of symmetry for A
and B.

The proofs in the cases k = 1 and k = 2 are easier. �

7.2. Shared-vertex

In all the calculations below, we place the origin at the centre of B and one ver-
tex of B at the coordinate location (1, 0). To calculate the radius of A, we begin
with the shared-vertex configuration. Label the vertices of B as j = 0, 1, 2, . . .
counting counterclockwise from j = 0 on the x-axis. Let the centre of A be at
(xsv, ysv). We know ysv = 0. The vertex at (1, 0) is a shared vertex (by defini-
tion). The vertex in the upper half-plane y > 0, is given by the intersection of
the straight lines x + y = 1 and (for some j > 0)

y − sin(2jπ/n)
x − cos(2jπ/n)

= − 1
tan((2j + 1)π/n)

.

Let the point of intersection be (x∗, y∗), and suppose it occurs for j = j∗. The
solution for y∗ is also the radius ρsv of A. It is easily seen that j∗ = [n/4],
i.e., the largest integer less than (or equal to) n/4, but equality never occurs
because n must be odd. If n = 4j∗ + 1 the radius is
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ρsv =
cos(π/n) + sin(π/2n)

cos(π/2n) + sin(π/2n)]
, (7.2)

whereas if n = 4j∗ + 3, the radius is

ρsv =
cos(π/n) − sin(π/2n)
cos(π/2n) − sin(π/2n)

.

Note that the formula for n = 4j∗ + 3 is obtained from the formula for
n = 4j∗ + 1 by reversing the sign of n (or sin(π/2n)).

7.3. Radius–apothem

We include this case just for completeness, although it is never optimal. For
the radius–apothem case (vertex of A touches midpoint of edge of B), let the
point of contact be on the negative x-axis, at x = − cos(π/n). The other points
of contact are at edges of B indexed by j∗∗ = [(n + 2)/4]. If n = 4j∗∗ + 1, the
radius is

ρra = [1 − sin(π/2n)][cos(π/2n) + sin(π/2n)].

If n = 4j∗∗ − 1, the radius is

ρra = [1 + sin(π/2n)][cos(π/2n) − sin(π/2n)].

We again simply reverse the sign of n (or sin(π/2n)).

7.4. Apothem–apothem

The final case is apothem–apothem. There are four points of contact. One point
of contact occurs at an edge of B indexed by j1 = [n/8]. For n = 4j1 + 1 =
5, 9, 13, 17, 21, . . ., the radius is

ρaa =
[1 − sin(π/2n)][cos(π/2n) + sin(π/2n)]

cos(π/4n)
. (7.3)

For n = 4j1 − 1 = 3, 7, 11, 15, 19, . . ., the radius is

ρaa =
[1 + sin(π/2n)][cos(π/2n) − sin(π/2n)]

cos(π/4n)
. (7.4)

As before, we reverse the sign of n (or sin(π/2n)). We see that for all odd n,
ρaa

ρra
=

1
cos(π/4n)

> 1.

Hence radius–apothem is never optimal. For n = 4j1 − 1 we furthermore have
that

ρra

ρsv
=

[1 + sin(π/2n)][cos(π/2n) − sin(π/2n)]2

cos(π/n) − sin(π/2n)

=
[1 + sin(π/2n)][1 − 2 cos(π/2n) sin(π/2n)]

[1 + sin(π/2n)][1 − 2 sin(π/2n)]

=
1 − 2 cos(π/2n) sin(π/2n)

1 − 2 sin(π/2n)
> 1.
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Hence ρaa > ρra > ρsv and so apothem–apothem is always the optimal
configuration for n = 4j − 1.

Next we compare apothem–apothem to the shared-vertex case for n = 4j + 1.
Recall that in this case (see Eq. (7.2))

ρsv =
cos(π/n) + sin(π/2n)
cos(π/2n) + sin(π/2n)

.

Then

ρaa

ρsv
=

1
cos(π/4n)

[1 − sin(π/2n)][cos(π/2n) + sin(π/2n)]2

1 − 2 sin2(π/2n) + sin(π/2n)

=
1

cos(π/4n)
[1 − sin(π/2n)][1 + 2 sin(π/2n) cos(π/2n)]

[1 − sin(π/2n)][1 + 2 sin(π/2n)]

=
1

cos(π/4n)
1 + 2 sin(π/2n) cos(π/2n)

1 + 2 sin(π/2n)
.

Setting ξ = π/2n, we obtain

ρaa

ρsv
=

1
cos(ξ/2)

1 + 2 sin ξ cos ξ

1 + 2 sin ξ
=

g(ξ)
f(ξ)

,

where we define

f(ξ) = cos(ξ/2),

g(ξ) =
1 + 2 sin ξ cos ξ

1 + 2 sin ξ
.

Then f = g = 1 for ξ = 0. Also f and g take values in [0, 1] and are decreasing
functions of ξ for ξ ∈ [0, π/2]. In fact we need only consider n ≥ 3 so ξ ≤ π/6.
It is a matter of algebra to establish that ρaa/ρsv > 1 for n = 4j + 1 ≥ 13,
but ρaa/ρsv < 1 for n = 5 and 9. The graphs of f(ξ) (solid) and g(ξ) (dashed)
are plotted against 2ξ/π (i.e., 1/n) for 0 ≤ 1/n ≤ 0.25, in Fig. 3. There is
only one crossing point. The solutions for n = 5 and 9 are to the right of the
crossing point, as indicated in the figure; all other values of n = 4j + 1 are to
the left, i.e., f < g or ρaa > ρsv. To summarize, the optimal configurations are
“radius to radius” (with a shared vertex) for n = 5 and 9, and are “apothem
to apothem” for all other odd n ≥ 3 (and for n = 3 only, the polygons share
an edge).

8. Regular polygon A in square B (n = 4)

The case of n = 4, a regular polygon in a square, was solved by Dureisseix
[3]. He showed that the optimal polygon A shares an axis of symmetry with
a diagonal of the square B (for any m). The solution for even m is a special
case of our general solution for gcd(m,n) > 1. If m is odd then m and n are
coprime. In terms of the notation of Eq. (2.1), the optimal radius of A is (see
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Figure 3 Graphical solution to aid in the determination of
the optimum for the shared-vertex and apothem–apothem
configurations for a square in a polygon, for nonconcentric
polygons. Here ξ = π/2n and the functions f(ξ) (solid) and
g(ξ) (dashed) are defined in the text

also the top row of Table 1 in [3])

ρm4 =
1√

2 cos(π/2m) cos(π/4m)
. (8.1)

All of the optimal configurations are “radius to radius.” In the case m = 3
(triangle in square) the polygons share a common vertex, but for m ≥ 5 the
polygons do not share any common vertices.

9. General solution for coprime m and n

We treat the general case of coprime m and n. Now the optimal polygons
are never concentric. It is convenient to define Δ := π/mn for later use
below. Then there always exists a pair of symmetry axes, of A and B respec-
tively, such that the angle between them, say θ, lies in the interval θ ∈ [0,Δ].
We now state a crucial assumption, which we have unfortunately not succeeded
in proving.

Assumption 9.1. For a fixed relative orientation θ ∈ (0,Δ) of the polygons, the
largest regular m-gon contained in the polygon B has at most three points of
contact with B, all of which lie on interior points of edges of B
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(a) (b)

(c) (d)

Figure 4 Examples of concentric polygons demonstrating
radius–radius and apothem–apothem configurations, a
(m,n) = (6, 8): k = gcd(m,n) = 2,m/k = odd, n/k = even,
radius–radius, b (m,n) = (12, 9): k = gcd(m,n) = 3,m/k =
even, n/k = odd, apothem–apothem, c (m,n) = (9, 12):
k = gcd(m,n) = 3,m/k = odd, n/k = even, radius–radius, d
(m,n) = (15, 9): k = gcd(m,n) = 3,m/k = odd, n/k = odd,
simultaneous radius–radius and apothem–apothem

It then follows by Corollary 5.3 that the optimal polygon A cannot have an
orientation θ ∈ (0,Δ). The largest regular m-gon in B must have an orienta-
tion either θ = 0 or θ = Δ. (In both of the above cases the polygons A and
B share a common symmetry axis.) Numerical searches have not revealed any
counterexamples to the above assumption, but we have no explicit proof. For
the record we state the answer as a conjecture, without proof. All of the results
proved above for m = 3, n = 3,m = 4 (and n = 4 by Dureisseix [3]), as well
as Daley’s results for m = n ± 1 [2], are special cases of the results below.

The largest A in B always shares a symmetry axis with B, and its centre lies
on that common symmetry axis. Orient A and B such that a radius of A is
aligned with an apothem of B. Denote this orientation by θ = 0. There is
another possible orientation, where a radius of A makes an angle of Δ with
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(a) (b)

(c) (d)

Figure 5 Examples of concentric polygons demonstrating
the configurations in Corollary 4.8: a (m,n) = (4, 12): m|n,
all vertices of the inner polygon are vertices of the outer poly-
gon, b (m,n) = (12, 4): n|m, every edge of the outer polygon
contains an edge of the inner polygon, c (m,n) = (8, 12):
n is an odd multiple of m/2, no shared edges or vertices, d
(m,n) = (12, 8): m > n and m is an odd multiple of n/2. In
a and c the inner polygon is inscribed in the outer, while in
b and d every edge of the outer polygon contains at least one
vertex of the inner polygon

an apothem of B (denote this orientation by θ = Δ). (In this latter case
the common symmetry axes may be radius–radius, apothem–radius or apo-
them–apothem.) Because m and n are coprime, there exist unique integers
1 ≤ i1 < m and 1 ≤ j1 < n such that j1m− i1n = 1. One can show that either
(i) both i1 < m/2 and j1 < n/2, or else (ii) both i1 > m/2 and j1 > n/2.
Then define integers 1 ≤ i∗ < m/2 and 1 ≤ j∗ < n/2 such that

(i∗, j∗) =
{

(i1, j1) if i1 < m/2, j1 < n/2
(m − i1, n − j1) if i1 > m/2, j1 > n/2.

(9.1)
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(a) (b)

(c) (d)

Figure 6 Examples of polygon in triangle, i.e., n = 3,
demonstrating shared edge, where m = 7, 8, 9, 10 in a–d
respectively. For m = 9 the polygons are concentric (and share
three edges), but for m not divisible by 3 the polygons are
not concentric and share only one edge. For even m (b and d)
the configurations are apothem–apothem. For odd m (a and
c) the configurations are simultaneously radius–radius and
apothem–apothem

Then there exist integers μ and ν which simultaneously satisfy all of the
following inequalities:

μ ≤ m

4i∗
≤ μ + 1, μ ≤ n

4j∗
≤ μ + 1, (9.2)

and

ν − 1
2

≤ m

4i∗
≤ ν +

1
2
, ν − 1

2
≤ n

4j∗
≤ ν +

1
2
. (9.3)

Solutions for μ and ν always exist. (One can also show that either ν = μ or
μ+1.) Since i∗ < m/2 and j∗ < n/2, we must have ν ≥ 1. However if i∗ > m/4
or j∗ > n/4 (which can happen), then we have μ = 0. If μ = 0, then the opti-
mal orientation is always θ = Δ and the radius ρmax of the largest polygon A
contained in B is
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(a) (b)

(c) (d)

Figure 7 Examples of nonconcentric polygons demonstrat-
ing radius–radius and apothem–apothem configurations, and
also an example which is neither radius–radius nor apothem–
apothem. (Similar in concept to Fig. 4, but for nonconcentric
polygons.) a (m,n) = (3, 7): simultaneous radius–radius and
apothem–apothem (also nonconcentric inscribed polygon with
shared vertex), b (m,n) = (5, 4): radius–radius, c (m,n) =
(7, 6): apothem–apothem, d (m,n) = (11, 5): neither radius–
radius nor apothem–apothem. The common bisector is the x
axis in a and b and is the y axis in c and d. Note that in c
there are four points of contact; the top vertex of the hepta-
gon is not in contact with the top edge of the hexagon. Also
in d there are four contacts; the bottom vertex of the inner
polygon is not in contact with the bottom edge of the outer
polygon. Note that Figs. 2 and 6 and also display examples of
nonconcentric polygons, possibly with a shared edge or vertex

ρmn =
cos(π/n)

cos Δ
1 − cos(2j∗π/n)

cos(2Δ) − cos(2j∗π/n)
. (9.4)

If μ > 0 the solution is more complicated. Define
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ρ0 =
2 cos(π/n) sin(j∗π/n) sin((2μ + 1)j∗π/n)

cos(2(μ + 1)Δ) cos(2μj∗π/n) − cos(2μΔ) cos(2(μ + 1)j∗π/n)
, (9.5)

ρΔ =
2 cos(π/n) sin(j∗π/n) sin(2νj∗π/n)

cos((2ν + 1)Δ) cos((2ν − 1)j∗π/n) − cos((2ν − 1)Δ) cos((2ν + 1)j∗π/n)
.

(9.6)

The radius ρmn of the largest polygon A contained in B is the larger of these
two values:

ρmn = max { ρ0, ρΔ } . (9.7)

If it is the former, then the orientation is θ = 0, if the latter then it is θ = Δ.
In the statements below, B is fixed to have unit radius (as always), and the
“optimal polygon” refers to A.

• The optimal polygon A is unique, up to trivial rotations and reflections.
If μ = 0, the orientation of the optimal polygon A is always θ = Δ. If
μ > 0, we have not found a simple rule to determine the orientation of
the optimal polygon A.

• For m = 3 (triangle in polygon), the polygons always share a common
vertex. For m = 4 (square in polygon), the polygons share a common
vertex for n = 5 and n = 9. There are no other cases (for coprime m and
n) with a shared vertex.

• For n = 3 (polygon in triangle), the polygons always share a common
edge. There are no other cases (for coprime m and n) with a shared edge.

• Except for cases of shared vertices or edges, the polygons always have
four points of contact, consisting of vertices of A touching interior points
of edges of B. If we define the common symmetry axis as the x-axis (with
the origin at the centre of B) there is exactly one contact point in each
of the four quadrants.

• Recall that for gcd(m,n) > 1 the optimal configurations are always
“apothem–apothem” or “radius–radius” or both. This is not always the
case for coprime m and n; optimal solutions do exist where no radius
(resp. apothem) of A is aligned with a radius (resp. apothem) of B. This
happens, for example, for m = n ± 6. See Fig. 7d, for an example with
(m,n) = (11, 5).

• Let us write m = pn+q where 0 < q < n and p ≥ 0. Fix n and q, then the
values of j∗, μ and ν are independent of p. Define p∗ to be the smallest
integer such that p∗n + q ≥ 3. Then for p = p∗, p∗ + 1, . . ., the sequence
{ ρpn+q,n } is strictly decreasing with limit cos(π/n), which is the radius
of the inscribed circle of B. If the orientation θ = 0 is optimal for p = p∗,
it remains so for all p > p∗. Also if the orientation θ = Δ is optimal for
p = p∗, it remains so for all p > p∗. For the ratio of areas, numerical
calculations indicate that in all cases the ratio increases monotonically
as m increases, for fixed n and q.
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10. Graphs of illustrative examples

Several figures are presented in the text, to illustrate the various cases we have
studied in this paper.
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