
J. Math. Anal. Appl. 348 (2008) 66–86
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Coefficient quantization for frames in Banach spaces ✩

P.G. Casazza a, S.J. Dilworth b, E. Odell c, Th. Schlumprecht d,∗, A. Zsák e

a Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
b Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
c Department of Mathematics, The University of Texas, 1 University Station C1200, Austin, TX 78712, USA
d Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
e School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 November 2007
Available online 10 July 2008
Submitted by R.H. Torres

Keywords:
Coefficient quantization
Banach spaces
Frames
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1. Introduction

Hilbert space frames provide a crucial theoretical underpinning for compression, storage and transmission of signals be-
cause they provide robust and stable representation of vectors. They also have applications in mathematics and engineering
in a wide variety of areas including sampling theory [1], operator theory [17], harmonic analysis [15], nonlinear sparse
approximation [9], pseudo-differential operators [16], and quantum computing [10].

In many situations it is useful to think of a signal as being a vector x in a Hilbert space and being represented as a
(finite or infinite) sequence (〈xi, x〉)∞i=1, where (xi) is a frame, i.e. a sequence in H which satisfies for some 0 < a � b,

a‖x‖2 �
∑∣∣〈xi, x〉∣∣2 � b‖x‖2, whenever x ∈ H . (1)

Since the sequence (xi) does not have to be (and usually is not) a basis for H , the representation of an x ∈ H as the sequence
(〈xi, x〉)∞i=1 includes some redundancy, which, for example, can be used to correct errors in transmissions [13]. Using a
Hilbert space as the underlying space has, inter alia, the advantage of an easy reconstruction formula. Nevertheless, there
are circumstances which make it necessary to leave the confines of a Hilbert space, and generalize frames to the category
of Banach spaces. One such instance occurs when we wish to replace the frame coefficients by quantized coefficients, i.e. by
integer multiples of a given δ > 0.

An example of such a situation is described by Daubechies and DeVore in [6]: Let f ∈ L2(−∞,∞) be a band-limited
function, to wit, the support of the Fourier transform f̂ is contained in [−Ω,Ω] for some Ω > 0. For simplicity we assume
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that Ω = π . Now we can think of f̂ as an element of L2[−π,π ], write f̂ on [−π,π ] as a series in e−inx , n ∈ Z, and apply
the inversion formula for the Fourier transform. This leads to the sampling formula

f (x) =
∑
n∈Z

f (n)
sin(xπ − nπ)

xπ − nπ
, x ∈ R.

This series converges ‘badly.’ In particular it is not absolutely convergent in general. Therefore we consider some λ > 1 and
think of the space L2[−π,π ] as being embedded (in the natural way) into L2[−λπ,λπ ]. The family of functions (e−inx/λ)n∈Z

forms an orthogonal basis for L2[−λπ,λπ ], and it can be viewed as a frame for the ‘smaller’ space L2[−π,π ] (see Sec-
tion 2). We write f̂ (ξ) = √

2πρ̂(ξ) · f̂ (ξ), where ρ̂ : R → [0,1/
√

2π ] is C∞ , ρ̂|[−π,π ] ≡ 1/
√

2π , and ρ̂|(−∞,λπ ]∪ [λπ,∞) ≡ 0.

Now we can express f̂ on [−λπ,λπ ] as a series in (e−inx/λ) and apply the inverse transform once again. This leads to the
expansion

f (x) = 1

λ

∑
n∈Z

f

(
n

λ

)
ρ

(
x − n

λ

)
, x ∈ R,

which not only converges faster, but is also absolutely unconditionally convergent, since ρ̂ is C∞ , and, thus, ρ and all its
derivatives are in L1(R).

Now assume that ‖ f ‖L∞ � 1 (note that bandlimited functions are bounded in L∞). It was shown in [6] that the Σ − Δ-
quantization algorithm can be used to find a sequence (qn)n∈Z ⊂ {−1,1} for which∣∣∣∣ f (x) − 1

λ

∑
n∈Z

qnρ

(
x − n

λ

)∣∣∣∣� 1

λ
‖ρ ′‖L1 , for x ∈ R.

This means that our approximation does not hold in L2 (and it need not for the applications at hand) but it does hold in
the Banach space L∞ (in fact in C(R)).

We consider therefore a signal to be an arbitrary vector x in a Banach space X and ask if there is a dictionary (ei),
e.g. some sequence (ei) whose span is dense in X , so that x can be approximated in norm, up to some ε > 0, by a linear
combination of the ei ’s using only coefficients from a discrete alphabet, i.e. the integer multiples of some given δ. The case
that (ei) is a non-redundant system, for example a basis, or, more generally, a total fundamental minimal system, was treated
in [8]. It was shown there, for example, that if (ei) is a semi-normalized fundamental and total minimal system which has
the property that for some ε, δ > 0 every vector of the form x =∑i∈E aiei , with E ⊂ N finite, can be ε-approximated by a
vector x̃ =∑i∈E δkiei , with (ki) ⊂ Z, then (ei) must have a subsequence which is either equivalent to unit-vector basis of c0,
or to the summing basis for c0. Conversely, every separable Banach space X containing c0 admits such a total fundamental
minimal system.

In this work we will concentrate on redundant dictionaries. Our model for redundant dictionaries will be frames in
Banach spaces. In Section 2 we shall recall their definition and make some elementary observations. Before we tackle
the problem of coefficient quantization with respect to frames, we first have to ask ourselves what exactly we mean by
a meaningful coefficient quantization. In Section 3 we recall the notion Net Quantization Property (NQP) as introduced for
fundamental systems in [8]. We shall then present several examples of systems which formally satisfy the NQP, but on the
other hand clearly do not accomplish the goals of quantization, namely data compression and easy reconstruction. These
examples will lead us to a notion of quantization which is more restrictive, and more meaningful, in the case of redundant
systems.

In Section 4 we ask under which circumstances one can approximate a vector in a Banach space X by a vector with
quantized coefficients which are bounded in some associated sequence space Z with a basis (zi) (see Definition 4.1). If (zi)

has nontrivial lower estimates this is only possible if one reconciles with the fact that the length of the frame increases
exponentially with the dimension of the underlying space. We shall show this type of quantization cannot happen if (zi)

satisfies nontrivial lower and upper estimates. The proof of these facts utilizes volume arguments and must therefore be
formulated first in the finite dimensional case. An infinite dimensional argument proves directly that the associated space Z
with a semi-normalized basis (zi) cannot be reflexive. In particular, there is no semi-normalized frame (xi) for an infinite
dimensional Hilbert space so that for some choice of 0 < ε, δ < 1 and C � 1, every x ∈ H , ‖x‖ = 1, can be ε-approximated
by a vector x̃ =∑ δki xi , with (ki) ⊂ Z and

∑
δ2k2

i � C .
In Section 5 we consider conditions under which an n-dimensional space admits, for given ε, δ > 0 and C � 1, a finite

frame (xi)
N
i=1, so that every element in the zonotope {∑N

i=1 ai xi: |ai | � 1} can be ε-approximated by some element from

{∑N
i=1 δki xi: ki ∈ Z, |ki | � C/δ}. Using results from convex geometry we shall show that this is only possible for spaces

X with trivial cotype. Among others, we provide an answer to a question raised in [8] and prove that �1 does not have a
semi-normalized basis with the NQP.

In the final section we will state some open problems.
All Banach spaces are considered to be spaces over the real field R. S X and B X , denote the unit sphere and the unit ball

of a Banach space X , respectively. For a set S we denote by c00(S), or simply c00, if S = N, the set of all families x = (ξs)s∈S

with finite support, supp(x) = {s ∈ S: ξs �= 0}. The unit vector basis of c00, as well as the unit vector basis of �p , 1 � p < ∞,
and c0 is denoted by (ei).
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A Schauder basis, or simply a basis, of a Banach space X is a sequence (xn), which has the property that every x can be
uniquely written as a norm converging series x =∑ai xi . It follows then from the Uniform Boundedness Principle that the
coordinate functionals (x∗

n), x∗
n : X → R,

∑
ai xi �→ an are bounded (cf. [11]) and the projections Pn , with

Pn : X → X, x =
∑

ai xi �→
n∑

i=1

ai xi, for n ∈ N

are continuous and uniformly bounded in the operator norm. We call C = supn∈N ‖Pn‖ the basis constant of (xi) and K =
sup0�m�n ‖Pn − Pm‖ (P0 ≡ 0) the projection constant of (xi). Note that C � K � 2C . We call (xn) monotone if C = 1 and
bimonotone if also K = 1. A basis (xn) is called unconditional if for any x ∈ X the unique representation x =∑anxn converges
unconditionally. This is equivalent (cf. [11]) to the property that for all (ai) ∈ c00

Ku = sup
{∥∥∥∑±ai xi

∥∥∥:
∥∥∥∑ai xi

∥∥∥= 1
}

< ∞.

If X is a finite dimensional space we can represent it isometrically as (Rn,‖ · ‖) where ‖ · ‖ is a norm function on Rn .
With this representation we consider the Lebesgue measure of a measurable set A ⊂ Rn and denote it by Vol(A). Of course
Vol(A) depends on the representation of X . Nevertheless, if we only consider certain ratios of volumes this is not the
case. Therefore, the quotient Vol(A)/Vol(B) is well defined even in abstract finite dimensional spaces without any specific
representation.

2. Frames in Hilbert spaces and Banach spaces

In this section we give a short review of the concept of frames in Banach spaces, and make some preparatory observa-
tions. Let us start with the well known notion of Hilbert space frames.

Definition 2.1. Let H be a (finite or infinite dimensional) Hilbert space. A sequence (x j) j∈J in H , J = N or J = {1,2, . . . , N},
for some N ∈ N, is called a frame of H or Hilbert frame for H if there are 0 < a � b < ∞ so that

a‖x‖2 �
∑
j∈N

∣∣〈x, x j〉
∣∣2 � b‖x‖2 for all x ∈ H . (2)

For a frame (x j) j∈J of H we consider the operator

Θ : H → �2(J), x �→ (〈x, x j〉
)

j∈J
,

its adjoint

Θ∗ : �2(J) → H, (ξ j) j∈J �→
∑
j∈J

ξ j x j

and their product

I = Θ∗ ◦ Θ : H → H, x �→
∑
j∈J

〈x, x j〉x j .

Since

a‖x‖2 �
∑
j∈N

∣∣〈x, x j〉
∣∣2 =

〈
x,
∑
j∈N

〈x, x j〉x j

〉
= 〈x, I(x)

〉
� b‖x‖2,

I is a positive and invertible operator with a IdH � I � b IdH and thus,

x = I−1 ◦ I(x) =
∑
j∈N

〈x, x j〉I−1(x j), or

x = I ◦ I−1(x) =
∑
j∈N

〈
I−1(x), x j

〉
x j =

∑
j∈N

〈
x, I−1(x j)

〉
x j .

For an introduction to the theory of Hilbert space frames we refer the reader to [2] and [4]. We follow [17] and [5] for
the generalization of frames to Banach spaces.

Definition 2.2 (Schauder frame). Let X be a (finite or infinite dimensional) separable Banach space. A sequence (x j, f j) j∈J ,
with (x j) j∈J ⊂ X , ( f j) j∈J ⊂ X∗ , and J = N or J = {1,2, . . . , N}, for some N ∈ N, is called a (Schauder) frame of X if for every
x ∈ X

x =
∑

f j(x)x j . (3)

j∈J
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In case that J = N, we mean that the series in (3) converges in norm, i.e. that x = limn→∞
∑n

j=1 f j(x)x j .
An unconditional frame of X is a frame (xi, f i)i∈N for X for which the convergence in (3) is unconditional.
We call a frame (xi, f i) bounded if

sup
i

‖xi‖ < ∞ and sup
i

‖ f i‖ < ∞,

and semi-normalized if (xi) and ( f i) are semi-normalized, i.e. if 0 < infi ‖xi‖ � supi ‖xi‖ < ∞ and 0 < infi ‖ f i‖ �
supi ‖ f i‖ < ∞.

In the following remark we make some easy observations.

Remark 2.3. Let (xi, f i)i∈N be a frame of X .

(a) If infi∈N ‖xi‖ > 0, then f i
w∗−−→ 0 as i → ∞.

(b) Using the Uniform Boundedness Principle we deduce that

K = sup
x∈B X

sup
m�n

∥∥∥∥∥
n∑

i=m

fi(x)xi

∥∥∥∥∥< ∞.

This implies that if infi∈N ‖xi‖ > 0 then ( f i) is bounded and if infi∈N ‖ f i‖ > 0 then (xi) is bounded.
We call K the projection constant of (xi, f i). The projection constant for finite frames is defined accordingly.

(c) For all f ∈ X∗ and x ∈ X it follows that

f (x) = f

( ∞∑
i=1

f i(x)xi

)
=

∞∑
i=1

f i(x) f (xi) = lim
n→∞

(
n∑

i=1

f (xi) f i

)
(x),

and, thus,

f = w∗ −
∞∑

i=1

f (xi) f i .

Moreover, for m � n in N it follows that∥∥∥∥∥
n∑

i=m

f (xi) f i

∥∥∥∥∥= sup
x∈B X

∣∣∣∣∣
n∑

i=m

f (xi) f i(x)

∣∣∣∣∣� ‖ f ‖ sup
x∈B X

∥∥∥∥∥
n∑

i=m

fi(x)xi

∥∥∥∥∥� K‖ f ‖, (4)

and ∥∥∥∥∥
∞∑

i=m

f (xi) f i

∥∥∥∥∥= sup
x∈B X

∣∣∣∣∣
∞∑

i=m

f (xi) f i(x)

∣∣∣∣∣= sup
x∈B X

f

( ∞∑
i=m

fi(x)xi

)
. (5)

(d) If (xi, f i) is an unconditional frame it follows from the Uniform Boundedness Principle that

Ku = sup
x∈B X

sup
(σi)⊂{±1}

∥∥∥∑σi f i(x)xi

∥∥∥< ∞.

We call Ku the unconditional constant of (xi, f i).

The following proposition is a slight variation of [5, Theorem 2.6].

Proposition 2.4. Let X be a separable Banach space and let (xi)i∈J ⊂ X and ( f i)i∈J ⊂ X∗ , with J = N or J = {1,2, . . . , N} for some
N ∈ N.

(a) (xi, f i)i∈J is a Schauder frame of X if and only if there is a Banach space Z with a Schauder basis (zi)i∈J and corresponding coor-
dinate functionals (z∗

i ), an isomorphic embedding T : X → Z and a bounded linear surjective map S : Z → X, so that S ◦ T = IdX

(i.e. X is isomorphic to a complemented subspace of Z ), and S(zi) = xi , for i ∈ J, and T ∗(z∗
i ) = f i , for i ∈ J, with xi �= 0.

Moreover S and T can be chosen so that ‖S‖ = 1 and ‖T ‖ � K , where K is the projection constant of (xi, f i), and (zi) can be
chosen to be a bimonotone basis with ‖zi‖ = ‖xi‖ if i ∈ J, with xi �= 0.

(b) (xi, f i)i∈J is an unconditional frame of X if and only if there is a Banach space Z with an unconditional basis (zi) and correspond-
ing coordinate functionals (z∗

i ), an isomorphic embedding T : X → Z and a surjection S : Z → X, so that S ◦ T = IdX , S(zi) = xi ,
for i ∈ J, and T ∗(z∗

i ) = f i for i ∈ J, with xi �= 0.
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Proof. (a) Part “⇒.” Assume that (xi, f i)i∈J is a frame of X and let K be the projection constant of (xi, f i)i∈J . We put
J̃ = {i ∈ J: xi �= 0}, denote the unit vector basis of c00(J) by (zi) and define on c00(J) the following norm ‖ · ‖Z :∥∥∥∥∑

i∈J

ai zi

∥∥∥∥
Z

= max
m�n

∥∥∥∥ ∑
i∈J̃∩{m,m+1,...,n}

ai xi

∥∥∥∥
X

+
( ∑

i∈J\J̃

a2
i

)1/2

for (ai) ⊂ R. (6)

It follows easily that (zi) is a bimonotone basic sequence and, thus, a basis of the completion of c00(J) with respect to ‖ ·‖Z ,
which we denote by Z .

The map

S : Z → X,
∑

a j z j �→
∑

a j x j,

is linear and bounded with ‖S‖ = 1. Secondly, define

T : X → Z , x =
∑
i∈J

f i(x)xi =
∑
i∈J̃

f i(x)xi �→
∑
i∈J̃

f i(x)zi .

Remark 2.3 (b) yields for x ∈ X∥∥∥∥∑
i∈J̃

f i(x)zi

∥∥∥∥
Z

= sup
m�n

∥∥∥∥ ∑
i∈J̃∩{m,m+1,...,n}

f i(x)xi

∥∥∥∥
X

= sup
m�n

∥∥∥∥ ∑
i∈J∩{m,m+1,...,n}

f i(x)xi

∥∥∥∥
X

� K‖x‖,

and, thus, that T is linear and bounded with ‖T ‖ � K . Clearly it follows that S ◦ T = IdX , which implies that T is an
isomorphic embedding and that S is a surjection. Finally, if (z∗

i ) are the coordinate functionals of (zi) we deduce for x ∈ X
and i ∈ J that

T ∗(z∗
i

)
(x) = z∗

i

(
T (x)
)= { f i(x) if xi �= 0,

0 if xi = 0,

which finishes the proof of “ ⇒.”
In order to show the converse in (a), assume that Z is a space with a basis (zi)i∈J and that S : Z → X is a bounded

linear surjection, and T : X → Z an isomorphic embedding, with S ◦ T = IdX . Put xi = S(zi) and f i = T ∗(z∗
i ), for i ∈ J. Then

for x ∈ X ,

x = S ◦ T (x) = S

(∑
z∗

i

(
T (x)
)
zi

)
=
∑

T ∗(z∗
i

)
(x)S(zi) =

∑
f i(x)xi,

which implies that (xi, f i)i∈J is a frame of X .
For the proof of (b) we replace (6) by∥∥∥∥∑

i∈J

ai zi

∥∥∥∥
Z

= max
(σi)⊂{±1}

∥∥∥∥∑
i∈J̃

σiai xi

∥∥∥∥
X

+
( ∑

i∈J\J̃

a2
i

)1/2

(7)

and note that arguments similar to those in the proof of (a) yield (b). �
Definition 2.5. Let (xi, f i) be a frame of a Banach space X and let Z be a space with a basis (zi) and corresponding
coordinate functionals (z∗

i ). We call (Z , (zi)) an associated space to (xi, f i) or a sequence space associated to (xi, f i) and (zi) an
associated basis, if

S : Z → X,
∑

ai zi �→
∑

ai xi and T : X → Z , x =
∑

f i(x)xi �→
∑
xi �=0

f i(x)zi

are bounded operators. We call S the associated reconstruction operator and T the associated decomposition operator or analysis
operator.

In this case, following [14] we call the triple ((xi), ( f i), Z) an atomic decomposition of X .

Remark 2.6. By Proposition 2.4 the property of Banach space X to admit a frame is equivalent to the property of X being
isomorphic to a complemented subspace of a space Z with basis. It was shown independently by Pełczyński [26] and
Johnson, Rosenthal and Zippin [19] (see also [3, Theorem 3.13]) that the latter property is equivalent to X having the
Bounded Approximation Property. X is said to have the Bounded Approximation Property if there is a λ � 1, so that for every
ε > 0 and every compact set K ⊂ X there is a finite rank operator T : X → X with ‖T ‖ � λ so that ‖T (x)− x‖ � ε whenever
x ∈ K .
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Remark 2.7. Let (x j) j∈J be a Hilbert frame of a Hilbert space H and let Θ and I be defined as in the paragraph following
Definition 2.1. We choose Z to be �2(J), S = Θ∗ and

T = Θ ◦ I−1 : H → �2, x �→
∑
j∈J

〈
I−1(x), x j

〉
e j =

∑
j∈J

〈
x, I−1(x j)

〉
e j

and observe that S ◦ T = IdH , and for j ∈ J it follows that S(e j) = Θ∗(e j) = x j , and

T ∗(e j)(x) = 〈x, I−1(x j)
〉

(x ∈ H) and, thus T ∗(e j) = I−1(x j).

Thus, if (xi) is a Hilbert frame, then ((xi), (I−1(xi)) is a Schauder frame for which Z = �2(J) together with its unit vector
basis is an associated space.

Conversely, let (xi, f i) be a Schauder frame of a Hilbert space H and assume that Z = �2(J) with its unit vector basis is
an associated space. Denote by T : H → �2(J) and S : �2(J) → H the associated decomposition, respectively reconstruction
operator. Then it follows that for all x ∈ H∑

〈xi, x〉2 =
∑〈

S(ei), x
〉2 =

∑〈
ei, S∗(x)

〉2 = ∥∥S∗(x)
∥∥2

.

Thus, since S∗ is an isomorphic embedding of H into �2, it follows that (xi) is a Hilbert frame.

In the following observation we show that we can always expand a frame by a bounded linear operator.

Proposition 2.8. Let (xi, f i) be a frame of a Banach space X and let Z be a space with a basis (zi) which is associated to (xi, f i).
Furthermore assume that Y is another space with a basis (yi) and let V : Y → X be linear and bounded.

Let Zt = Z ⊕∞ Y (i.e. the product space Z × Y with the norm defined by ‖(z, y)‖∞ = max(‖z‖,‖y‖), for z ∈ Z and y ∈ Y ) and
define (z̃i) ⊂ Z̃ , (x̃i) ⊂ X and ( f̃ i) ⊂ X∗ by

z̃i =
{

(zi/2, λi/2 yi/2),

(z(i+1)/2,−λ(i+1)/2 y(i+1)/2),
x̃i =

{
xi/2 + λi/2 V (yi/2) if i even,

x(i+1)/2 − λ(i+1)/2 V (y(i+1)/2) if i odd,

f̃ i =
{

1
2 f i/2 if i even,
1
2 f(i+1)/2 if i odd,

where λ j = ‖z j‖/‖y j‖, for j ∈ N (for example z̃1 = z1 − ‖z1‖
‖y1‖ y1 and z̃2 = z1 + ‖z1‖

‖y1‖ y1). Then (x̃i, f̃ i) is a frame of X, (z̃i) is a basis

for Z̃ and ( Z̃ , (z̃i)) is an associated space for (x̃i, f̃ i).

Proof. Let T : X → Z and S : Z → X be the associated decomposition and reconstruction operator, respectively. Note that
the operators

S̃ : Z ⊕∞ Y → X, (z, y) �→ S(z) + V (y) and T̃ : X → Z ⊕∞ Y , x �→ (
T (x),0

)
are bounded and linear and that S̃ ◦ T̃ = IdX and S̃(z̃i) = x̃i , for i ∈ N. It is easy to verify that (z̃i) is a basis of Z̃ for which
its coordinate functionals (z̃∗

i ) are given by (denote the coordinate functionals of (yi) by (y∗
i ))

z̃∗
i =
{ 1

2 (z∗
i/2,

1
λi

y∗
i/2) if i even,

1
2 (z∗

(i+1)/2,− 1
λi

y∗
(i+1)/2) if i odd.

It follows for x ∈ X that

T̃ ∗(z̃∗
i )(x) = z̃∗

i (T̃ (x)) =
{

f i/2(x)/2 if i even,

f(i+1)/2(x)/2 if i odd

}
= f̃ i(x),

which yields T̃ ∗(z̃∗
i ) = f̃ i , for i ∈ N. Thus, the claim follows from Proposition 2.4. �

3. Three examples

In [8] the following notion of quantization was introduced and studied for non-redundant systems.

Definition 3.1. Let (xi)i∈J be a fundamental system for X , with J = N or J = {1,2, . . . , N}, for some N ∈ N

(i.e. span(xi: i ∈ J) = X ) and let ε > 0 and δ > 0 be given. We say that (xi)i∈J has the (ε, δ)-Net Quantization Property
(abbr. (ε, δ)-NQP) if for any x =∑i∈E ai xi ∈ X , E ⊂ J is finite, there exists a sequence (ki) ⊂ Z, supp(ki) = {i ∈ N: ki �= 0} is
finite, such that∥∥∥x −

∑
kiδxi

∥∥∥� ε. (8)

We say that (xi) has the NQP if (xi) has the (ε, δ)-NQP for some ε > 0 and δ > 0.
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When we ask whether or not in a certain representation of vectors the coefficients can be replaced by quantized coeffi-
cients, we are often interested in memorizing data as economically as possible, and reconstructing them with as little error
as possible. With this in mind, we will exhibit in this section three examples, all of which satisfy the conditions (NQP) if
we extend this notion word for word to frames. However, they show that it is not always meaningful to apply these notion
to redundant systems like frames. These examples will then also guide us to more appropriate quantization concepts for
frames in the next sections.

The first example (Example 3.2) is a tight Hilbert frame ( f i) in S�2 (i.e. a = b) consisting of normalized vectors so that
for every x ∈ �2 there is a sequence (ki) ⊂ Z so that ‖x −∑i∈N

ki f i‖ < 1. But these coefficients (ki) might get arbitrarily
large for elements in B�2 . This means that we would need an infinite alphabet to approximate vectors which are in B�2 .

The second example (Example 3.3) is a semi-normalized Hilbert frame ( f i) in �2 which has the property that for every
x ∈ �2 there is a sequence (ki) ⊂ Z, so that ‖x −∑i∈N ki f i‖ < 1 and (ki) has the additional property that maxi∈N |ki | � 1,
if x ∈ B�2 .

The third example (Example 3.4) is a Schauder frame ( f i) of �2 which has the property that for every x ∈ �2 there is a
sequence (ki) ⊂ Z, so that not only maxi∈N |ki | � ‖x‖ and ‖x −∑i∈N

ki f i‖ < 1, but so that also the support of (ki), i.e. the
set {i ∈ N: ki �= 0} is uniformly bounded.

However, in order to approximate even the vectors of a given finite dimensional subspace in Examples 3.3 and 3.4, we
need to use an overproportional number of elements of the frame. More precisely, in both examples the number of frame
elements we would need to approximate the elements of a finite dimensional subspace is not linear with respect to the
dimension.

Finally note that in all three cases we used the fact that a vector can be represented in more than one way by the
elements of the frame, unlike in the situation of bases.

Example 3.2. Let 0 < εi < 1/2. For i ∈ N define the following vectors f2i−1 and f2i in S�2 .

f2i−1 =
√

1 − ε2
i e2i−1 + εie2i and f2i = −εie2i−1 +

√
1 − ε2

i e2i .

Clearly ( f i) is an orthonormal basis for �2 and we let F = {ei: i ∈ N} ∪ { f i: i ∈ N}. Then F is a tight frame (as is any finite
union of orthonormal bases) and the sequence (zi) with

z2i−1 = e2i−1 − f2i−1 = (1 −
√

1 − ε2
i

)
e2i−1 − εie2i,

z2i = e2i − f2i = εie2i−1 + (1 −
√

1 − ε2
i

)
e2i, for i ∈ N,

is an orthogonal basis and ‖z2i−1‖ = ‖z2i‖ = O (εi). Thus, if (εi) converges fast enough to 0 it follows that for any x ∈ �2
there is a family (ki) ⊂ Z, with | supp(ki)| < ∞, so that∥∥∥x −

∑
ki zi

∥∥∥=
∥∥∥x −

∑
ki(ei − f i)

∥∥∥< 1.

Example 3.3. Our second example is a semi-normalized Hilbert frame (xi) in �2 so that

D =
{ ∞∑

i=1

ki xi: ki ∈ {−1,0,1} and {i: ki �= 0} is finite

}

is dense in B�2 .
Put (ci)

∞
i=1 = (1/2i) and partition the unit vector basis (ei) of �2 into infinitely many subsequences of infinite length, say

(e(i, j): i, j ∈ N). Then our frame ( fk) is defined to be the sequence:

f1 = c1e1 + e(1,1), f2 = e(1,1),

f3 = c1e2 + e(1,2), f4 = e(1,2), f5 = c2e1 + e(2,1), f6 = e(2,1),

f7 = c1e3 + e(1,3), f8 = e(1,3), f9 = c2e2 + e(2,2),

f10 = e(2,2), f11 = c3e1 + e(3,1), f13 = e(3,1),

f14 = c1e4 + e(1,4), f15 = e(1,4), . . . , f20 = c4e1 + e(4,1), f21 = e(4,1),

.

.

.

Note that the set of vectors x ∈ B�2 of the form

x =
∑

ε(i, j)cie j =
∑(

ε(i, j)
(
cie j + e(i, j)

)− ε(i, j)e(i, j)
)

i, j∈N i, j∈N
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where (ε(i, j)) ⊂ {−1,0,1} so that the set {i, j ∈ N: ε(i, j) �= 0} is finite, are dense in B�2 . This implies that every x ∈ B�2 is
the limit of vectors (xn) with

(xn) ⊂
{∑

εi f i: (εi) ⊂ {−1,0,1}, {i ∈ N: εi �= 0} is finite
}
.

The sequence ( fn) is a frame. Indeed for any x =∑ xiei ∈ �2 we have∑
〈 f i, x〉2 =

∑
i even

〈 f i, x〉2 +
∑

i odd

〈 f i, x〉2 =
∑

x2
i +
∑

i, j∈N

(
ci x j + 〈e(i, j), x

〉)2
⎧⎪⎨
⎪⎩

� ‖x‖2,

�
∑

x2
i +
∑

i, j∈N

2c2
i x2

j + 2
〈
e(i, j), x

〉2 �
(

3 + 2
∑

c2
i

)
‖x‖2.

Example 3.4. We construct a Schauder frame (xi, f i) of �2 so that (xn) is dense in B�2 .
Let (yn) be dense in B�2 and choose for each n ∈ N

x2n−1 = yn + en, x2n = yn, f2n−1 = en and f2n = −en.

Clearly, for every x ∈ �2

x =
∑

〈ei, x〉ei =
∑(〈 f2n−1, x〉x2n−1 + 〈 f2n, x〉x2n

)
(the above sum is conditionally converging). It follows that ((xn), ( fn)) is a Schauder frame of �2. It is clear that (xn) is not
a Hilbert frame.

4. Quantization with Z -bounded coefficients

One way one might avoid examples like the ones mentioned in Section 3 is to impose boundedness conditions on the
quantized coefficients within an associated space Z .

Definition 4.1. Assume (xi, f i)i∈J , J = N or J = {1,2, . . . , N}, for some N ∈ N, is a frame of a Banach space X . Let Z be a
space with basis (zi) which is associated to (xi, f i)i∈J . Let ε, δ > 0, C � 1.

We say that (xi, f i) satisfies the (ε, δ, C)-Net Quantization Property with respect to (Z , (zi)) or (ε, δ, C)–Z -NQP, if for all x ∈ X
there exists a sequence (ki)i∈J ⊂ Z with finite support so that∥∥∥∑kiδzi

∥∥∥
Z

� C‖x‖ and
∥∥∥x −

∑
δki xi

∥∥∥
X

� ε. (9)

We say that (xi, f i) satisfies the NQP with respect to (Z , (zi)) if it satisfies the (ε, δ, C)–Z -NQP for some choice of ε, δ > 0
and C � 1.

It is easy to see that the property (ε, δ, C)-NQP with respect to some associated space is homogeneous in (ε, δ), meaning
that a frame (xi, f i) is (ε, δ, C)-NQP if and only if for some λ > 0 (or for all λ) (xi, f i) satisfies the (λε,λδ, C)-NQP. The
following result, analogous to [8, Theorem 2.4], shows that it is enough to verify that one can quantize the coefficients of
elements x which are in B X to deduce the NQP.

Proposition 4.2. Assume that (xi) and (zi) are some sequences in Banach spaces X and Z , respectively, and assume that there are
C0 < ∞, δ0 > 0 and 0 < q0 < 1, so that for all x ∈ B X there is a sequence (ki) ⊂ Z, (ki) ∈ c00 with∥∥∥∑ δ0ki zi

∥∥∥� C0 and
∥∥∥x −

∑
δ0ki xi

∥∥∥� q0. (10)

Then there are δ1 > 0, and C1 < ∞ only depending on δ0 , q0 and C0 so that for all x ∈ X there is a sequence (ki) ⊂ Z, (ki) ∈ c00 , with∥∥∥∑ δ1ki zi

∥∥∥� C1‖x‖and
∥∥∥x −

∑
δ1ki xi

∥∥∥� 1. (11)

Proof. Choose n1 ∈ N and q1 so that

n1 + 1

n1
q0 = q1 < 1 (12)

and put δ1 = δ0/n1.
We first claim that for any 0 < δ � δ1 and any x ∈ B X there is a sequence (ki) ∈ ZN ∩ c00 so that∥∥∥∑kiδzi

∥∥∥� 2C0and
∥∥∥x −

∑
δki xi

∥∥∥� q1. (13)
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Indeed, let δ � δ1 and x ∈ B X and choose n � n1 in N so that δ0
n+1 < δ � δ0

n and (ki) ⊂ Z so that

∥∥∥∑kiδ0zi

∥∥∥� C0 and

∥∥∥∥ δ0

δ(n + 1)
x −
∑

kiδ0xi

∥∥∥∥� q0

and, thus, since n � n1,∥∥∥∑ki(n + 1)δzi

∥∥∥=
∥∥∥∑kiδ0zi

∥∥∥ δ(n + 1)

δ0
� n + 1

n
C0 � 2C0

and ∥∥∥x −
∑

kiδ(n + 1)xi

∥∥∥�
∥∥∥∥ δ0

(n + 1)δ
x −
∑

kiδ0xi

∥∥∥∥ δ(n + 1)

δ0
� q0

δ

δ0
(n + 1) � q1.

By induction on n ∈ N we show that for any δ � qn−1
1 δ1 and any x ∈ B X there is a (ki) ⊂ Z, (ki) ∈ c00, so that

∥∥∥∑kiδzi

∥∥∥� 2C0

n−1∑
i=0

qi
1 and

∥∥∥x −
∑

kiδxi

∥∥∥� qn
1. (14)

For n = 1 this is just (13). Assume our claim to be true for n and let δ � δ1qn
1 and x ∈ B X . By our induction hypothesis, we

can find (ki) ⊂ Z, (ki) ∈ c00, so that (14) holds. Since q−n
1 (x −∑kiδxi) ∈ B X and since δq−n

1 � δ1, we can use our first claim

and choose (k̃i) ∈ ZN ∩ c00 so that∥∥∥∑ k̃iδq−n
1 zi

∥∥∥� 2C0 and
∥∥∥q−n

1

(
x −
∑

kiδxi

)
−
∑

δq−n
1 k̃i xi

∥∥∥� q1,

and, thus,

∥∥∥∑(ki + k̃i)δzi

∥∥∥� 2C0

n−1∑
i=0

qi
1 + 2C0qn

1,

and ∥∥∥x −
∑

δki xi −
∑

δk̃i xi

∥∥∥� qn+1
1 ,

which finishes the induction step.
Now define C1 = 2C0

∑∞
n=0 qn

1 and let x ∈ X be arbitrary.
If ‖x‖ � 1 (this is the only case left to consider) we choose n ∈ N with qn

1 < 1
‖x‖ � qn−1

1 and, by (14) we can choose

(ki) ∈ ZN ∩ c00 so that∥∥∥∥∑ki
δ1

‖x‖ zi

∥∥∥∥� 2C0

n−1∑
i=0

qi
1 � C1 and

∥∥∥∥ x

‖x‖ −
∑ kiδ1

‖x‖ xi

∥∥∥∥� qn
1,

which yields∥∥∥∑kiδ1zi

∥∥∥� C1q1‖x‖ and
∥∥∥x −

∑
kiδ1xi

∥∥∥� qn
1‖x‖ � 1. �

In the following result we consider a finite frame (xi, f i)
N
i=1 of a finite dimensional Banach space X , and exploit the fact

that, if (xi, f i)
N
i=1 has the (ε, δ,C)-NQP with respect to some space Z having a basis (zi)

N
i=1, then the value

ε−n = Vol(B X )/Vol(εB X )

must be smaller then the cardinality of the set

F(δ,C)(xi) =
{∑

n jδx j:
∥∥∥∑n jδz j

∥∥∥� C
}
.

Proposition 4.3. Assume f : N → R+ , f (1) = 1, is strictly increasing to ∞, C � 1, and 0 � δ, ε < 1.
Let (xi, f i)

N
i=1 be a frame of a Banach space X with n := dim(X) < ∞ and let Z be an N-dimensional space, N ∈ N, with a nor-

malized basis (zi)
N
i=1 , which is associated to (xi, f i)

N
i=1 . Let S : Z → X be the reconstruction operator, and denote by K the projection

constant of (zi). Assume (#A denotes the cardinality of a set A ⊂ N)

F(δ,C)(xi) is ε-dense in B X , and (15)

f (#A) �
∥∥∥∥∑n j z j

∥∥∥∥, whenever A ⊂ {1,2, . . . , N} and (n j) j∈A ⊂ Z \ {0}. (16)

j∈A
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Then

ln N � n ln(1/ε)

f −1(C/δ)
− ln

(
2K C

δ
+ 1

)
. (17)

Moreover, assume that g : N → R is strictly increasing and satisfies

lim
n→∞

g(n) ln n

n
= 0, (18)

and let X , Z , K , (xi, f i)
N
i=1 , (zi)

N
i=1 , and S be as above satisfying (15), (16) and, moreover,

g(#A) � sup

∥∥∥∥∑
j∈A

±z j

∥∥∥∥, whenever A ⊂ {1,2, . . . , N}, (19)

Then it follows that dim(X) � n0 , where n0 depends only on K , C ,‖S‖, ε, δ, f and g and is increasing in K , C ,‖S‖.

Before providing a proof let us explain Proposition 4.3 in more detail.

Remark 4.4. Condition (16) means that we are in a certain sense “far” away from the space �n∞ (in which quantization
can be achieved trivially). Condition (19) implies that the associated basis is “far” from the �1-basis (which also be used to
quantize, as Proposition 4.7 shows). To be more concrete, we consider the following situation.

Assume, for example, that (zi) has an �p lower bound, for some 1 � p < ∞, i.e. that there is a D1 < ∞ so that(
N∑

i=1

|ai|p

)1/p

� D1

∥∥∥∥∥
N∑

i=1

ai zi

∥∥∥∥∥ for (ai) ⊂ R.

This means that condition (16) holds if we let f (m) = m1/p/D1. Also assume for simplicity that K = 1.
Proposition 4.3 now implies that if X is a finite dimensional Banach space X admitting a frame of length N whose

associated space is Z and which satisfies the quantization condition (15) for some C � 1, ε and δ > 0 then N is at least an
exponential function of the dimension of X .

If we, moreover, require that (zi) has also an upper �q-estimate, for some 1 < q, i.e. if for some D2∥∥∥∥∥
N∑

i=1

ai zi

∥∥∥∥∥� D2

(
N∑

i=1

|ai |q
)1/q

for (ai) ⊂ R,

then the second part of Proposition 4.3 yields that the dimension of X has to be bounded by a constant only depending on
p, q, D1 D2, C , ε and δ.

Proof of Proposition 4.3. First note that, if A ⊂ {1,2, . . . , N} and (n j) j∈A ⊂ Z \ {0} with C � ‖∑ j∈A n jδz j‖Z � δ f (#A), then

#A � f −1(C/δ) and |n j | � K C/δ for j ∈ A. Thus, (15) and the volume argument, mentioned before the statement of our
proposition, yields

ε−n � #F(δ,C)(xi) �
(

N

� f −1(C/δ)�
)(

2K C

δ
+ 1

)� f −1(C/δ)�
�
[

N

(
2K C

δ
+ 1

)] f −1(C/δ)

,

which, after taking ln(·) on both sides, implies (17).
Now assume that also (19) is satisfied. Let (ei, e∗

i )
n
i=1 be an Auerbach basis of X , i.e. ‖ei‖ = ‖e∗

i ‖ = 1 and e∗
i (e j) = δ(i, j) .

Such a basis always exists (cf. [11, Theorem 5.6]). Choose 0 < η < ∞ so that ε(1 + 1/η) < 1 and define for i = 1,2, . . . ,n,

Ai = { j ∈ {1,2, . . . , N}: e∗
i (x j) � ε−1ηK C f −1(C/δ)n

}
.

Then it follows for the right choice of σ j = ±1, j ∈ Ai , that

g(#Ai) �
∥∥∥∥∑

j∈Ai

±z j

∥∥∥∥
� 1

‖S‖ sup

∥∥∥∥∑
j∈Ai

±x j

∥∥∥∥
� 1

‖S‖ e∗
i

(∑
σ j x j

)
� #Aiε

η‖S‖K C f −1(C/δ)n

j∈Ai
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and thus

#Ai

g(#Ai)
� η‖S‖K C f −1(C/δ)n

ε
. (20)

Put A =⋃i�n Ai . If (n j) j�N ⊂ Z is such that
∑N

j=1 δn j x j ∈F(δ,C)(x j), then

∥∥∥∥∑
j∈Ac

δn j x j

∥∥∥∥�
∑

j∈Ac ,n j �=0

(
n∑

i=1

∣∣e∗
i (x j)

∣∣)max
j�N

δ|n j| � ε#{ j: n j �= 0}
η f −1(C/δ)

� ε

η
,

where the second inequality follows from the definition of the Ai ’s and the observation at the beginning of the proof, and
the last inequality follows from the fact that

f
(
#{ j: n j �= 0})� ∥∥∥∑n j z j

∥∥∥� C/δ. (21)

This implies together with (15) that the set

F̃(δ,C) =
{∑

j∈A

n jδx j: (n j) ⊂ Z,

∥∥∥∥∥
N∑

j=1

n jδz j

∥∥∥∥∥� C

}

is ε(1 + 1
η )-dense in B X . Hence, our usual argument comparing volumes and (21) yields

#A f −1(C/δ)

(
2K C

δ
+ 1

) f −1(C/δ)

�
(

#A

� f −1(C/δ)�
)(

2K C

δ
+ 1

)� f −1(C/δ)�
� 1

εn(1 + 1/η)n
.

Taking ln(·) on both sides and letting r(�) = ln(�)g(�)/� for � ∈ N, and since ε(1 + 1/η) < 1 we conclude by (20) that

n ln

(
1

ε(1 + 1/η)

)
� f −1(C/δ)

(
ln(#A) + ln

(
2K C

δ
+ 1

))

� f −1(C/δ)

(
ln n + max

i�n
ln(#Ai) + ln

(
4K C

δ

))

= f −1(C/δ)

(
ln n + max

i�n
r(#Ai)

(
#Ai

g(#Ai)

)
+ ln

(
4K C

δ

))

� f −1(C/δ)

(
ln n + nr(#Ai0 )

η‖S‖K C f −1(C/δ)

ε
+ ln

(
4K C

δ

))

where i0 � n is chosen so that #Ai0 is maximal. By our assumption on g we can find an �0 ∈ N so that

η‖S‖K C f −1(C/δ)r(�) � 1

2
ln

(
1

ε(1 + 1/η)

)
, whenever � � �0.

If #Ai0 � �0 then

n ln

(
1

ε(1 + 1/η)

)
� f −1(C/δ)

[
ln n + ln �0 + ln

(
2K C

δ
+ 1

)]
,

which implies that n is bounded by a number which only depends on ε, δ, C , f , g and K . If #Ai0 > �0, then it follows that

n

2
ln

(
1

ε(1 + 1/η)

)
� f −1(C/δ)

(
ln n + ln

(
4K C

δ

))

which implies our claim also in that case. �
We shall formulate a corollary of Proposition 4.3 for the infinite dimensional situation. We need first to introduce some

notation and make some observations.
Let (xi, f i)i∈N be a frame of X . Furthermore assume that X has the πλ-property, which means that there is a sequence

P = (Pn) of finite rank projections, whose norms are uniformly bounded, and which approximate the identity, i.e.

x = lim
n→∞ Pn(x), in norm for all x ∈ X . (22)

For example, if X has a basis (ei) we could choose for n ∈ N the projection onto the first n coordinates, i.e.

Pn : X → X,
∑

aiei �→
n∑

aiei .
i=1
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It is easy to see that (Pn(xi), f i |Pn(X)) is a frame of the space Xn = Pn(X). Moreover, condition (22) and a straightforward
compactness argument shows that for any n ∈ N and any 1

2 < r < 1 there is an Mn = M(r,n) so that it follows that∥∥∥∥∥x −
N∑

i=1

〈 f i, x〉Pn(xi)

∥∥∥∥∥� (1 − r)‖x‖, whenever x ∈ Xn and N � Mn . (23)

It follows that the operators (Q n), with

Q n : Xn → Xn, x �→
Mn∑
i=1

〈
P∗

n( f i), x
〉
Pn(xi) =

Mn∑
i=1

〈 f i, x〉Pn(xi),

are uniformly bounded (‖Q n‖ � 2, for n ∈ N), invertible and their inverses are uniformly bounded (‖Q −1
n ‖ � 1

r , for n ∈ N).
For x ∈ Xn we write

x = Q −1
n Q n(x) =

Mn∑
i=1

〈
P∗

n( f i), x
〉(

Q −1
n ◦ Pn

)
(xi)

and deduce therefore that(
y(n)

i , g(n)
i

)Mn

i=1 := ((Q −1
n ◦ Pn

)
(xi), P∗

n( f i)
)Mn

i=1

is a finite frame of Xn .
Let Z be a space with basis (zi) which is associated to the frame (xi, f i). It follows easily that the operators (Sn) and (Tn)

Sn : Zn = [zi: i � Mn] → Xn, z �→
Mn∑
i=1

ai zi �→
Mn∑
i=1

ai
(

Q −1
n ◦ Pn

)
(xi),

Tn : Xn → Zn, x =
Mn∑
i=1

f i(x)
(

Q −1
n ◦ Pn

)
(xi) �→

Mn∑
i=1

f i(x)zi

are uniformly bounded, and thus Zn is an associated space for the frame (y(n)
i , g(n)

i )i�Mn while Tn and Sn are the associated
decomposition and reconstruction operators, respectively.

Finally assume that the frame (xi, f i) satisfies the (ε, δ, C)-NQP with respect to Z . Again by compactness and using
Proposition 4.2 we can choose Mn = M(r,n) large enough so that it also satisfies the following:

For all n ∈ N and all x ∈ Xn there is a sequence (ki)
Mn
i=1 ⊂ Z so that∥∥∥∥∥

Mn∑
i=1

kiδzi

∥∥∥∥∥� C‖x‖ and

∥∥∥∥∥x −
Mn∑
i=1

δki xi

∥∥∥∥∥� ε. (24)

After changing ε > 0 and δ proportionally, if necessary, and since r > 1
2 , we can assume that q = 1−r

r + supn ‖Pn‖ ε
r < 1.

For n in N and x ∈ B Xn we can therefore choose (ki)
Mn
i=1 ⊂ Z so that ‖∑Mn

i=1 δki zi‖ � C and∥∥∥∥∥x −
Mn∑
i=1

δki
(

Q −1
n ◦ Pn

)
(xi)

∥∥∥∥∥�
∥∥Q −1

n

∥∥ ·
∥∥∥∥∥Q n(x) −

Mn∑
i=1

δki Pn(xi)

∥∥∥∥∥
�
∥∥Q −1

n

∥∥ · ∥∥Q n(x) − x
∥∥+ ∥∥Q −1

n

∥∥ ·
∥∥∥∥∥x −

Mn∑
i=1

δki Pn(xi)

∥∥∥∥∥
�
∥∥Q −1

n

∥∥ · ∥∥Q n(x) − x
∥∥+ ∥∥Q −1

n

∥∥ · ‖Pn‖ ·
∥∥∥∥∥x −

Mn∑
i=1

δki xi

∥∥∥∥∥
� 1 − r

r
+ sup

n
‖Pn‖ε

r
= q < 1.

Thus, for every n ∈ N the frame (P∗
n( f i), (Q −1

n ◦ Pn)(xi))
Mn
i=1 satisfies condition (15) of Proposition 4.3 (for ε = q). Therefore

we deduce the following corollary.

Corollary 4.5. Let (xi, f i)i∈N be a frame of an infinite dimensional Banach space X for which there is a uniformly bounded sequence
(Pn) of finite rank projections which approximate the identity. Assume that (xi, f i)i∈N satisfies the (ε, δ, C)-NQP with respect to a
space Z with basis (zi) for some choice of ε > 0, δ > 0 and C so that q = 1−r

r + supn ‖Pn‖ ε
r < 1 with 1

2 < r < 1. Let (Mn) be any
sequence in N which satisfies (23) and (24).
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Finally assume that (zi) satisfies the following lower estimate

lim
n→∞ inf

{∥∥∥∥∑
j∈A

n j z j

∥∥∥∥: (n j) j∈A ⊂ Z \ {0}, A ⊂ N, #A = n

}
= ∞. (25)

Then

(a) (Mn) increases exponentially with the dimension of Xn, i.e. there is a c > 1, so that Mn � cdim(Xn) eventually,

(b) lim sup
n→∞

ln(n)

n
sup

{∥∥∥∥∑
i∈A

±zi

∥∥∥∥: A ⊂ N, #A = n

}
> 0.

Let us simplify the conditions in Corollary 4.5. Note that (zi) satisfies (25) if it satisfies lower �q estimates for some
q < ∞ (see Remark 2.6), but that it cannot satisfy the conclusion (b) of Corollary 4.5 in case it satisfies upper �p estimates
for some p > 0. We therefore deduce the following corollary.

Corollary 4.6. Assume that X is an infinite dimensional Banach space with the πλ-property and that Z is a Banach space with a basis
(zi) satisfying for some choice of 1 < q < p < ∞ lower �p and upper �q estimates.

Then no frame of X has the N Q P with respect to (Z , (zi)).

The following example shows how to construct a frame with respect to a space Z which contains �1.

Proposition 4.7. Let (xi, f i)i∈N be any frame of a Banach space X and let Z be a space with semi-normalized basis (zi), which is
associated to (xi, f i). Then there is a frame (x̃i, f̃ i)i∈N and a basis (z̃i) of Z̃ = Z ⊕∞ �1 so that (x̃i, f̃ i)i∈N has Z̃ as an associated space
and has the NQP with respect to Z̃ . Moreover, (x̃i, f̃ i)i∈N is semi-normalized if (xi, f i)i∈N has this property (for example if (xi) is a
normalized basis of X).

Proof. Assume, without loss of generality that ‖zi‖ = 1 for i ∈ N. Choose a quotient map Q : �1 → X so that (Q (ei): i ∈ N)

is a 1
2 -net in B X and so that ‖Q (ei) ± xi‖ > 1

4 for i ∈ N (which is easy to accomplish). Finally we apply Proposition 2.8 to

Y = �1 with its unit vector basis (ei) and V = Q , and observe that the frame (x̃i, f̃ i) and basis (z̃i) of Z̃ , as constructed
there, has the property that for any x ∈ B X there is an i ∈ N so that∥∥∥∥x − x̃2i − x̃2i−1

2

∥∥∥∥= ∥∥x − Q (ei)
∥∥� 1

2
and

∥∥∥∥1

2

(
z̃2i − z̃2i−1

)∥∥∥∥= 1

which implies by Proposition 4.2 that (xi, f i)i∈N has the NQP with respect to (zi).
By construction of (x̃i, f̃ i) in Proposition 2.8 it follows that ( f̃ i) is semi-normalized if ( f i) has this property and since

‖Q (ei) ± xi‖ > 1
4 , for i ∈ N, it follows that

1

4
� ‖x̃i‖ � sup

j∈N

‖x j‖ + 1,

which implies that (x̃i, f̃ i) is semi-normalized if (xi, f i) has this property. �
Finally let us present an infinite dimensional argument implying that if Z is a reflexive space with basis it cannot be the

associated space of a frame (xi, f i)i∈N , with ‖xi‖ = 1, for i ∈ N, which satisfies the NQP.

Proposition 4.8. Assume that Z is a reflexive space with a semi-normalized basis (zi), and assume that (xi, ( f i)) is a frame of an
infinite dimensional Banach space X with associated space Z .

Then ((xi), ( f i)) cannot have the NQP with respect to Z .

The following result follows from Proposition 4.8 as well as from Corollary 4.6.

Corollary 4.9. A semi-normalized frame of an infinite dimensional Hilbert space H cannot have the NQP with respect to the associated
Hilbert space �2(N).

Proof. Proof of Proposition 4.8 We assume w.l.o.g. that (zi) is bimonotone and let T : X → Z and S : Z → X be the associ-
ated decomposition and reconstruction operators, respectively.

For C < ∞ and δ > 0 define

B(C,δ) =
{ ∞∑

δki zi ∈ Z : (ki) ⊂ Z,

∥∥∥∥∥
∞∑

δki zi

∥∥∥∥∥� C

}
.

i=1 i=1
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Assume that (xi, f i) has the NQP with respect to Z . Then we can choose δ > 0 small enough and C � 1 large enough so
that S(B(C,δ)) is ε-dense in B X for some 0 < ε < 1.

Since (zi) is semi-normalized and Z is reflexive, B(C,δ) is weakly compact. Indeed, assume that for n ∈ N,

yn =
∞∑

i=1

δk(n)
i zi ∈ B(C,δ).

After passing to subsequence we can assume that for all i ∈ N there is a ki ∈ N so that k(n)
i = ki whenever n � i. Thus, by

bimonotonicity, it follows that ‖∑n
i=1 δki zi‖ � C , for all n ∈ N, and, thus, since (zi) is boundedly complete

∑∞
i=1 δki zi ∈ Z

and ‖∑∞
i=1 δki zi‖ � C . Thus,

∑∞
i=1 δki zi in B(C,δ) , and since k(n)

i converges point-wise to (ki) and (zi) is shrinking it is the
weak limit of yn . The support of each element in B(C,δ) is finite since (zi) is a semi-normalized basis, and thus B(C,δ) is
countable. Since S(B(C,δ)) is ε-dense in X , it follows that the map

E : X∗ → C(B(C,δ)), with E(x∗)
(∑

δki zi

)
=
∑

δki S∗(x∗)(zi),

is an isomorphic embedding (here C(B(C,δ)) denotes the space of continuous functions on the (compact and metric) space
B(C,δ) endowed with the weak topology). Indeed for x∗ ∈ B∗

X there is an x ∈ B X so that |x∗(x)| = 1 and a sequence
(ki) ∈ Z ∩ c00 so that ‖x −∑ δki xi‖ � ε, and thus∥∥E(x∗)

∥∥�
∣∣∣E(x∗)

(∑
δki zi

)∣∣∣= x∗(∑ δki xi

)
= 1 + x∗(∑ δki xi − x

)
� 1 − ε.

But this would mean that X∗ is isomorphic to a subspace of the space of continuous functions on a countable compact
space, and, thus, hereditarily c0, which is impossible since X is a quotient of a reflexive space and thus also reflexive. �
5. Quantization and cotype

In this section we consider a quantization concept for Schauder frames, which is independent of an associated space.

Definition 5.1. Let (xi, f i)i∈J be a frame of a (finite or infinite dimensional) Banach space X , J = N or J = {1,2, . . . , N}, for
some N ∈ N, and let 0 < ε, 0 < δ � 1 and 1 � C < ∞. We say that (xi, f i)i∈J satisfies the (ε, δ, C)-Bounded Coefficient Net
Quantization Property or (ε, δ, C)-BCNQP if for all (ai)i∈J ∈ [−1,1]J ∩ c00(J) there is a (ki)i∈J ∈ ZJ ∩ c00(J) so that∥∥∥∥∑

i∈J

ai xi −
∑
i∈J

δki xi

∥∥∥∥� ε and max
i∈J

|ki | � C

δ
.

Remark 5.2. Let (xi, f i)i∈J be a frame of X and let 0 < ε, 0 < δ � 1 and 1 � C < ∞.

(a) Since for any (ai)i∈J ∈ c00(J) and any i ∈ J we can write ai = miδ + ãi with mi ∈ N, |mi |δ � |ai | and |ãi | � δ, for i ∈ J,
(xi, f i) satisfies the (ε, δ, C)-BCNQP implies that

for all (ai)i∈J ∈ c00(J) there is a (ki)i∈J ∈ ZJ ∩ c00(J) so that∥∥∥∥∑
i∈J

ai xi −
∑
i∈J

δki xi

∥∥∥∥� ε and max
i∈J

|ki | � max
i∈J

|ai | + C

δ
. (26)

(a) immediately implies.

(b) If (xi, f i) satisfies (ε, δ, C)-BCNQP and 0 < λ � 1 then (xi, f i) satisfies (λε,λδ,1 + λC)-BCNQP.
(c) If (xi) is a semi-normalized basis of X and ( f i) are the coordinate functionals with respect to (xi) and (xi) satisfies

the (ε, δ)-NQP (Definition 3.1), then (xi, f i) satisfies the (ε, δ, C)-BCNQP with C = 1 + ε supi∈J ‖ f i‖. Indeed, for x ∈ X ,
x =∑i=1 ai xi , with |ai | � 1, there is a sequence (ki) ∈ Z with finite support so that ‖x −∑ δki xi‖ � ε and

δ max |ki | � max
i

(∣∣ f i(x)
∣∣+ ∣∣∣ f i

(
x −
∑

δki xi

)∣∣∣)� 1 + ε sup
i∈J

‖ f i‖.

We will connect the property BCNQP with properties of the cotype of the Banach space.

Definition 5.3. Let p � 2. We say that a Banach space X has type p if there is a c < ∞ so that for all n ∈ N and all vectors
x1, x2, . . . , xn ∈ X ,(

ave

∥∥∥∥∥
n∑

i=1

±xi

∥∥∥∥∥
2)1/2

=
(

2−n
∑

(σi)
n
i=1∈{±1}n

∥∥∥∥∥
n∑

i=1

σi xi

∥∥∥∥∥
2)1/2

� c

(
n∑

i=1

‖xi‖p

)1/p

.

In that case the smallest such c will be denoted by T p(X).
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Let q � 2. We say that a Banach space X has cotype q if there is a c < ∞ so that for all n ∈ N and all x1, x2, . . . , xn ∈ X :

(
n∑

i=1

‖xi‖q

)1/q

� c

(
ave

∥∥∥∥∥
n∑

i=1

±xi

∥∥∥∥∥
2)1/2

= c

(
2−n

∑
(σi)

n
i=1∈{±1}n

∥∥∥∥∥
n∑

i=1

σi xi

∥∥∥∥∥
2)1/2

.

The smallest of all these constants will be denoted by Cq(X).
We say that X has only trivial type, or only trivial cotype if T p(X) = ∞ for all p > 1, or Cq(X) = ∞, for all q < ∞.

Basic properties of spaces with type and cotype can be found for example in [7] or [28]. We are mainly interested in
estimates of the volume ratio of the unit ball B X of a finite dimensional space X using Cq(X) and the connection between
finite cotype and the property of containing �n∞ ’s uniformly.

Assume X is an n-dimensional space which we identify with (Rn,‖ · ‖). Let E be the John ellipsoid of the unit ball B X

of X , i.e. the ellipsoid contained in B X having maximal volume. It was show in [18] (see also [28, Chapter 3]) that E is
unique. We call the ratio Vol1/n(B X )/Vol1/n(E) the volume ratio of B X . Combining [29, Theorem 6], which establishes an
upper estimate for the volume ratio using T p(X∗), with a result of Maurey and Pisier [22,23] (see also [7, Proposition 13.17])
estimating T p(X∗) and a result of Pisier ([27] (see also [28, Theorem 2.5]) estimating the K -convexity constant K (X) of X ,
we obtain the connection between the volume ratio of B X and the cotype constant of X .

Theorem 5.4. There is a universal constant d so that for all finite dimensional Banach spaces X, with n = dim(X) � 2, and all
2 � q < ∞,

(
Vol(B X )

Vol(E)

)1/n

� dCq(X)nα(q) ln n, (27)

where E ⊂ X is the John ellipsoid of B X and α(q) := 1
2 − 1

q .

We will also need a second upper estimate for the volume ratio due to Milman and Pisier [24].

Theorem 5.5. (See [24], and see also [28, Theorem 10.4].) There is a universal constant A so that for any finite dimensional Banach
space X,

(
Vol(B X )

Vol(E)

)1/n

� g
(
C2(X)

) := AC2(X) ln
(
1 + C2(X)

)
(28)

where E ⊂ X is the John ellipsoid of B X .

The next result describes the connection between the property of having a finite cotype for q < ∞ and the property of
containing �n∞ ’s uniformly.

Theorem 5.6. (See [22,23].) For N ∈ N there is a q(N) ∈ (2,∞) and a C(N) < ∞ so that:

For any (finite or infinite dimensional) Banach space X which does not

contain a 2-isomorphic copy of �N∞ we have that Cq(N)(X) � C(N). (29)

Finally we will need the following result from [25]. It is implicitly already contained in [12, pp. 95–97], and it has
probably been known for much longer.

In order to state it we will need the following notation. Let m � n ∈ N and let L ⊂ Rn be an m-dimensional subspace.
Let Q n be the unit cube in Rn . By a simple compactness argument there is a projection P : Rn → L for which Vol(P (Q n))

is minimal. In that case we call the image P (Q n) a minimal-volume projection of Q n onto L.

Theorem 5.7. (See [25, Theorem 1].) Let L be a linear subspace of Rn, and let M be the set of all minimal volume projections of Q n

onto L.
Then M contains a parallelepiped.

We are now in the position to state and to prove the connection between cotype and BCNQP in the finite dimensional
case.
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Theorem 5.8. There is a map n0 : [1,∞)2 → [0,∞) so that for all finite dimensional Banach spaces X the following holds.
If (xi, f i)

N
i=1 is a frame of X, with ‖xi‖ = 1, for i � N, and which satisfies (1, δ, C)-BCNQP for some 0 < δ < 1 and C � 1, then for

all 2 � q < ∞

N � dim(X) ln
(
dim(X)

) 1

2q ln(1 + 2 C
δ
)
, whenever dim(X) � n0

(
C

δ
, K Cq(X)

)
,

where K is the projection constant of (xi, f i)
N
i=1 .

Proof. Let Z be the space with a basis (zi) and let T : X → Z and S : Z → X be the associated decomposition and the
reconstruction operator as constructed in the proof of Proposition 2.4(a) “⇒.” Since the xi ’s are normalized the zi ’s are also
of norm 1. After a linear transformation we can assume that Z = RN and (zi)

N
i=1 is the unit vector basis of RN . Since (zi)

is a bimonotone basis it follows that ‖z∗
i ‖ = 1, for i � N . Hence B Z ⊂ Q N , where Q N denotes the unit cube in RN . Define

L = T (X) and put n = dim(X) = dim(L). Since S ◦ T = IdX it follows that P = T ◦ S is a projection from Z onto L and if we
denote the John ellipsoid of T (B X ) by E and we deduce that (recall that by Proposition 2.4(a) ‖T ‖ � K )

E ⊂ T (B X ) = P ◦ T (B X ) ⊂ P (K · B Z ) ⊂ P (K · Q N). (30)

By Theorem 5.7 there is a minimal-volume projection M of Q N onto L which is a parallelepiped. Let Bn denote the n-di-
mensional Euclidean ball in Rn . Since there is a universal constant c so that

Vol(Bn) �
(

c√
n

)n

,

and since
1

K
E ⊂ 1

‖T ‖ E ⊂ L ∩ B Z ⊂ L ∩ Q N ⊂ M,

we deduce from the fact that Bn is the John ellipsoid of the unit cube in Rn [18] (see also [28, Chapter 3]), that

K

(
Vol(P (Q N ))

Vol(E)

)1/n

=
(

Vol(P (Q N ))

Vol( 1
K E)

)1/n

�
(

Vol(M)

Vol( 1
K E)

)1/n

�
√

n

c
.

The last inequality follows from applying a linear transformation A to L so that A(M) is a the unit cube in L (with respect
to some orthonormal basis of L) and, thus A( 1

K E) is an ellipsoid whose volume cannot exceed that of the Euclidean unit
ball in L. Since T : (X,‖ · ‖) → (L,‖ · ‖T (B X )), where ‖ · ‖T (B X ) is the Minkowski functional for T (B X ), is an isometry it follows
from Theorem 5.4 that

Vol1/n(T (B X )
)
� dCq(X)nα(q) ln(n)Vol1/n(E)

� dcK Cq(X)n− 1
q ln(n)Vol1/n(P (Q N )

)
(31)

(the universal constant d was introduced in Theorem 5.4).
Since the zonotope

P (Q N ) = T ◦ S

({
N∑

i=1

ai zi: |ai | � 1

})
=
{

N∑
i=1

ai T (xi): |ai | � 1

}

contains at most (1 + 2C
δ

)N points from the set D = {∑ δni T (xi): (ni) ⊂ Z, max δ|ni | � C} and since from our assumption
that (xi f i)

N
i=1 satisfies the (1, δ, C)-BCNQP it follows that

P (Q N ) ⊂
⋃
z∈D

z + T (B X ),

we deduce that(
1 + 2C

δ

)N

� Vol(P (Q N ))

Vol(T (B X ))
�
(

n1/q

KdcCq(X) ln(n)

)n

and, thus,

N � n ln(n)

q ln(1 + C
δ
)

− n ln(ln(n))

ln(1 + 2C
δ

)
− n ln(dcK Cq(X))

ln(1 + 2C
δ

)
,

which easily implies our claim. �
In the next result we will show that, up to a constant factor, the result in Theorem 5.8 is sharp. We are using the

simple fact that for any number 0 � r � 1 and any m ∈ N, r can be approximated by a finite sum of dyadic numbers, say
r̃ =∑m

j=1 σ j2− j , σ j ∈ {0,1}, for j = 1, . . . ,m, so that |r − r̃| � 2−m .
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Proposition 5.9. Let X be an n-dimensional space with an Auerbach basis (ei, e∗
i )

n
i=1 . Let m ∈ N and let K be the projection constant

of (ei)
n
i=1 . Then there is a frame (x(i, j,s), f(i, j,s): 1 � i � n, 1 � j � m, s = 0,1) (ordered lexicographically) so that

1

2
� ‖x(i, j,s)‖ � 2 and ‖ f(i, j,s)‖ = 1, if 1 � i � n, 1 � j � m and s = 0,1, (32)

∀(a(i, j,s): 1 � i � n, 1 � j � m, s = 0,1) ⊂ [−1,1]
∃(k(i, j,s): i � n, j � m, s = 0,1) ⊂ {−3,−2, . . . ,3}∥∥∥∥∥
n∑

i=1

m∑
j=1

1∑
s=0

a(i, j,s)x(i, j,s) −
n∑

i=1

m∑
j=1

1∑
s=0

k(i, j,s)x(i, j,s)

∥∥∥∥∥� 1 + n
2−m

1 − 2−m
(33)

(
i.e. (x(i, j,s), f(i, j,s): 1 � i � n, 1 � j � m, s = 0,1) satisfies the

(
1 + n

2−m

1 − 2−m
,1,3

)
-BCNQP

)
.

The projection constant of (x(i, j,s), f(i, j,s): 1 � i � n, 1 � j � m, s = 0,1) does not exceed 4K . (34)

Proof. For 1 � i � n and 1 � j � m define x(i, j,0) = e1, x(i, j,1) = e1 + 2− j

1−2−m ei , f(i, j,0) = −e∗
i and f(i, j,1) = e∗

i . Since for every
x ∈ X

x =
n∑

i=1

e∗
i (x)ei =

n∑
i=1

m∑
j=1

e∗
i (x)ei

2− j

1 − 2−m
=

n∑
i=1

m∑
j=1

f(i, j,1)(x)x(i, j,1) + f(i, j,0)(x)x(i, j,0),

(x(i, j,s), f(i, j,s): 1 � i � n, 1 � j � m, s = 0,1) is a frame of X and it satisfies (32). In order to verify (33) let (a(i, j,s):

1 � i � n, 1 � j � m, s = 0,1) ⊂ [−1,1] be given. For i = 1,2, . . . ,n it follows that |∑m
j=1 a(i, j,1)

2− j

1−2−m | � 1, and, thus, we
can choose (k(i, j,1): j � m) ⊂ {0,±1} so that for each i � n∣∣∣∣∣

m∑
j=1

a(i, j,1)

2− j

1 − 2−m
−

m∑
j=1

k(i, j,1)

2− j

1 − 2−m

∣∣∣∣∣� 2−m

1 − 2−m
. (35)

Since the absolute value of M =∑n
i=1
∑m

j=1 a(i, j,1) + a(i, j,0) − k(i, j,1) is at most 3nm we can choose for 1 � i � n and
1 � j � m, k(i, j,0) ∈ {−3,−2, . . . ,2,3} so that a = M −∑n

i=1
∑m

j=1 k(i, j,0) , has absolute value at most 1. We compute

∥∥∥∥∥
n∑

i=1

m∑
j=1

1∑
s=0

a(i, j,s)x(i, j,s) −
n∑

i=1

m∑
j=1

1∑
s=0

k(i, j,s)x(i, j,s)

∥∥∥∥∥
�
∥∥∥∥∥

n∑
i=1

m∑
j=1

a(i, j,1)ei
2− j

1 − 2−m
−

n∑
i=1

m∑
j=1

k(i, j,1)ei
2− j

1 − 2−m

∥∥∥∥∥
+
∣∣∣∣∣

n∑
i=1

m∑
j=1

a(i, j,1) + a(i, j,0) − k(i, j,0) − k(i, j,1)

∣∣∣∣∣
� 1 +

n∑
i=1

∣∣∣∣∣
m∑

j=1

(a(i, j,1) − k(i, j,1))
2− j

1 − 2−m

∣∣∣∣∣� 1 + n
2−m

1 − 2−m

which proves (33).
To estimate the projection constant of (x(i, j,s), f(i, j,s): 1 � i � n, 1 � j � m, s = 0,1) we denote by �lex the lexicographic

order on {(i, j, s): i � n, j � m, s = 0,1}, and let

x =
n∑

i=1

aiei =
n∑

i=1

m∑
j=1

−aie1 + aie1 + aiei
2− j

1 − 2−m
=

n∑
i=1

m∑
j=1

∑
s=0,1

f(i, j,s)(x)x(i, j,s)

and (i0, j0, s0) �lex (i1, j1, s1). Then, if i0 < i1,∥∥∥∥ ∑
(i0, j0,s0)�lex(i, j,s)�lex(i1, j1,s1)

f(i, j,s)(x)x(i, j,s)

∥∥∥∥
=
∥∥∥∥∥1{s0=1}

[
ai0 e1 + ai0

2− j0

1 − 2−m

]
+

m∑
−ai0 e1 + ai0 e1 + ai0

2− j

1 − 2−m
ei0
j= j0+1
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+
i1−1∑

i=i0+1

m∑
j=1

(
−aie1 + aie1 + ai

2− j

1 − 2−m
ei

)
+

j1∑
j=1

(
−ai1 e1 + ai1 e1 + ai1

2− j

1 − 2−m
ei1

)
− 1{s1=0}ai1 e1

∥∥∥∥∥
� 2|ai0 | +

∥∥∥∥∥
i1−1∑

i=i0+1

aiei

∥∥∥∥∥+ |ai1 | � 4K‖x‖.

If i0 = i1 similar estimates give the to the same result for the remaining cases and (34) follows. �
Remark 5.10. If we choose in Proposition 5.9 m = �2 log n� and thus 2−m � 1/n2 we obtain a frame for X of approximate
size 4n log2(n) having the (3,1,3)-BCNQP. Thus as we mentioned earlier, up to a constant Theorem 5.8 is best possible.

Remark 5.11. In Theorem 5.8 we assumed for simplicity that the xi ’s of our frame are normalized. It is easy to see
that the same proof works for a general frame, in that case n0 depends also on a = min{‖xi‖: i � N, xi �= 0} and b =
max{‖xi‖: i � N}.

With a similar proof to that of Theorem 5.8 we derive an upper estimate for mini�N ‖xi‖, i � N , assuming that (xi, f i)
N
i=1

is a frame of an n-dimensional space X which satisfies the (1, δ, C)-BCNQP for some choice of δ > 0 and C < ∞ assuming
that N is proportional to n.

Theorem 5.12. For any choice of δ ∈ (0,1], and C, K ,q, c2 � 1 there is a value h = h(δ, C, K ,q, c2) so that the following holds for all
n ∈ N.

If X is an n-dimensional space, N � qn and (xi, f i)
N
i=1 is a frame of X with projection constant K which has the (1, δ, C)-BCNQP,

then if C2(X) � c2 ,

min
i�N

‖xi‖ � h(δ, C, K ,q, c2)√
n

.

Sketch of proof. Let (xi, f i)
N
i=1 be a frame of X , N � qn, which has the (1, δ, C)-BCNQP and projection constant K . As in the

proof of Theorem 5.8 we let Z be the associated space with basis (zi) which was constructed in Proposition 2.4, T : X → Z
the associated decomposition operator, and S the associated reconstruction operator. Let L = T (X), and P = T ◦ S , and let
us also assume that Z = RN and zi = ei for i � N . Note that now ‖zi‖ = ‖xi‖ and z∗

i = ‖xi‖−1 and we can therefore follow
the proof of Theorem 5.8 replacing Q N by the box

Q̃ N =
N∏

i=1

[
− 1

‖xi‖ ,
1

‖xi‖
]
.

As in the proof of Theorem 5.8 it follows that 1
K T (B X ) ⊂ P (B Z ) ⊂ P (Q̃ N ). For the John ellipsoid E of T (B X ) it follows

therefore that 1
K E ⊂ M , where a M is a minimal volume projection of Q̃ N which is also a parallelepiped in L, and as before

we deduce that K Vol1/n(P (Q̃ N )) � Vol1/n(E)
√

n/c. Instead of applying Theorem 5.4 we now use Theorem 5.5 and letting
α = mini�N ‖xi‖ we deduce that

Vol1/n(T (B X )
)
� g
(
C2(X)

)
Vol1/n(E)

� g(C2(X))cK Vol1/n(P (Q̃ N ))√
n

� g(C2(X))cK Vol1/n(P (Q N ))√
nα

.

We can again compare the volume of the zonotope P (Q N ) with the volume of the union
⋃

z∈D z + T (B X ), where D is
defined as in the proof of Theorem 5.4, and deduce that(

1 + 2C

δ

)qn

�
(

1 + 2C

δ

)N

� Vol(P (Q N ))

Vol(T (B X ))
�
( √

nα

g(C2(X))cK

)n

.

Taking the nth root on both sides yields our claim. �
Remark 5.13. In Section 6 we will recall a result of Lyubarskii and Vershinin [21] which shows that for q > 1 there are
ε < 1, δ < 1, C < ∞ so that for any n ∈ N and there is a Hilbert frame (xi)

N
i=1 of �n

2, with N � qn, so that (xi)
N
i=1 satisfies

(ε, δ, C)-BCNQP.

As in the previous section we formulate a corollary of Theorem 5.8 for the infinite dimensional situation.
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Corollary 5.14. Assume that X has the πλ-property and that P = (Pn) is a sequence of uniformly bounded projections approximating
point-wise the identity on X. Let (xi, f i) be a frame of X, with (xi) being bounded, and assume for an increasing sequence (Ln) ⊂ N,
0 < r, δ, ε < 1 and C < ∞ that the following conditions are satisfied:

(a) for n ∈ N and x ∈ Xn = Pn(X)∥∥∥∥∥x −
Ln∑

i=1

〈 f i, x〉Pn(x)

∥∥∥∥∥� (1 − r)‖x‖,

(b) ‖Pn(xi)‖ � r, for all n ∈ N and i � Ln, and
(c) for all n ∈ N and all x ∈ {∑Ln

i=1 ai xi: |ai | � 1 for i = 1,2, . . . , Ln} there is a sequence (ki)i�Ln so that∥∥∥∥∥x −
Ln∑

i=1

δki xi

∥∥∥∥∥< ε and max
i�Ln

|ki |δ � C

(in particular (xi, f i) satisfies the BCNQP).

Then there is either a constant c > 0 so that Ln � c dim Pn(X) ln(dim Pn(X)) or the spaces {�n∞: n ∈ |N} are uniformly contained
in X.

Proof. From assumption (a) it follows that the operators (Q n), with

Q n : Xn → Xn, x �→
Ln∑

i=1

〈
P∗

n( f i), x
〉
Pn(xi),

are uniformly bounded (‖Q n‖ � 2, for n ∈ N), invertible and their inverses are uniformly bounded (‖Q −1
n ‖ � 1

r , for n ∈ N).
For x ∈ Xn we write

x = Q −1
n Q n(x) =

Ln∑
i=1

〈 f i, x〉(Q −1
n ◦ Pn

)
(xi),

and deduce therefore that(
y(n)

i , g(n)
i

)Ln

i=1 := ((Q −1
n ◦ Pn

)
(xi), f i |Xn

)Ln

i=1

is a frame of Xn . We now verify that for n ∈ N (y(n)
i , g(n)

i )
Ln
i=1 satisfies the (ε̃, δ, C)-BCNQP for some ε̃ > 0, which is inde-

pendent of n. Indeed by assumption (c) one can choose for n ∈ N and (ai)
Ln
i=1 ∈ [−1,1] some (ki)

Ln
i=1 ⊂ Z so that∥∥∥∥∥

Ln∑
i=1

ai xi −
Ln∑

i=1

δki xi

∥∥∥∥∥� ε and max
i�Ln

|ki | � C

δ

and, thus,∥∥∥∥∥
Ln∑

i=1

ai y(n)
i −

Ln∑
i=1

δki y(n)
i

∥∥∥∥∥=
∥∥∥∥∥

Ln∑
i=1

ai
(

Q −1
n ◦ Pn

)
(xi) −

Ln∑
i=1

δki
(

Q −1
n ◦ Pn

)
(xi)

∥∥∥∥∥
� ε max

i�Ln

∥∥Q −1
n ◦ Pn

∥∥� ε

r
sup

n
‖Pn‖ =: ε̃.

Then for n ∈ N and i � Ln it follows from assumption (b) that

r

2
� r

‖Q n‖ �
∥∥y(n)

i

∥∥� ‖Pn‖ · ∥∥Q −1
n

∥∥ · ‖xi‖ �
sup j ‖P j‖ sup j ‖x j‖

r
< ∞.

Thus Theorem 5.8, Remark 5.11 and Theorem 5.6 yield our claim. �
By Remark 5.2, for semi-normalized bases (xi) (together with their coordinate functionals) the properties BCNQP and

NQP are equivalent. We therefore deduce from Theorem 5.8 the following

Corollary 5.15. An infinite dimensional Banach space X with nontrivial cotype cannot have a semi-normalized basis having the NQP.
In particular (see Problem 5.18 in [8]) �1 does not have a semi-normalized basis with the NQP.

Proof. Suppose (xi) is a semi-normalized basis with the (ε, δ)-NQP. Then we let (Pn) be the basis projections and Ln = n.
By Corollary 5.14 X does not have finite cotype. �
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6. Concluding remarks and open problems

Kashin’s [20] celebrated result states that for any λ > 1 there is a K = Kλ so that for any n ∈ N and any N � λn, N ∈ N,
there is an orthogonal projection U from RN onto Rn (i.e. U is an n by N matrix whose rows are orthonormal) so that

Bn ⊂ K√
N

U (Q N ) ⊂ K Bn (36)

(as before Bn is the euclidean unit ball in Rn while Q N is the unit cube in RN ).
Lyubarskii and Vershinin observed in [21] that the column vectors (ui)

N
i=1 form a tight frame (with A = B = 1), that the

first inclusion in (36) yields that every x ∈ Bn can be written as

x =
N∑

i=1

K√
N

aiui with
∥∥(ai)

∥∥
�∞ � 1,

and that the second inclusion implies that the operator 1√
N

U :�N∞ → �n
2 is of norm not greater than 1, and that therefore

for given ε > 0 there is a sequence (ki)
N
i=1 ⊂ Z ∪ [−K/ε, K/ε], so that maxi�N |ai K − kiε| � ε and, thus,∥∥∥∥∥x −

N∑
i=1

εki
ui√

N

∥∥∥∥∥� ε and max |εki | � K . (37)

Thus, Kashin’s orthogonal projections (which are actually chosen randomly), lead to a frame (x(n)
i )i�N = (u(n)

i /
√

N)i�N
for �n

2, whose length is not larger than a fixed multiple of n, and, for which we can represent any element x in Bn as a

quantized linear combination with bounded coefficients. Since the zonotope {∑N
i=1 ai xi |ai| � 1 for i = 1,2, . . . , N} lies in Bn ,

it follows that the Hilbert frame (x(n)
i )i�N satisfies for any ε > 0 the (ε, ε, K )-BCNQP.

In view of the results presented in Sections 4 and 5 this is the best one could do in the finite dimensional case. We
are therefore interested in extensions of this result by Lyubarskii and Vershinin to other spaces as well as the infinite
dimensional space,

Problem 6.1. Does the above cited result hold for other finite dimensional spaces? More precisely, assume that 0 < δ,ε < 1,
C � 1 are fixed. For which n ∈ N and which n-dimensional spaces X can we find a frame (xi, f i)

N
i=1, with, say N = 2n, so

that for any x ∈ B X there is a (ki)
N
i=1 ⊂ Z so that∥∥∥∥∥x −

N∑
i=1

δki xi

∥∥∥∥∥� ε and max |δki | � C .

Remark 6.2. The above presented argument from [21] shows that if there is a quotient Q : �N∞ → X , and a frame (xi, f i)
N
i=1

of X , so that Q (ei) = xi , for i = 1, . . . , N , and so that for some K < ∞ B X ⊂ Q (B�∞ ) ⊂ K B X , then there is for all x ∈ B X and
all δ > 0 a sequence (ki)i�N ⊂ Z, so that∥∥∥∥∥x −

N∑
i=1

δki xi

∥∥∥∥∥� ‖Q ‖δ/2 � Kδ/2 and max
i�N

|ki | � 1

δ
.

Conversely, assume that for some 0 < δ,ε < 1, C � 1 we can find for all x ∈ B X a sequence (ki) ⊂ Z so that∥∥∥∥∥x −
N∑

i=1

δki xi

∥∥∥∥∥� ε and max
i�N

|ki | � C

δ
.

Then we can choose by induction for x ∈ B X a zi with

zn =
N∑

i=1

k(n)
i δxi, (ki) ⊂ Z ∩ [−C/δ, C/δ],

so that∥∥∥∥∥x −
n∑

i=1

εi−1zi

∥∥∥∥∥� εn.

Indeed assuming z1, . . . , zn−1 have been chosen we apply our assumption to y = ε1−n[x −∑n−1 ε1−i zi] ∈ B X to find zn .
i=1
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Thus, it follows that

x =
∞∑

i=1

εi−1zi =
N∑

j=1

x j

∞∑
i=1

εi1δk(i)
j ,

which means that there is a C1 < ∞ only depending on ε, δ and C so that

B X ⊂
{

N∑
j=1

ai xi: |ai| � C1

}
.

If we define now Q : �N∞ → B X , z �→∑N
i=1 C1zi xi, and deduce that Q is a quotient map and that B X ⊂ Q (B�∞) but we

cannot deduce (at least not obviously) a bound for ‖Q ‖.

Problem 6.3. Is there an infinite dimensional version of the result of Lyubarskii and Vershinin? I.e. for which infinite dimen-
sional Banach spaces X with a basis (ei) does there exist 0 < δ,ε < 1, C � 1 and a frame (xi, f i)i∈N so that for any x ∈ B X ,
n = max supp(x) < ∞, there is a (ki)

N
i=1, with, say, N � 2n, so that∥∥∥∥∥x −

N∑
i=1

δki xi

∥∥∥∥∥� ε and max |δki | � C?
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