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We give a new approach to the Ramsey-type results of Gowers on block bases in Banach
spaces and apply our results to prove the Gowers dichotomy in F-spaces.

1. Introduction

Our aim in this note is to establish the Gowers dichotomy [4] in a gen-
eral F-space (complete metric linear space). We say that an F-space X is
hereditarily indecomposable if it is impossible to find two separated infinite-
dimensional closed subspaces V,W, i.e., such that VNW ={0} and V+W
is closed (or equivalently that the natural projection from V +W onto V is
continuous). Our main result is that an F-space either contains an uncon-
ditional basic sequence or an infinite-dimensional HI subspace. In order to
prove such a result we give a new and, we hope, interesting approach to the
Gowers Ramsey-type result about block bases in a Banach space. We now
state this result (terminology is explained in §2 and in [5], [6]):

Theorem 1.1 ([4], [5], [6]). Let X be a Banach space with a basis. Let
OBx denote the unit sphere of X, i.e., 0Bx ={x € X: ||z|| =1}. Let 0 C
Y o(0Bx). Let © = (0;); be a sequence of positive numbers. If o is large
then there exists a block subspace Y of X such that og is strategically large
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for Y, where og is the set of all finite block bases {u1,...,u,} such that for
some {v1,...,v,} €0 we have ||u; —v;|| <6;.

In [5] and [6] the statement of Theorem 1.1 is announced for 0By replaced
by the unit ball except the origin, i.e., B=Bx\{0}={zeX: 0<|jz| <1}
There appears to be a slight problem in the non-normalized case in [5,
page 805, line -9] and [6, page 1092, line -2], namely, it is used that the
size of coefficients of a normalized vector with respect to a basic sequence of
norm at most 1, is controlled from above by the basis constant. Theorem 1.1
(including the non-normalized case) follows from our Theorem 3.8.

Gowers also considers an infinite version of the same result (Theorem 4.1
of [5]):

Theorem 1.2 ([5], [6]). Let X be a Banach space with a basis. Let
0 C ¥ (0Bx). Let © = (0;); be a sequence of positive numbers. If o is
analytic and large then there exists a block subspace Y of X such that og
is strategically large for Y, where og is the set of all infinite block bases
{u1,...,up,...} such that for some {v1,...,vn,...} €0 we have ||u; —v;|| <0;.

Other proofs of these results can be found in the work of Bagaria and
Lépez-Abad [1], [2]. Direct proofs of the dichotomy result without these
theorems can be found in [13] and [3]; see also [14].

Our main objective is to prove Theorem 1.2 in a form that is suitable
for our intended applications. We take a somewhat different viewpoint (see
Theorem 4.4 below) by treating this theorem as a result about block bases
in a countable dimensional space E¥ with no topology assumed. We consider
in fact only the intrinsic topology on F, i.e., the finest vector space topology.
We then give a proof which is rather distinct from that given by Gowers,
and we feel has some advantages. A benefit of this approach is that we are
able to apply the result very easily to the setting of a general F-space.

In §5 we prove that the Gowers dichotomy extends to general F-spaces
and discuss connections with similar (but easier) dichotomies for the exis-
tence of basic sequences. In the final section, §6 we prove the result of Gowers
and Maurey [7] that on a complex HI-space every operator is the sum of a
scalar and a strictly singular operator in the context of quasi-Banach spaces.
This generalization is not entirely trivial and requires a few new tricks, al-
though we broadly follow the same ideas as Gowers and Maurey.

2. Countable dimensional vector spaces

Let E be a real or complex vector space of countable algebraic dimension
(this is usually denoted by cgg in the literature). There is a natural intrinsic
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topology T =Tg on E defined as follows: a set U is T-open if UNF is open
relative to F for every finite-dimensional subspace F'. The topology 7T is a
vector topology on E and is, indeed, the finest vector topology on E. It is
known that (E,T) is in fact locally convex. More precisely if (e;)72; is any
fixed Hamel basis then the topology is induced by the family of norms

m
§ :ajej
J=1

where A = ();)72, is any sequence of positive numbers. In the case when
Aj=1 for all j we denote the resulting norm by ||-|/cc-

We will also be concerned with the product EN. On this there are two
natural topologies: the product topology T, and the box topology. The box
topology Ty is a topology which makes EN a topological group but not
a topological vector space. A base of neighborhoods of the origin for the
box topology is given by sets of the form [[ 2, U, where each U, is a T-
neighborhood of zero in E. A base can also be given by sets of the form
[ {z: |z]x <dn} for some fixed norm | - ||y and a sequence &, >0. We
observe the obvious fact that if V' is an infinite-dimensional subspace of E
then Tg|V =Ty and TE,bm’VNZTVbI.

Now let us suppose that E has a given fixed Hamel basis (e,)5> . Let
E, = [e1,...,e,] and Em = [én+1,€n+2,--.], where [...] denotes the linear
span. A sequence (vi);_; where 1 <n <oo is called a block basis of (e);2,
if each v #0 and

— Molas
X Bax jlagl

Pk
VE = Z a;€;
J=pPr-1+1
for some increasing sequence pg =0 <p; <ps <---. A subspace V of F is

called a block subspace if V is the linear span of a block basis.

We let ¥, (E) be the subset of EN consisting of all infinite block bases.
For each n € N we let X,(E) be the subset of EN of all block bases of
length n. We also let Xy(E) be the one-point set with a single member .
Let Y-+ (E) denote the union of all X, (F) for 0<n<oo. If A is a subset of
E we denote by X,,(A), etc., the subset of X, (F) with each element in A.
In particular we will be interested in the sets

A ={z € E: 0 < ||z] < 1}, Seo ={z € E: ||z]x = 1}.

Lemma 2.1. Let ||-|| be any norm on E so that (e,)>2 is a Schauder basis
of the completion E of (E,||-||). Then, on the space Yo (E) the product
topology T, coincides with the product topology induced by |||. In particular
(Y, Tp) is a Polish space.
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Proof. Let &, = (&,1)72; be a sequence in Yo(E) so that for some & =
(€k)72 € Yoo (E), limy oo |[€nk — k|| =0 for each k. Let us suppose &, 1 €

[€pp 1415+ >Epy ] Where ppo <pp1 <--- and that & € [ep,_ 41,-.-,€p,]-
Then it is clear that

hmsuppn,k—l < Pk, k= 1727"'

n—oo

using the fact that (e,,)22  is a Schauder basis. It follows that each sequence
(&n k)52 is contained in some fixed finite-dimensional space and so the con-
vergence is also in 7).

For the product-norm topology it is also easy to see that Y o(E) is a
closed subset of (£\{0})Y and hence is Polish.

Let B=B(FE) be the collection of all infinite-dimensional block subspaces
of (ex);2,. If V€ B then V is the span of a block basis (v,);2; and we
write B(V') for the collection of infinite-dimensional block subspaces of V'
with respect to (v,)52; (this is clearly independent of the choice of the
block basis). We will use the notation (vi,...,v,) < (u1,...,us) to mean that
(v1,...,v,) is a block basis of (uq,...,us).

Let o be a subset of Yo (E). We shall say that o is large if for every
VeB(E) we have cNXo (V) #0.

A strategy is a map @: Yoo (E)XB(E) = Yoo (E) if for all (ug,...,un) €
Yn(E) we have @(uq,ug, ..., up; V)= (u1,... , Up,Up+1) With u, 1 €V

If (V})72, is a sequence of block subspaces then we will write

D(uty ..y tun; Vi, Vi) = (U1, -« o Umntn)

and
ds(ula"'7un;‘/ia"'7vm7"'):(ula"'aum-‘rna"‘)

where uy, =P(u1,. .., Unrk—1; Vi) for k>1. In the case when n=0 we write
S(V1,...,Vy) or @(Vi,... . Vi, ...) for @(0;V4,.... Vi) or @(0;V4,..., Vig,..0).

A subset o of Yo(E) is called strategically large for V € B(E) and
(Ui,...,up) € Xeoo(E) if there is a strategy @ with the property that for
every sequence (V)72 with V;CV we have

D(uty ..y tun; Vi, o, Vi, o.) € 0.

o is strategically large for V € B(E) if it is strategically large for V € B(E)
and 0.
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3. Functions on subsets of ¥ (F)

If VW are subspaces of E let us write V C, W to mean that there exists a
finite dimensional subspace F so that VCW + F.

Lemma 3.1 (Stabilization Lemma). Let E be a countable dimensional
space with fixed Hamel basis (ej);° ;. Let X be a separable topological space
and suppose that, for each V € B(E), fy: X —R is a continuous function.
Suppose further that

(@) = fn(z), zeX

whenever Vi C, Vo. Then there is a block subspace W of E so that fy = fiy
whenever VCW.
More generally suppose (X,,)>2, is a sequence of separable topological

spaces and for each V € B and n €N, f‘(/n) : X, =R is a continuous function.
Suppose further that

@) > f@),  zex,

whenever Vi C, Vo. Then there is a block subspace W of E so that f‘(,n) = fé{,l)
whenever V C, W and neN.

Proof. We prove the first part. We define block subspaces V, for every
countable ordinal « by transfinite induction, so that a <8 == V3 C, V,.
Set Vi = E. For each « which is not a limit ordinal, say a = 8+ 1 define
Vo C Vg so that fy, # fy, if possible; otherwise let V, =Vj. If v is a limit
ordinal then a=sup,, 8, for some increasing sequence (/3,,)°2; with 3, <a.
Thus Vg,, Cq Vg, if m > n. In this case we may by a diagonal argument
find V,, so that V,, C, V3, for every n (simply choose a block basis v, with
v € Vg, N---NV3 ). Now it follows that the functions fy, are increasing in «
for 1<a<wi. If D is a countable dense set in X there must therefore exist
a countable ordinal 8 so that

fv,(@) = fr,(z), z€D, <o

Thus fy, , = fy, so that W=V} satisfies the conclusion.

The second part reduces to the first if we consider X =(J;7; X,, topol-
ogized as a disjoint union and fy: X — R given by fy(z) = f‘(/n)(:zs) when
zeX,.
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Consider a function f: Yoo (A) — [0,00) where A = S or A = A.
We shall say that f is uniformly Ty.-continuous if given € >0 there is a se-
quence (Uy, )2, of T-neighborhoods of 0 such that if (uq,...,u,), (vi,...,v,) €
Yeoo(A) and uj —v;€U; for 1 <j<r then

|f(ut, . ue) = for,.. 00| < e

In effect if we introduce maps f[™ on X, (A) by

f["}(ul,...7uk,...) = f(ug,...,un)

this requires that the family of functions (f [”])fbozl is equi-uniformly contin-
uous for the box topology Ty, .

We will need a slightly weaker notion for maps f: Y. (Ax) — [0,00).
We will say that f is admissible if it is bounded and

(i) given € > 0, there is a sequence (U,)>2; of T-neighborhoods of 0 such
that if (u1,...,u.),(v1,...,0) € Yeoo(Sso) and u; —v; €Uj for 1 <j<r
then

|f(Aug, ..o  Avur) — f(Aor, .0, Avep)| <, (Ayo M) € (0,1)7;

and
(ii) given e>0 and (uq,...,u,) € Yeoo(Sx) there exists §=05(uq,...,u,,€)>0
so that if 0<\;, ;<1 for 1<j<r and maxj<j<,|A\; — ;| <J then
’f()‘lula s 7)‘rur7vl7 s 7US) - f(lu’lula cees MUy, U1y - 7US)| <€,
whenever (u1,..., U, v1,...,05) € Xeoo(Ano)-

The following Lemma is easy and its proof is omitted:

Lemma 3.2. (i) Suppose f: Ycoo(Aoo) —[0,00) is bounded and uniformly
Tye-continuous; then f is admissible.

(ii)) Suppose f: Ycoo(Sac) — [0,00) is uniformly Ty,-continuous; then
9: Yeoo(Aso) = [0,00) is admissible where g(uq,...,un) = f(u1/]|u1] co,
< Un/[[tnloo)-

Lemma 3.3. If f: Y (Ax) — [0,00) is admissible then for each m € N
the map Fy,: (0,1]™ x X, (S) —[0,00) defined by

F(/\l,...,/\m,ul,...,um) = f()\lul,...,/\mum)

is continuous when X,,(S~) C (E,T)™ is given the subset topology.
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Proof. Suppose €>0. We pick T-neighborhoods of zero in E, Uy,...,U,, so
that u; —v; €U; for 1 <j<m implies that

lf(A1v1, s Amum) — f(Aqug, oo Apum)| < €/2

for every (Ai,...,Am) € (0,1]™. If (v1,...,0m) € Zn(En N Ss) we then pick
d=0(v1,...,0m) >0 so that if |\; — ;| <6 for 1<j<m we have

’f()\lvla--w)\mvm) - f(ulvla---aﬂmvm)’ < 6/2

Combining gives

’f()\lula---a)\mum) - f(ulvla---aﬂmvm)’ <€

whenever maxi<j<m|A\j — ;| <9 and u; —v; € Uj for 1 <j<m. Thus F is
continuous at each point (f1,. .., fm,V1,---,Um)-

Suppose f: Xeoo(Aoo) —[0,00) is any admissible function. Let us adopt

the convention that the function f takes the value 400 at any point of
EN\ Y (Awo). For any V € B(E) define the function f{, on Xo(Ac) by

fr(ug, ... uy) =
lim inf{f(uh...,un,vl,...,vs): v1,...,0s € VAEM s> 1}.
m—r00
Note that V C, W implies that f{, > fj; .
The following is more or less immediate:

Lemma 3.4. If f: Y (Ax)—[0,00) is admissible, then each of the func-
tions fi,: Xcoo(Ass) —[0,00) is admissible.

Lemma 3.5. If F is a countable family of admissible functions, then there
exists V € B(E) so that for every W € B(V') and every f € F we have fj;, = fi,.

Proof. For W e B(E) and m<n define gp, nw: (0,1]™ x 2, (Sec NE™) =R
by
I (A Ly, Ay U, o Uy) = f{/V()\lul, e Al

Thus g, n,w is continuous by Lemma 3.3. Since (0,1]™ x X, (Sec N E™) is
separable for each m, n, we can apply the Stabilization Lemma 3.1.

We can thus assume, under the hypotheses of the Lemma (by passing
to a block subspace), that f has the property that f{, = f} for all block
subspaces V. If this happens we shall say that f is stable and we write f’
for f5. Note that f’ is admissible.
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Proposition 3.6. Let f be a stable admissible function. Suppose (u1,...,
Ur) € Yeoo(Aso) and V' is a block subspace. Then for any € >0 there exists
€€V \{0} so that either:

(a) f(ula"'7u7"a£)<f/(ula"'7ur)+6; or
(b) f/(ula"'7u7"a£)<f/(u1a"'au'r)+6'

Proof. Let us assume that (ug,...,u,) € X, (E). Let us further assume that
V' is a block subspace so that for any £ €V we have

f(ula-"au’l"ag) > f/(ula"'aur)+€7
fut, . oum, &) > f(ug, .. u) + e

Let (vj)52, be a block basis which is a basis of V. We choose an increasing
sequence of integers (gi)72, as follows. Let ¢y = 1. Assume q,...,q; have
been chosen. Let mgy be the smallest integer so that v, € E,,,. Then for
every £ € SooN[Vg,,---,0g,] (3.1) holds. We may pick a neighborhood U of 0
in (E,T) so that

If(ut,. .o up, A wy oo ws) — f(u, .oy Up, A, w1, .. ws)| < €/8

when é—neU, (wq,...,ws) € Yoo (AscNE0)) and 0 < A < 1. By compactness
there is a finite subset (&1,...,&) of SooN[vg,,...,vq,] such that n € SeoN
[Vg1,---,Vq,) implies n—§; € U for some j. Now pick an integer IV large enough
so that |[A—u|<1/N implies

(3.1)

|flut, .. up, A& wi, . ws) — flu, oo, pé,we, .. ws)| < €/8
whenever (wy,...,ws) € X coo(E(™)). Now by our assumptions we can pick
m>myg so that
f(ul,...,u,«,}f,gj,wl,...,ws) > f(ug, ... ur) + Ze
whenever 1<j<t, 1<k<N and (wy,...,ws) € Xcoo(E™). Hence
Flut, . up, A, wi, oo ws) > f(uny ... uy)
whenever 1<j<t, 0<A<1 and (wi,...,ws) € X¥eoo(E™), and thus

(32) f(ula---aum)\&wla---7ws) > f/(ula"'aur)+ 56

whenever 0 <A<1 and £€ScN[vg,,. .., V]

Then we pick gg11> g so that vy, €F (m) This completes the inductive
construction. Now let W = [vg,,0q,,...]. There exists (wq,...,ws) € Xs(W)
(where s>0) so that f(u1,...,ur,wi,...,ws) < f'(u1,...,u,)+€/2.

If s =1 then & = w; contradicts (3.1). If s > 1 let \{ = w; =
25'21 a;jvg; where a; # 0. Then by the selection of ;1 and (3.2) we see
that f(u1,...,up,w1,...,ws)> f'(u1,...,u,)+€/2, a contradiction.

5
+ g€
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Lemma 3.7. If f: Y. (Ax) — [0,00) is admissible then the function
9: Yeoo(Aso) —[0,00) given by g(uq,...,u,)=1ifr=0 or r=1 and
):

glur,. up) = mf{f (v, v,

(if r>1) is admissible.

(V1,0 08) < (Ugy.oyuy), 1< s<r}

Proof. Note that ¢ satisfies g(Ajui,...,Amtm) = g(u1,...,upy) if (ug,...,
Um) € Yeoo(Seo) and (A1,..., Am) € (0,1]™. Hence it suffices to show that g
is uniformly 7p,-continuous on Y. (S« ). Note that, if for all(ui,...,uy,)€
Y 00(Sso) we define

h(ui,. .. up) = nf{f(Aur, ..., Aptm): (A1,..., Am) € (0,1},

then h is uniformly 7;,-continuous and

glun, . up) =
inf{h(vy,...,vs): (V1,...,05) < (U1,...,up), 1 <s<r} r > 1.

Suppose €>0. Then there is a sequence (U, )2 ; of T-neighborhoods of zero
so that if (u1,...,un), (V1,...,Un) € eoo(Sao) and uj—v;€Uj for 1<j<n
then
|h(uty ... up) — h(v1,...,0n)] <e.

Pick a sequence of circled neighborhoods of zero, (U},)52;, so that U/ 4+U;, 1+

-+ U] .1, C U, whenever k > n. Then suppose (u1,...,un),(V1,...,Un) €
2<oo(soo) with u; —v; € U for 1 < j < n. Assume n >0 and pick
(1, @) < (U, ..., up) With r<n so that h(z1,...,2.) <g(u1,...,un)+n.
If z; = Zi:k—i—l a;u; let y; = Zi:k—i—l a;v;. Then |a;] <1 and so z; —y; €
Uy +--+U CUj since j<k+1. Hence

h(yla"'ayr) <g(U1,..-,Un)+€+77

and so

g(vr, .. vn) < glug, ... uy) + e
By symmetry

lg(v1, ... on) —g(ur, ... u,)| <€

and hence g is uniformly 7p.-continuous.

We shall say that a strategy @ is (e,V)-effective for f where € > 0 and
V e B(E) if for every sequence of block subspaces V; CV there exists n € N
so that

f@0,V1,..., Vo)) < sup  fiy(0) +e
WeB(E)
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If (u1,...,ur) € Yoo (E) we shall say that a strategy @ is (e,uy,...,u,,V)-
effective for f where € > 0 and V € B(E) if for every sequence of block
subspaces V; CV there exists n €N so that

f(@ur, .. ue, Vi, Vi) < sup fiy(ug, ... up) + e
WeB(E)
Theorem 3.8. Suppose f: Yo (Ax) — [0,00) is admissible. Then, given

€ >0 there is a block subspace V' and a strategy ¢ which is (e,V)-effective
for f.

Proof. Before presenting the details of the proof we outline it: First we
assume without loss of generality that fi,(0) =0 for all V € B(E). Then
we add a penalty function to f to define a function h. We pass to a block
subspace to stabilize h to h'. The penalty function makes sure that for every
W =[uy,ug,...| € X(Ac) there exists an integer r such that h'(u1,...,u,) is
large. Then for some sequence (¢;) of small positive numbers we inductively
use Proposition 3.6 to define the strategy, so that at each step, either h or A’
is controlled by the value of h’ at the previous step. Because of the penalty
function, it is impossible that always h’ is controlled. So at some step h is
controlled. The first time that this happens gives you the result!

Now let’s go over the proof again, slowly this time, and see the details:
We assume (after stabilization) that f{,(0) = 0 for all V' € B(E); indeed
if a = supyepp) fiy(0) then replace f by max(f —a,0). We consider the
admissible function

h(u, ... up) = flu, ... up) +2(e = 2g(ug, ...y up))

where g is the function defined in Lemma 3.7. By Lemma 3.4 we can pass
to a block subspace where h is stable; so let us assume h is stable on FE.

We first claim that if (u1,...,un,...) € Yoo(As) then there exists n so
that h/(u1,...,u,) >e€. Indeed, let W=[u1,...,up,...]. Then, since f}; (0)=0,
there exists (v1,...,vs) € Yeoo(W) with f(vy,...,vs) <e/4. Then we may find
r > s so that (vy,...,vs) < (ug,...,u,). Hence for any (x1,...,2¢) such that
(Upyeen s Upy @y, X)) € Yoo (Aso) We have

h(ug, ... up, @1,y ... x) > 2(e = 2f (v1,...,04))
so that
B (up, ... up) > 2(e — 2f(v1,...,05)) > €,

which proves the claim.

On the other hand, given any block subspace V', there exists a minimal
s>1 so that we can find (vy,...,vs) € YXeoo(V) with f(v1,...,vs) <€/2. Thus
g(v1,...,v5)>¢€/2 which implies h(vy,...,vs) <e€/2. Hence h'(D) <e/2.
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We now use a strategy for h indicated by Proposition 3.6. Suppose €; >0
for each j >0 and ) e <€/2. Given (u,...,u;) € ¥eoo(F) and V € B(E)
we define @(uq,...,u,,V) to be (u1,...,u,,§) where £ € V'\ {0} is chosen so
that A/ (uq,...,ur, &) <h'(u1,...,up)+e. or h(uy,...,up, &) <h'(u1,...,u.)+e,.
Let (V})72; be a sequence in B(E) and let (ui,...,ur,...) = @(0;V,...).
Then, by our previous claim there exists a first n>1 so that h'(uq,...,u,) >
R (uy,...,up—1)~+€,—1. Hence

n—1
h(ug, ... un) < W (u1,... un_1) +€p_1 < W(0) + Zej < €.
j=0

We need an obvious extension of this result.

Theorem 3.9. Suppose f: Yoo (Aso)—[0,00) is admissible. Then there is
a block subspace V' such that for each (ui,...,u;) € Ycoo(Ax) there is a
strategy D, .., which is (€,u1,...,u,,V)-effective for f.

Proof. For each (uy,...,u,), it is easy to produce a block subspace Vi, ..
and device a strategy Wy, ., which is (e/2,ui,...,up, Vi, u, )-effective
for f. Indeed, suppose u, € E,,; define

filvr, ..o vs) = fug, ooy up,v1,.00,08),  (V1,...,05) € E<OO(AOO ﬂE(m))

and apply the preceding theorem to fi. (¥, 4, has to be defined in some
arbitrary fashion for (wy,...,ws) which do not have (uy,...,u,) as an initial
segment.) Furthermore it can be seen that for each block subspace W we
can choose Vi, ., CW.

To obtain a single block subspace V' we first construct a dense countable
subset Dy, , in each X} (E,;,N A ). We arrange the elements of D= Um,r Dy r
as a sequence and hence find a descending sequence of subspaces (V},) so that
the strategy @y, .. v, is (€/2,u1,...,u,, V;,)-effective for f when (uq,...,u,) is
the nth member of D. If we select V' to be block subspace so that V C V,,+F,
for some finite-dimensional F,, for each n, then (via a simple modification)
each @y, 4, is (€/2,u1,...,u,,V)-effective for f. Finally we observe that if
(v1,...,v,) € X (E,,) is arbitrary and we then choose (uq,...,u,) € D close
enough, we can define a strategy by

Doy (V1O w1, W) =Wy (U U, W W)

(and arbitrarily otherwise) then we will have that @, ., is (€,v1,...,v,,V)-
effective for f.
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4. The infinite case

We now turn to the infinite case. Suppose f: X (Aoo) —[0,00) is a bounded
uniformly 7,-continuous function. We may define f{,: Y« (As) — [0,00)
in a precisely analogous way. As before we adopt the convention that f=+o0
on BN\ ¥ (As). Let

ol up) =
lim inf{f(u1,..., 0, 01,...,0s,...): 0 eVNnE™, i=12,...}.
m—0o0

It is clear that the functions {f{,: V € B(E)} are equi-uniformly Tp,-
continuous.
Proceeding in the same manner as before we can show:

Proposition 4.1. If f,,: Yoo (Asx) — R is any countable family of bounded
Ty uniformly continuous functions, there is a block subspace V' of E so that
fiy = fi, whenever W eB(V).

We shall say that f is stable if fi,= f{, for every V € B(E).

Lemma 4.2. Let fp: Yoo(As) — [0,00) be a sequence of bounded uni-
formly Ty,-continuous functions and suppose f=inf f,, is also Ty,-uniformly
continuous. Assume that each f, and f are stable. Let h: Y (Ax) =
inf, f;,. Then for every V € B(E) we have hy, < f'.

Proof. Let V € B(E). Let us assume hy, (u1,...,ur) > A > f'(uq,...,u,) for
some (uq,...,Ur) € Yoo (AccNV). Then there exists m so that if (vy,...,vs) €
Yeoo(E™NV) with s>1 we have

h(ut, ... tp, 01, ..., 05) > A

Thus
U, oy, 01, ) > A, n=12....

Let us pick wy € Ao NEM™ NV. We will construct a sequence (wn )24
in V' by induction. Suppose (w1,...,w,) have been selected and let W,, =
[wi,...,wy). Then by compactness we can find p so that W,, C E, and if
1<k<n and (vi,...,v;) € Xp(W,,NAx) then

Je(ut, oo Upy U1, e U, X1, oy o L) > A

for all choices of (z;)72; in E®) . Pick w,, € EP)NV.
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Now let W = [wj];?‘;l. Our construction guarantees that for every n it is
true that

folug, ..o up,x1,29,...) > A, zjeW, j=1,2,....

Indeed we have (z1,...,2,) € X, ([wi,...,wy]) where m > n and so this
follows from our inductive construction. Thus

f’(ul, PN ,UT) Z )\,
contradicting our initial hypothesis.

We now use the space NN with the usual product topology; this can be
regarded as the space of all infinite words of the natural numbers. We will
write N<°° = J>2 ;N*¥ which is the space of all finite words of the natural
numbers, including the empty word. We will use (n1,...,ng) or (n1,na,...)
to denote a typical member of N<* or NN respectively.

Theorem 4.3. Suppose F': NN x ¥ (Ay)—[0,00) is a bounded map. De-
fine fp, ny....: Yoo(As)—[0,00) by

fm,nz,...(ula ug, . - ) = F(nl,ng, oo U, U9, .. )
Suppose

(i) the maps {fn, n,,.: (n1,n2,...) € NNYare equi-uniformly T,-continuous;
(ii) the map F: NN x X (Ay) — [0,00) is lower semi-continuous for the
product topology on NN x (X (Ax), Tp)-

Let

f(ul,UQ, . ) = n ninf)eNN F(nl,ng, Loy U, U9, . )
1,12

If f{,(0)=0 for every block subspace V', then given ¢ >0 there is a block
subspace V' so that {f <e} is V-strategically large.

Proof. For each (nq,...,n;) eN<> we define
fn17n27---7nk (ul,UQ, .. ) = mli%fg F(nl, ey N, M1, Moy U, U, - )

The family fp, n,,... n, 18 Tpg-equi-uniformly continuous. By passing to a block
subspace we can assume that each fy, n,,.. n, is stable. Of course the family
fh....ny, 18 also Tye-equi-uniformly continuous. Let

h”lumﬂlk (ula s auT) = rggl‘\l frlbl,...,nk,m(ulv s 7u7')a (ula s 7“7') € E<OO(AOO)
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This family is also equi-uniformly 7p.-continuous. Passing to a further block
subspace we can suppose that this family is also stable.

By Lemma 4.2 we have that hy, ., <f, ..

Let us choose a sequence (€,)7°, with Y €, =€ <e. Again, by the proof
of Theorem 3.8, and by exploiting the countability of the family h,, . ., we
can pass to a further block subspace and, by relabelling as E, suppose that
for each (nq,...,ng) €N and (uq,...,u,) € Y¥eoo(Ax) there is a strategy
Dos .. mpun .., With the property that if (VJ);';I is any sequence of subspaces
then for some p>1,

/
hnl,m,nkénl,m,nk,ul,m,ur(ula sy Uy, V17 <o 7‘/]7) < hnl,...,nk (ula v aur) + €.

We will now define a strategy ¥. To do this we first define maps
0: Yeoo(Ax) = N and ¢: Yooo(As) — N such that o(uq,...,u,) < r.
This is done inductively on the length of (u1,...,u,). We define 6(0) =0 and
©(0)=0. Suppose that § and ¢ have been defined for all ranks up to r and
consider (uy,...,Up41).

Let O(u1,...,uy)=(n1,...,nx) and @(u,...,u,)=s. If

hnl,...,nk (ula s 7UT+1) < h/nl,m,nk (Ul, s 7u5) + €k

then we can choose m &N so that

f'r,zl,m,nk,m(ula v 7UT+1) < h/nl,m,nk (UI; s ,Us) + €k-
Let O(u1,...,upy1)=(n1,n9,...,nk,m) and @(uy,...,up41)=7r+1.
Otherwise we simply put 6(uy,...,u,41) = (n1,...,n) and p(ug,...,

Ur+1) =S.
To define ¥ we set

Ep(ula sy Up, V) = ganl,...,Tz,;c,ul,...,us (U17 ceey Up, V)

where (ni,...,n;)=0(uy,...,u,) and s=p(uy,...,u,).

Finally, we must show that if (V])‘;‘;l is any sequence of subspaces the
sequence (u1,ug,...)=%(0,V1,Va,...) is in {f <e}.

Let k(r) be the length of §(uy,...,u,). Then k(r) <r for all r. Suppose
k(r) remains bounded. Then there exists s so that ¢(uq,...,u,) =s for all
r>s and O(uy,...,ux) = (n1,...,n;) for some fixed (ny,ng,...,ny) € N<
when k£>s. Thus

(Ut oy Ur) = Loy omgug s (U1, - U, Vi, oo, Vi), r>s.
It follows that for some r > s we have

Py g (U1, uy) < h;u,...,nt (Ug,...,us) + €
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which implies that ¢(r)=r which is a contradiction. Hence k(r)1oc. Let r;
be the first natural number at which k() =j. Then there exists (ni,ns,...) €
N¥ so that

O(ut, ... up,) = (n1,...,n5).
By construction

fry (s up) < B(D) + €0
and then for j>1,

frlbl,...,n -+1(u17 s 7u1”j+1) < h;n,...,n-(uh s 7u1”j) + €5
J J

: / !/
Since hiy, oy < fny,...n; We conclude that

frlbl,...,nj (U’l? s 7ukj) <€

for all j. But this implies the existence of (n;i,nj2,...) € NN and
(Uj1,Uj2,...) € Yoo(Ax) so that nj;=n; for i <j and u;;=wu; for i<k; and

. / .
F(njyl,nj,g,...,Uj}l,u]"g,...) <€, i=12,....
Finally we invoke lower semi-continuity:
F(ni,ng,...;up,ug,...) <e€

and so f(u1,uz,...)<e.

We now recall (Lemma 2.1) that Yo (E) is a Polish space for the topol-
ogy Tp. Thus every Borel set is analytic (i.e., a continuous image of NN,

Theorem 4.4. Let o be a large subset of Yo (E). Suppose:

(a) There is a sequence of absolutely convex sets Cy,, such that C, N F' is
compact for all finite-dimensional subspaces F and o C[[}2 | Cy,.
(b) o is analytic as a subset of (X (E),Tp).

Let p, be any sequence of F-norms on E and define for u =
(ul,u2,...), U:(Ul,vg,...)GEOO(E)

d(u,v) = pjlu; —vy).
j=1

Let oc = {u= (u;)52y: d(u,0) = infye, d(u,v) <e}. Then for every e >0
there is a block subspace V' so that o is strategically large for V.
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Proof. We start by reducing this to the case when C, = {z: ||z||c < 1}.
To do this first observe that each C), is T-closed. Since ¢ is large the linear
space generated by C), is of finite codimension; if F,, is a complementary
space we can replace C,, by the bigger set C,, + K,, where K,, is a compact
absolutely convex neighborhood of the origin in F,,. So we can suppose C,
is absorbent and hence generates a norm ||-||,, on E. By induction, we can
find a sequence of positive numbers 4, so that ||z||=>""7, o]z, < oo for
all x € E. Thus we can assume that each C),, = {z: |z|| < M,} for a single
norm ||-||.

We can now pass to block basis which is a normalized basic sequence in
the completion of (E,||-||). Intersecting o with X (V') for a block subspace
gives again an analytic set since X, (V) is closed; thus we can relabel so that
the block subspace is already E. It now follows that each C,, is included in a
set {z: [|2|l0 < M] } where M is some sequence of positive numbers. Finally
we put o’ ={(u1,us,...): (Mju1, Mjusg,...)€c} and note that 0/ C ¥oo(Aso)-
Clearly it is enough to prove the result for ¢’ with p; replaced by ,03(1‘) =
pi(Mjz).

We therefore assume that 0 C Yoo (Aso).

Now there is a continuous surjective map g: NN — ¢ for the T)-topology.
We will define

F: NV x ¥ (As) — [0,00)

by
F(ny,ng,...;u1,ug,...) = min(l, d((uy,us,...),g(ny,ne,.. )))

It is clear that the family f,, n,,... given by

Trina,.. (u,u2,...) = F(ny,ng,...;ui,ug,...)

is equi-uniformly 7Tp.-continuous. It is also clear that F' is lower semi-
continuous for the 7,-topology in the second factor.
The result now follows directly from Theorem 4.3.

5. Applications to F-spaces

Recall that an F-space is a complete metric linear space, i.e., a vector space
X over the real or complex numbers, along with a metric p: X x X - R
such that the addition is continuous with respect the metric p, the scalar
multiplication is continuous with respect the standard metric of R or C and
the metric p, the metric is translation invariant, i.e., p(z+a,y+a)=p(z,y)
and (X,p) is complete. We now apply the previous results to obtain the



A NEW APPROACH TO RAMSEY-TYPE GAMES 375

Gowers dichotomy for F-spaces. Before doing this we make some remarks
on basic sequences in F-spaces. There is an F-space (indeed a quasi-Banach
space) which contains no basic sequence [10]. It turns out that there is a
dichotomy result for the existence of basic sequences with a very similar
flavor to that of the Gowers dichotomy, which has been known for some
time.

We will need some background (see [11]). Let X be an F-space and let
p be an F-norm inducing the topology. A basic sequence (x,)5; is called
regular if inf,, p(x,,) >0. We denote by w the space of all sequences (i.e., the
countable product of lines). The canonical basis of w is not regular, and w
contains no regular basic sequence. The following result is elementary.

Proposition 5.1. Suppose X contains no subspace isomorphic to w. Then
given a basic sequence (z,,)7°, we may choose a, >0 so that (anx,)5> is
regular.

Proof. Indeed if not we have inf,cysup,cr p(ten,) = 0. Then some subse-
quence of (e,)>°  is equivalent to the canonical basis of w.

Two subspaces Y, Z of an F-space X are called separated if YNZ={0}
and the canonical projection Y+ Z —Y is continuous. An F-space is called
HI if no two infinite dimensional subspaces are separated.

Proposition 5.2. Suppose X has a regular basis (e,)° . If there exist
two separated infinite-dimensional subspaces Y, Z of X then there exist two
separated block subspaces of X.

Proof. Since X is regular the seminorm ||z|/s =sup|e}(z)| defines a con-
tinuous norm on X. Now, fixing 0 < € < 1/8 we may inductively define a
sequence (zy,)>2; € X and a block basic sequence (u, )52 such that:

(i) ||znlleo=1 for all n;
(i) p(xn —un) + ||Tn — Un||co <€/2™ for all n; and
(iii) x, €Y for n odd, x, € Z for n even.

Note that ||uy|leo >1—€>1/2.

Let Py be the canonical projections of Y + Z onto Y with kernel Z.

For v = Z?:l aju;j in the linear span of the sequence (u,);>; we define

Kv=3}"_ a;j(zj—u;). Then

Kov) < <2
p( v)_elrg]agn!ag!_ ellv]loo

so that K is continuous. Furthermore

[Kv[oc < 2¢ max |aj|sup [[unllec < 4€[v]oo-
1<j<n
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Thus T =1+ K extends to a continuous operator T': [u,|5%; =Y + Z.
Now
[T]loo = (1 = 4€)||v]loc = 1/2[0] o v € [un]pZy.

If (v,)$2 4 is a sequence such that lim,, o p(Tvy,) =0 then lim,, o || 705 || co =
0 and so lim, o ||vn]lc = 0. Thus lim, o p(Kv,) = 0 and hence
lim;, o0 p(v,,) =0. Hence T is an isomorphism of [u,]>2 ; into Y+Z. Consider
the operator S=T"'PyT: then S is a projection of [u,]%; onto [ug, 1],

and the block subspaces V =[ug,-1]°2; and W ={us,|02 , are separated.

Theorem 5.3. Let X be an F-space with a regular basis containing no
unconditional basic sequence. Then X has an HI subspace Y.

Proof. We assume that X has a regular basis (e,)02 .
oo

We now consider the countable dimensional £ with Hamel basis (e, )72 ;.
Note that the norm |||/ on E is continuous with respect to the F-space
topology since (e,)n> is regular. For any block basic sequence (uy)2; we
say that (u,)52 is somewhat unconditional if the map

oo oo
Z a;u; — Z(—l)jajuj
j=1 j=1

(defined for (a;)$2; € coo) is continuous for the F-space topology restricted
to E. Let og be the collection of all somewhat unconditional sequences. We
claim that with respect to 7, this set is a Borel subset of Yo (E). Indeed let
(Unm)3o_, be a base of open neighborhoods of zero. Let oo(m,n) be the set
of (u;)72; so that

00 00 '
Zajuj el,, — Z(—l)yajuj ceU,.
j=1 j=1

Then og(m,n) is Ty-closed and oo=(o—; Ui 00(m,n).

We define o to be the subset of ¥, E' of all block basic sequences (uy, )52 4
such that ||u,|lec =1 for all n and (u, )2, fails to be somewhat uncondi-
tional. Then o is also Borel in 7,. Furthermore, since X contains no uncon-
ditional basic sequence we conclude that o is large.

Fix some 0 < e <1 and let ¢’ be the subset of X (E) of all sequences

(vj)721 such that

inf{Z(Huj — Vjlloo + pluj —vj)): (u)32, € a} < e

j=1
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Note that if (vj)52; € o’ there exists (u;)?2; € o which is equivalent to
(vj)32. Hence each (v;)32, €0’ fails to be somewhat unconditional.

According to Theorem 4.4 we can find a block subspace V' so that ¢’ is
strategically large for V. Let Y be the closure of V. We show that Y is HI.
Y has a regular basis (u,,)52 which is a block basis of (e;,)2° ;. According to
Proposition 5.2 we need only check that if Wi, W5 are two block subspaces
of V then W7 and W5 cannot be separated.

Let @ be the strategy guaranteed by the fact that o’ is strategically large.
Then @(Wy,Wo, W1, Wa,...) = (v1,v2,...) and the sequence (Uj)?il fails to
be somewhat unconditional so that Wy, W5 are not separated.

Let us now recall the criterion of the existence of basic sequences given
in [8] (see also [12]). An F-space X is called minimal if there is no strictly
weaker Hausdorff topology on X.

Proposition 5.4. If X is a non-minimal F-space then X contains a regular
basic sequence.

Let us call an infinite-dimensional F-space X strongly HI (SHI) if it con-
tains a non-zero vector e so that e € L for every infinite-dimensional closed
subspace L of X. We remark that it is possible to consider spaces X which
satisfy the slightly stronger condition that any two infinite-dimensional
closed subspaces have non-trivial intersection; this condition implies X con-
tains no basic sequence, but it is not clear if it implies that X is SHI. The
problem is that we do not know if, under this condition, the intersection of
any three infinite-dimensional closed subspaces is non-trivial. This is related
to the fact, discussed later, that the sum of two strictly singular operators
need not be strictly singular (see the discussion after Theorem 6.1).

Let X be an F-space. We say that a collection L of closed subspaces of X
is a subspace-filter in X if each L € L is infinite-dimensional and Ly NLs € L
whenever L1, Ls € L; we say that a subspace-filter L is a subspace-ultrafilter
if it is not contained properly in any other subspace-filter.

Theorem 5.5. Let X be an F-space containing no basic sequence. Then
X has an SHI-subspace Y .

Proof. We may assume that X is separable. We pick £ to be a subspace-
filter such that H=({L: L€ L} has minimal dimension (1 <dim H <o0).
We will argue that dim H > 0. Indeed if H={0} then we define a topology
7 on X by taking as a base of neighborhoods sets of the form U + L where
U is a neighborhood of zero in the F-space topology and L€ L. If H={0}
then 7 is Hausdorff. By Proposition 5.4 we have that 7 coincides with the
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original topology. Then we may find a strictly decreasing sequence L, € L
so that L, C {x: p(x) <27 "}. If we pick x,, € Ly, \ Ly11, it is easy to verify
that (z,,)52; is a basic sequence equivalent to the canonical basis of w.

If dim H = oo then it follows from maximality that H has no proper closed
infinite-dimensional subspace and so we may take Y = H and y any non-zero
element of Y. If dim H < co we first argue by Lindelof’s theorem that since
X is separable we can find a descending sequence of subspaces L,, € L so
that ()L, = H. We may suppose this sequence is strictly descending and
take x, € Ly \ L41 for n>1. Let V;, = [z}]k>y so that V,, C L,,. Suppose W
is any closed infinite-dimensional subspace of Vi; then dimV,,NW = oo for
each n. Let £’ be any subspace-ultrafilter containing each V,, and W. Then
(W{L: Le L'} C H but the inclusion cannot be strict because the original
minimality assumption on dim H. Hence H C W. Thus we can take Y =V]
and y€ H \ {0}.

An examination of the proof shows that we have actually proved a slightly
stronger result:

Corollary 5.6. Let X be an F-space containing no basic sequence. Then
X has an SHI-subspace Y with the property that if E is the intersection of
all infinite-dimensional subspaces of Y then there is a descending sequence
of infinite-dimensional subspaces (Ly)5>, of Y with (0", L,=FE.

We are now ready to establish the full force of the Gowers dichotomy for
F'-spaces.

Theorem 5.7. Let X be an F-space. If X contains no unconditional basic
sequence, then X contains an HI subspace.

Proof. If X contains no basic sequence then X contains a SHI subspace
(Theorem 5.5). So we may assume X has a basis. Clearly X cannot contain
a copy of w so we can assume the basis is regular (Proposition 5.1). Now
apply Theorem 5.3.

We conclude this section with:

Theorem 5.8. Let X be an HI F-space. Suppose X has a closed infinite-
dimensional subspace containing no basic sequence. Then X contains no
basic sequence.

Proof. We will show that if (V},)7° is any descending sequence of closed
infinite-dimensional subspaces of X then (o2, V, # {0}. We use Corol-
lary 5.6 to deduce the existence of a descending sequence of infinite-
dimensional closed subspaces (L,)%, such that, if £ = (2 L,, then
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E # {0} and F is contained in any infinite-dimensional subspace of L;.
Consider the sequence (L, NV,)>2 ;. Then if dim L, NV,, = oo for all n we
have EC (o, Lo NV, CN02y Vi

If not then there exists ng such that dim(L,, NV,,) is finite and constant
for n > ng. Hence L, NV, = F some fixed finite dimensional subspace for
n >ng. We show dim F' > 0. If for some n >ng we have L, NV,, ={0} then
L, +V,, cannot be closed since X is HI. Thus there are sequences (xj)3>,
in L,, and (v;)32, € Vi, so that lim p(z), +vg) =0 but p(zy) > >0 for all k.
Consider the metric topology on L, defined by the F-norm = — d(z,V,,):=
inf{p(x+v): ve V}. This topology is Hausdorff on L, and strictly weaker
than the p-topology. Hence L,, contains a basic sequence by Proposition 5.4,
and this is a contradiction. Hence dim F >0 and FC(\ 2, V.

6. Strictly singular maps

In [7] the following Theorem is shown:

Theorem 6.1. Let X be a complex Banach space. If X is HI then every
bounded linear operator T: X — X is of the form T = A+ S where S is
strictly singular.

We do not know whether such a theorem can hold for a complex F-space
but we show that it holds equally for complex quasi-Banach spaces. There
are some small wrinkles in the proof as the reader will see.

From now on we will deal with quasi-Banach space X (or Y, etc.) with
a given quasi-norm which is assumed to be p-subadditive (for a suitable
0<p<l),ie.,

e +yll? < lzI” + [lyl”,  z,yeX.

A linear operator T: X — Y is an isomorphic embedding if there exists
c¢>0 so that || Tz| >c||z| for z€ X. T is called strictly singular if T'|y fails
to be an isomorphic embedding for every infinite-dimensional subspace V'
of X. T is called semi-Fredholm if kerT is finite-dimensional and T'(X) is
closed. T' is called Fredholm if T' is semi-Fredholm and dimY/T'(X) < cc.

T is semi-Fredholm if and only if for every bounded sequence (z,,)>2 ; such
that lim,, o || T2,||=0 we can extract a convergent subsequence. Thus it is
clear the restriction of a semi-Fredholm operator to an infinite-dimensional
closed subspace remains semi-Fredholm.

Let us make some remarks. Suppose X is a SHI space and let E'x be the
intersection of all closed infinite-dimensional subspaces of X. If dim Ex =oo
then Ex is an atomic space, i.e., it has no proper closed infinite-dimensional
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subspace. The existence of atomic spaces is still open (the only known results
in this direction are in [15]). However it is known that there exist quasi-
Banach spaces X for which Ex is finite-dimensional and non-trivial, even
with dim Ex >1 ([9, Theorem 5.5]). The quotient map Q: X — X/FEx is then
both semi-Fredholm and strictly singular (this cannot happen for operators
on Banach spaces). Furthermore if dim E'x > 1 then let L1, Lo be two distinct
one-dimensional subspaces of Ex. Then the quotient maps Q1: X — X/L;
and Q2: X — X/Lgy are both strictly singular and semi-Fredholm. However
the map = — (Qz,Q22) from X into X/L;®X/Ls is an isomorphism. Thus
the sum of two strictly singular operators need not be strictly singular!
The key fact we will need is the following:

Theorem 6.2. Let X be an infinite-dimensional complex quasi-Banach
space and suppose T: X — X is a bounded operator. Then there exists
A€ C so that T'— \I is not semi-Fredholm.

This Theorem is proved for Banach spaces by Gowers and Maurey [7].
The proof for quasi-Banach spaces requires some additional tricks. These
tricks are necessitated by the fact that finite-dimensional subspaces are not
always complemented.

We list the relevant facts we need:

Proposition 6.3. If X is a complex quasi-Banach space and T: X — X is
a bounded linear operator then Sp(T)={A€C: T'— A is not invertible} is
a non-empty compact set and maxyegy (7) |A|=1im, oo |7

This is due to Zelazko [16]. We point out that the key ideas in the
proof involve a reduction to the Banach algebra case. One starts with
the fact ([16]) that on a commutative quasi-Banach algebra the formula
() = limy, 00 ||[T|"/" defines a seminorm. Using this one can prove the
Gelfand—-Mazur theorem (see e.g. [11]) in this context and develop the basic
theory of commutative quasi-Banach algebras. The Proposition is obtained
by looking at the double commutant of 7.

Proposition 6.4. Let X be a complex quasi-Banach space and let Gy de-
note the subset of L(X) consisting of all isomorphic embeddings and G
be the collection of all surjections. Then G and Gy are both open sets and
G1N Gy Is a clopen subset relative to Gy and relative to Gs.

See [11, pp. 132-134].

Proposition 6.5. Let X be an infinite-dimensional complex Banach space
and suppose T': X — X is quasi-nilpotent, i.e., Sp(T)={0}. Then T' cannot
be semi-Fredholm.
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See [7, Lemma 19]. We will now need to prove this Proposition for a
general complex quasi-Banach space. We do this in several very simple steps.
Assume throughout that X is an infinite-dimensional complex quasi-Banach
space.

Lemma 6.6. Suppose T': X — X is any bounded operator and A€ 9 Sp(T).
Then T'— M can be neither an isomorphic embedding nor a surjection.

Proof. This follows from Proposition 6.4.

Lemma 6.7. Suppose X has trivial dual. If T: X — X is quasi-nilpotent
then T' cannot be Fredholm.

Proof. If T'(X) has finite codimension in X then 7" is onto in this case. We
then use Lemma 6.6.

Lemma 6.8. If X is any infinite-dimensional complex quasi-Banach space
and T: X — X is quasi-nilpotent then T cannot be Fredholm.

Proof. Denote by X* the dual of X; this is a Banach space but it can
be quite small (even {0}). We assume X* ## {0} as this case is covered
in Lemma 6.7. Assume T: X — X is quasi-nilpotent and Fredholm. Then
T*: X* — X* is Fredholm. In fact T*(X*) = ker(T)*; this depends on the
fact that every continuous linear functional y* on 7(X) can be extended to
xz* € X* since dim X /T (X) < co. Since ||(T*)"|| < ||T"|| the spectral radius
formula shows that T™* is quasi-nilpotent. By Proposition 6.5 we must have
dimX* <oo. Let Xg={r e X: 2*(x)=0V 2* € X*}. Then X is invariant
for T" and of finite-codimension in X. Clearly Xj={0} and T'|x,— x, remains
Fredholm so we can apply Lemma 6.7 to get a contradiction.

Lemma 6.9. If X is any infinite-dimensional complex quasi-Banach space
and T: X — X is quasi-nilpotent then T' cannot be semi-Fredholm.

Proof. Assume T is semi-Fredholm. Then by a Baire Category argument
there exists x € X so that T"x #0 for every n€N. Let Y =[T"z]72 ;. Then
T:Y —Y is Fredholm and remains quasi-nilpotent (using Proposition 6.3).
Clearly T'|y_y is not nilpotent so dimY = co. This is a contradiction by
Lemma 6.8.

Proof of Theorem 6.2. The remaining steps in the proof of Theorem 6.2
are very similar to those in [7] for the Banach space case. Assume T — \I
is semi-Fredholm for all A € C. We suppose A € 9Sp(T) is an accumulation
point of ISp(T). Let A\, = X with A, # XA and A\, € 9Sp(T). Each A, is
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an eigenvalue of T' (by Lemma 6.6, since T'— A, I is semi-Fredholm), say
with eigenvector z,. Let Y = [2,]°2,. Then Y is invariant for 7" and \ €
0Sp (T|y—y). However (T'—AI)|y—y has dense range and is semi-Fredholm.
Hence (T—AI)|y—y is surjective and we have a contradiction by Lemma 6.6.

It follows that OSp(7') has no accumulation points and hence is a finite
set. Thus Sp(7T') is also finite say Sp(T)={A1,...,A\n}. Then S=[[}_,(T —
i) is semi-Fredholm and Sp (S)={0}. This contradicts Lemma 6.9.

Theorem 6.10. Let X be an infinite-dimensional complex quasi-Banach
space. If T': X — X is strictly singular then T cannot be semi-Fredholm.

Remark. Note that this is false for operators T: X — Y by the remarks
above.

Proof. In fact T—\I is always semi-Fredholm if A0 (Theorem 7.10 of [11]).
The result follows from Theorem 6.2.

Theorem 6.11. Let X be an infinite-dimensional complex quasi-Banach
space. If T: X — X is a bounded linear operator then exactly one of the
following two conditions holds:

(i) For every € >0 there is an infinite-dimensional closed subspace V' of X
such that | T|v| <e.
(ii) T is semi-Fredholm.

If X is HI then (i) is equivalent to:
(') T is strictly singular.

Proof. Assume (ii). Then there is a constant ¢>0 so that ||Tz| >cd(z, F)
for x € X, where ' = kerT. If V is an infinite-dimensional closed sub-
space we can find a sequence (v,)5; in the unit ball so ||vy, —v,| > 1/2
for m # n. Assuming that the norm is p-convex, by a simple compact-
ness argument we can then show the existence of a pair m # n so that
(d(Vy, F)P + d(v,, F)P)Y/P > 1/4. Hence ||Tvp,|P + || Tv,||P > (1/4)PcP. This
implies a lower bound on ||T|y||.

Now assume (ii) fails and that F'=ker(7') is finite dimensional. Then T
factors in the form T'=TyQ where Q: X — X/F is the quotient map and
To: X/F — X is one-one but not an isomorphic embedding. Then there is a
normalized sequence §,, € X/F so that || Tp&,|| <2~ ". Now using Theorem 4.6
of [11] we can assume by passing to a subsequence that (&,)°2; satisfies an

estimate
n
> aré
k=1

, a1,...,an € C.

max |ag| < C
1<k<n
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In particular if Vj, = Q‘l[fj]jzk then each Vj is infinite-dimensional and
| T'|v;, || —0. Thus (i) holds.

Now assume X is HI. Suppose T satisfies (i) and is not strictly singular.
Then there is an infinite-dimensional subspace W so that ||[Tw|| > ¢||w|| for
w € W where § > 0. Pick € = §/2 and then choose V as in (i) for this e.
Clearly VNW ={0}.

Now assume veV, weW with ||[v+w||=1. Then

[l < 1+ [[wl]}?
< 14 27Pffof|? + [lwl[” =277 ][o[[”
< 1+ 27P||v|lP + 62| Tw|P — 27Pe || TP
=1+ 2770l + 67P([[Twl[” — [[Tv]|?)
< 14+ 27P|ol]P + 67| T (v + w)||?
< 14 27P|fo|]P + 57| TP

Thus
1+ 67| |P\ /7
[v]| < " :
1—-2-»
This contradicts the fact that X is HI.

Conversely if T is strictly singular it cannot be semi-Fredholm by Theo-
rem 6.10 and so (i) must hold.

Theorem 6.12. Let X be an infinite-dimensional complex quasi-Banach
space. If X is HI then every bounded linear operator T: X — X is of the
form T'=AI+ .S where S is strictly singular.

Proof. There exists A so that T'—AI is not semi-Fredholm by Theorem 6.2.
By Theorem 6.11 this means T'— AI is strictly singular.

In the case when X is SHI this result is much simpler. Indeed we have:

Theorem 6.13. Let X be an SHI space and suppose E is the intersection
of all infinite-dimensional subspaces of X. Let Q): X — X /E be the quotient
map (which is strictly singular). Then if T: X — X is a bounded operator,
there exists A € C and a bounded operator S: X/E — X so that T =\ +

SQ.

Proof. Let us first give a simpler proof of Theorem 6.12. It is clearly that
if R: X — X is an invertible operator then R(E) C E and this implies
that E is invariant for all operators on X. If E is atomic then FE is rigid
([11, Theorem 7.22, p. 155]). Otherwise E is finite-dimensional. In either
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case T|g has an eigenvalue X\ and so T'— \I factors through a quotient map
Q': X — X/F' where F’ is a non-trivial subspace of E. Hence T — I is
strictly singular.

Now using Theorem 6.11 it is clear any strictly singular operator on X
vanishes on E and so we get the desired factorization.
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