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We give a new approach to the Ramsey-type results of Gowers on block bases in Banach
spaces and apply our results to prove the Gowers dichotomy in F -spaces.

1. Introduction

Our aim in this note is to establish the Gowers dichotomy [4] in a gen-
eral F -space (complete metric linear space). We say that an F -space X is
hereditarily indecomposable if it is impossible to find two separated infinite-
dimensional closed subspaces V,W , i.e., such that V ∩W = {0} and V +W
is closed (or equivalently that the natural projection from V +W onto V is
continuous). Our main result is that an F -space either contains an uncon-
ditional basic sequence or an infinite-dimensional HI subspace. In order to
prove such a result we give a new and, we hope, interesting approach to the
Gowers Ramsey-type result about block bases in a Banach space. We now
state this result (terminology is explained in §2 and in [5], [6]):

Theorem 1.1 ([4], [5], [6]). Let X be a Banach space with a basis. Let
∂BX denote the unit sphere of X, i.e., ∂BX = {x ∈X : ‖x‖ = 1}. Let σ ⊆
Σ<∞(∂BX). Let Θ = (θi)i be a sequence of positive numbers. If σ is large
then there exists a block subspace Y of X such that σΘ is strategically large
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for Y , where σΘ is the set of all finite block bases {u1, . . . ,un} such that for
some {v1, . . . ,vn}∈σ we have ‖ui−vi‖<θi.

In [5] and [6] the statement of Theorem 1.1 is announced for ∂BX replaced
by the unit ball except the origin, i.e., B=BX \{0}={x∈X : 0<‖x‖≤1}.
There appears to be a slight problem in the non-normalized case in [5,
page 805, line -9] and [6, page 1092, line -2], namely, it is used that the
size of coefficients of a normalized vector with respect to a basic sequence of
norm at most 1, is controlled from above by the basis constant. Theorem 1.1
(including the non-normalized case) follows from our Theorem 3.8.

Gowers also considers an infinite version of the same result (Theorem 4.1
of [5]):

Theorem 1.2 ([5], [6]). Let X be a Banach space with a basis. Let
σ ⊆ Σ∞(∂BX). Let Θ = (θi)i be a sequence of positive numbers. If σ is
analytic and large then there exists a block subspace Y of X such that σΘ
is strategically large for Y , where σΘ is the set of all infinite block bases
{u1, . . . ,un, . . .} such that for some {v1, . . . ,vn, . . .}∈σ we have ‖ui−vi‖<θi.

Other proofs of these results can be found in the work of Bagaria and
López-Abad [1], [2]. Direct proofs of the dichotomy result without these
theorems can be found in [13] and [3]; see also [14].

Our main objective is to prove Theorem 1.2 in a form that is suitable
for our intended applications. We take a somewhat different viewpoint (see
Theorem 4.4 below) by treating this theorem as a result about block bases
in a countable dimensional space E with no topology assumed. We consider
in fact only the intrinsic topology on E, i.e., the finest vector space topology.
We then give a proof which is rather distinct from that given by Gowers,
and we feel has some advantages. A benefit of this approach is that we are
able to apply the result very easily to the setting of a general F -space.

In §5 we prove that the Gowers dichotomy extends to general F -spaces
and discuss connections with similar (but easier) dichotomies for the exis-
tence of basic sequences. In the final section, §6 we prove the result of Gowers
and Maurey [7] that on a complex HI-space every operator is the sum of a
scalar and a strictly singular operator in the context of quasi-Banach spaces.
This generalization is not entirely trivial and requires a few new tricks, al-
though we broadly follow the same ideas as Gowers and Maurey.

2. Countable dimensional vector spaces

Let E be a real or complex vector space of countable algebraic dimension
(this is usually denoted by c00 in the literature). There is a natural intrinsic
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topology T =TE on E defined as follows: a set U is T -open if U∩F is open
relative to F for every finite-dimensional subspace F . The topology T is a
vector topology on E and is, indeed, the finest vector topology on E. It is
known that (E,T ) is in fact locally convex. More precisely if (ej)

∞
j=1 is any

fixed Hamel basis then the topology is induced by the family of norms
∥
∥
∥
∥
∥

m∑

j=1

ajej

∥
∥
∥
∥
∥
λ

= max
1≤j≤m

λj|aj |

where λ = (λj)
∞
j=1 is any sequence of positive numbers. In the case when

λj=1 for all j we denote the resulting norm by ‖·‖∞.
We will also be concerned with the product EN. On this there are two

natural topologies: the product topology Tp and the box topology. The box
topology Tbx is a topology which makes EN a topological group but not
a topological vector space. A base of neighborhoods of the origin for the
box topology is given by sets of the form

∏∞
n=1Un where each Un is a T -

neighborhood of zero in E. A base can also be given by sets of the form
∏∞

n=1{x : ‖x‖λ < δn} for some fixed norm ‖ · ‖λ and a sequence δn > 0. We
observe the obvious fact that if V is an infinite-dimensional subspace of E
then TE|V =TV and TE,bx|V N=TV,bx.

Now let us suppose that E has a given fixed Hamel basis (en)
∞
n=1. Let

En = [e1, . . . ,en] and E(n) = [en+1,en+2, . . .], where [. . .] denotes the linear
span. A sequence (vk)

n
k=1 where 1≤n≤∞ is called a block basis of (ek)

∞
k=1

if each vk �=0 and

vk =

pk∑

j=pk−1+1

ajej

for some increasing sequence p0 = 0< p1 < p2 < · · · . A subspace V of E is
called a block subspace if V is the linear span of a block basis.

We let Σ∞(E) be the subset of EN consisting of all infinite block bases.
For each n ∈ N we let Σn(E) be the subset of EN of all block bases of
length n. We also let Σ0(E) be the one-point set with a single member ∅.
Let Σ<∞(E) denote the union of all Σn(E) for 0≤n<∞. If A is a subset of
E we denote by Σn(A), etc., the subset of Σn(E) with each element in A.
In particular we will be interested in the sets

A∞ = {x ∈ E : 0 < ‖x‖∞ ≤ 1}, S∞ = {x ∈ E : ‖x‖∞ = 1}.

Lemma 2.1. Let ‖·‖ be any norm on E so that (en)
∞
n=1 is a Schauder basis

of the completion Ẽ of (E,‖ · ‖). Then, on the space Σ∞(E) the product
topology Tp coincides with the product topology induced by ‖·‖. In particular
(Σ∞,Tp) is a Polish space.
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Proof. Let ξn = (ξn,k)
∞
k=1 be a sequence in Σ∞(E) so that for some ξ =

(ξk)
∞
k=1 ∈Σ∞(E), limn→∞‖ξn,k− ξk‖= 0 for each k. Let us suppose ξn,k ∈

[epn,k−1+1, . . . ,epn,k
] where pn,0 < pn,1 < · · · and that ξk ∈ [epk−1+1, . . . ,epk ].

Then it is clear that

lim sup
n→∞

pn,k−1 ≤ pk, k = 1, 2, . . .

using the fact that (en)
∞
n=1 is a Schauder basis. It follows that each sequence

(ξn,k)
∞
n=1 is contained in some fixed finite-dimensional space and so the con-

vergence is also in Tp.
For the product-norm topology it is also easy to see that Σ∞(E) is a

closed subset of (Ẽ \{0})N and hence is Polish.

Let B=B(E) be the collection of all infinite-dimensional block subspaces
of (ek)

∞
k=1. If V ∈ B then V is the span of a block basis (vn)

∞
n=1 and we

write B(V ) for the collection of infinite-dimensional block subspaces of V
with respect to (vn)

∞
n=1 (this is clearly independent of the choice of the

block basis). We will use the notation (v1, . . . ,vr)≺(u1, . . . ,us) to mean that
(v1, . . . ,vr) is a block basis of (u1, . . . ,us).

Let σ be a subset of Σ∞(E). We shall say that σ is large if for every
V ∈B(E) we have σ∩Σ∞(V ) �=∅.

A strategy is a map Φ : Σ<∞(E)×B(E)→Σ<∞(E) if for all (u1, . . . ,un)∈
Σn(E) we have Φ(u1,u2, . . . ,un;V )=(u1, . . . ,un,un+1) with un+1∈V .

If (Vj)
∞
j=1 is a sequence of block subspaces then we will write

Φ(u1, . . . , un;V1, . . . , Vm) = (u1, . . . , um+n)

and

Φ(u1, . . . , un;V1, . . . , Vm, . . .) = (u1, . . . , um+n, . . .)

where un+k=Φ(u1, . . . ,un+k−1;Vk) for k≥1. In the case when n=0 we write
Φ(V1, . . . ,Vm) or Φ(V1, . . . ,Vm, . . .) for Φ(∅;V1, . . . ,Vm) or Φ(∅;V1, . . . ,Vm, . . .).

A subset σ of Σ∞(E) is called strategically large for V ∈ B(E) and
(u1, . . . ,un) ∈ Σ<∞(E) if there is a strategy Φ with the property that for
every sequence (Vj)

∞
j=1 with Vj⊂V we have

Φ(u1, . . . , un;V1, . . . , Vm, . . .) ∈ σ.

σ is strategically large for V ∈B(E) if it is strategically large for V ∈B(E)
and ∅.



A NEW APPROACH TO RAMSEY-TYPE GAMES 363

3. Functions on subsets of Σ<∞(E)

If V,W are subspaces of E let us write V ⊂aW to mean that there exists a
finite dimensional subspace F so that V ⊂W +F .

Lemma 3.1 (Stabilization Lemma). Let E be a countable dimensional
space with fixed Hamel basis (ek)

∞
k=1. Let X be a separable topological space

and suppose that, for each V ∈B(E), fV : X→R is a continuous function.
Suppose further that

fV1(x) ≥ fV2(x), x ∈ X

whenever V1⊂aV2. Then there is a block subspace W of E so that fV =fW
whenever V ⊂W .

More generally suppose (Xn)
∞
n=1 is a sequence of separable topological

spaces and for each V ∈B and n∈N, f
(n)
V : Xn→R is a continuous function.

Suppose further that

f
(n)
V1

(x) ≥ f
(n)
V2

(x), x ∈ Xn

whenever V1⊂aV2. Then there is a block subspaceW of E so that f
(n)
V =f

(n)
W

whenever V ⊂aW and n∈N.

Proof. We prove the first part. We define block subspaces Vα for every
countable ordinal α by transfinite induction, so that α≤ β =⇒ Vβ ⊂a Vα.
Set V1 = E. For each α which is not a limit ordinal, say α = β+1 define
Vα ⊂ Vβ so that fVα �= fVβ

if possible; otherwise let Vα = Vβ. If α is a limit
ordinal then α=supnβn for some increasing sequence (βn)

∞
n=1 with βn<α.

Thus Vβm ⊂a Vβn if m > n. In this case we may by a diagonal argument
find Vα so that Vα⊂a Vβn for every n (simply choose a block basis vn with
vn∈Vβ1∩·· ·∩Vβn). Now it follows that the functions fVα are increasing in α
for 1≤α<ω1. If D is a countable dense set in X there must therefore exist
a countable ordinal β so that

fVβ
(x) = fVα(x), x ∈ D, β ≤ α.

Thus fVβ+1
=fVβ

so that W =Vβ satisfies the conclusion.
The second part reduces to the first if we consider X =

⋃∞
n=1Xn topol-

ogized as a disjoint union and fV : X → R given by fV (x) = f
(n)
V (x) when

x∈Xn.
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Consider a function f : Σ<∞(A) → [0,∞) where A = S∞ or A = A∞.
We shall say that f is uniformly Tbx-continuous if given ε>0 there is a se-
quence (Un)

∞
n=1 of T -neighborhoods of 0 such that if (u1, . . . ,ur),(v1, . . . ,vr)∈

Σ<∞(A) and uj−vj∈Uj for 1≤j≤r then

|f(u1, . . . , ur)− f(v1, . . . , vr)| < ε.

In effect if we introduce maps f [n] on Σ∞(A) by

f [n](u1, . . . , uk, . . .) = f(u1, . . . , un)

this requires that the family of functions (f [n])∞n=1 is equi-uniformly contin-
uous for the box topology Tbx.

We will need a slightly weaker notion for maps f : Σ<∞(A∞)→ [0,∞).
We will say that f is admissible if it is bounded and

(i) given ε > 0, there is a sequence (Un)
∞
n=1 of T -neighborhoods of 0 such

that if (u1, . . . ,ur),(v1, . . . ,vr) ∈Σ<∞(S∞) and uj − vj ∈Uj for 1≤ j ≤ r
then

|f(λ1u1, . . . , λrur)− f(λ1v1, . . . , λrvr)| < ε, (λ1, . . . , λr) ∈ (0, 1]r ;

and
(ii) given ε>0 and (u1, . . . ,ur)∈Σ<∞(S∞) there exists δ=δ(u1, . . . ,ur, ε)>0

so that if 0<λj ,μj≤1 for 1≤j≤r and max1≤j≤r |λj−μj |≤δ then

|f(λ1u1, . . . , λrur, v1, . . . , vs)− f(μ1u1, . . . , μrur, v1, . . . , vs)| < ε,

whenever (u1, . . . ,ur,v1, . . . ,vs)∈Σ<∞(A∞).

The following Lemma is easy and its proof is omitted:

Lemma 3.2. (i) Suppose f : Σ<∞(A∞)→ [0,∞) is bounded and uniformly
Tbx-continuous; then f is admissible.

(ii) Suppose f : Σ<∞(S∞) → [0,∞) is uniformly Tbx-continuous; then
g : Σ<∞(A∞) → [0,∞) is admissible where g(u1, . . . ,un) = f(u1/‖u1‖∞,
. . . ,un/‖un‖∞).

Lemma 3.3. If f : Σ<∞(A∞)→ [0,∞) is admissible then for each m ∈ N

the map Fm : (0,1]m×Σm(S∞)→ [0,∞) defined by

F (λ1, . . . , λm, u1, . . . , um) = f(λ1u1, . . . , λmum)

is continuous when Σm(S∞)⊂(E,T )m is given the subset topology.



A NEW APPROACH TO RAMSEY-TYPE GAMES 365

Proof. Suppose ε>0. We pick T -neighborhoods of zero in E, U1, . . . ,Um so
that uj−vj ∈Uj for 1≤j≤m implies that

|f(λ1v1, . . . , λmvm)− f(λ1u1, . . . , λmum)| < ε/2

for every (λ1, . . . ,λm) ∈ (0,1]m. If (v1, . . . ,vm) ∈Σm(En ∩S∞) we then pick
δ=δ(v1, . . . ,vm)>0 so that if |λj−μj|<δ for 1≤j≤m we have

|f(λ1v1, . . . , λmvm)− f(μ1v1, . . . , μmvm)| < ε/2.

Combining gives

|f(λ1u1, . . . , λmum)− f(μ1v1, . . . , μmvm)| < ε

whenever max1≤j≤m |λj −μj|< δ and uj − vj ∈Uj for 1≤ j ≤m. Thus F is
continuous at each point (μ1, . . . ,μm,v1, . . . ,vm).

Suppose f : Σ<∞(A∞)→ [0,∞) is any admissible function. Let us adopt
the convention that the function f takes the value +∞ at any point of
EN \Σ<∞(A∞). For any V ∈B(E) define the function f ′

V on Σ<∞(A∞) by

f ′
V (u1, . . . , un) =

lim
m→∞ inf

{

f(u1, . . . , un, v1, . . . , vs) : v1, . . . , vs ∈ V ∩ E(m), s ≥ 1
}

.

Note that V ⊂aW implies that f ′
V ≥f ′

W .
The following is more or less immediate:

Lemma 3.4. If f : Σ<∞(A∞)→ [0,∞) is admissible, then each of the func-
tions f ′

V : Σ<∞(A∞)→ [0,∞) is admissible.

Lemma 3.5. If F is a countable family of admissible functions, then there
exists V ∈B(E) so that for every W ∈B(V ) and every f ∈F we have f ′

W =f ′
V .

Proof. For W ∈B(E) and m<n define gm,n,W : (0,1]m×Σm(S∞∩En)→R

by

gm,n,W (λ1, . . . , λm, u1, . . . , um) = f ′
W (λ1u1, . . . , λmum).

Thus gm,n,W is continuous by Lemma 3.3. Since (0,1]m ×Σm(S∞ ∩En) is
separable for each m, n, we can apply the Stabilization Lemma 3.1.

We can thus assume, under the hypotheses of the Lemma (by passing
to a block subspace), that f has the property that f ′

V = f ′
E for all block

subspaces V . If this happens we shall say that f is stable and we write f ′
for f ′

E. Note that f ′ is admissible.
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Proposition 3.6. Let f be a stable admissible function. Suppose (u1, . . . ,
ur)∈Σ<∞(A∞) and V is a block subspace. Then for any ε> 0 there exists
ξ∈V \{0} so that either:

(a) f(u1, . . . ,ur, ξ)<f ′(u1, . . . ,ur)+ε; or
(b) f ′(u1, . . . ,ur, ξ)<f ′(u1, . . . ,ur)+ε.

Proof. Let us assume that (u1, . . . ,ur)∈Σr(E). Let us further assume that
V is a block subspace so that for any ξ∈V we have

(3.1)
f(u1, . . . , ur, ξ) ≥ f ′(u1, . . . , ur) + ε,

f ′(u1, . . . , ur, ξ) ≥ f ′(u1, . . . , ur) + ε.

Let (vj)
∞
j=1 be a block basis which is a basis of V . We choose an increasing

sequence of integers (qk)
∞
k=1 as follows. Let q1 = 1. Assume q1, . . . ,qk have

been chosen. Let m0 be the smallest integer so that vqk ∈ Em0 . Then for
every ξ∈S∞∩ [vq1 , . . . ,vqk ] (3.1) holds. We may pick a neighborhood U of 0
in (E,T ) so that

|f(u1, . . . , ur, λξ, w1, . . . , ws)− f(u1, . . . , ur, λη, w1, . . . , ws)| < ε/8

when ξ−η∈U , (w1, . . . ,ws)∈Σ<∞(A∞∩E(m0)) and 0<λ≤1. By compactness
there is a finite subset (ξ1, . . . , ξt) of S∞ ∩ [vq1 , . . . ,vqk ] such that η ∈ S∞ ∩
[vq1 , . . . ,vqk ] implies η−ξj∈U for some j. Now pick an integer N large enough
so that |λ−μ|<1/N implies

|f(u1, . . . , ur, λξj , w1, . . . , ws)− f(u1, . . . , ur, μξj , w1, . . . , ws)| < ε/8

whenever (w1, . . . ,ws)∈Σ<∞(E(m0)). Now by our assumptions we can pick
m≥m0 so that

f
(

u1, . . . , ur,
k
N ξj, w1, . . . , ws

)

> f ′(u1, . . . , ur) + 3
4ε

whenever 1≤j≤ t, 1≤k≤N and (w1, . . . ,ws)∈Σ<∞(E(m)). Hence

f(u1, . . . , ur, λξj , w1, . . . , ws) > f ′(u1, . . . , ur) + 5
8ε

whenever 1≤j≤ t, 0<λ≤1 and (w1, . . . ,ws)∈Σ<∞(E(m)), and thus

(3.2) f(u1, . . . , ur, λξ, w1, . . . , ws) > f ′(u1, . . . , ur) + 1
2ε

whenever 0<λ≤1 and ξ∈S∞∩ [vq1 , . . . ,vqk ].

Then we pick qk+1>qk so that vqk+1
∈E(m). This completes the inductive

construction. Now let W = [vq1 ,vq2 , . . .]. There exists (w1, . . . ,ws) ∈ Σs(W )
(where s>0) so that f(u1, . . . ,ur,w1, . . . ,ws)<f ′(u1, . . . ,ur)+ε/2.

If s = 1 then ξ = w1 contradicts (3.1). If s > 1 let λξ = w1 =
∑l

j=1ajvqj where al �= 0. Then by the selection of ql+1 and (3.2) we see

that f(u1, . . . ,ur,w1, . . . ,ws)>f ′(u1, . . . ,ur)+ε/2, a contradiction.



A NEW APPROACH TO RAMSEY-TYPE GAMES 367

Lemma 3.7. If f : Σ<∞(A∞) → [0,∞) is admissible then the function
g : Σ<∞(A∞)→ [0,∞) given by g(u1, . . . ,ur)=1 if r=0 or r=1 and

g(u1, . . . , ur) = inf{f(v1, . . . , vs) : (v1, . . . , vs) ≺ (u1, . . . , ur), 1 ≤ s < r}

(if r>1) is admissible.

Proof. Note that g satisfies g(λ1u1, . . . ,λmum) = g(u1, . . . ,um) if (u1, . . . ,
um)∈Σ<∞(S∞) and (λ1, . . . ,λm)∈ (0,1]m. Hence it suffices to show that g
is uniformly Tbx-continuous on Σ<∞(S∞). Note that, if for all(u1, . . . ,um)∈
Σ<∞(S∞) we define

h(u1, . . . , um) = inf{f(λ1u1, . . . , λmum) : (λ1, . . . , λm) ∈ (0, 1]m},

then h is uniformly Tbx-continuous and

g(u1, . . . , ur) =

inf{h(v1, . . . , vs) : (v1, . . . , vs) ≺ (u1, . . . , ur), 1 ≤ s < r}, r > 1.

Suppose ε>0. Then there is a sequence (Un)
∞
n=1 of T -neighborhoods of zero

so that if (u1, . . . ,un),(v1, . . . ,vn)∈Σ<∞(S∞) and uj − vj ∈Uj for 1≤ j ≤n
then

|h(u1, . . . , un)− h(v1, . . . , vn)| < ε.

Pick a sequence of circled neighborhoods of zero, (U ′
n)

∞
n=1, so that U

′
n+U

′
n+1+

· · ·+U ′
n+k ⊂ Un whenever k ≥ n. Then suppose (u1, . . . ,un),(v1, . . . ,vn) ∈

Σ<∞(S∞) with uj − vj ∈ U ′
j for 1 ≤ j ≤ n. Assume η > 0 and pick

(x1, . . . ,xr)≺ (u1, . . . ,un) with r <n so that h(x1, . . . ,xr)<g(u1, . . . ,un)+η.

If xj =
∑l

i=k+1aiui let yj =
∑l

i=k+1aivi. Then |ai| ≤ 1 and so xj − yj ∈
U ′
k+1+ · · ·+U ′

l ⊂Uj since j≤k+1. Hence

h(y1, . . . , yr) < g(u1, . . . , un) + ε+ η

and so
g(v1, . . . , vn) ≤ g(u1, . . . , un) + ε.

By symmetry
|g(v1, . . . , vn)− g(u1, . . . , un)| ≤ ε

and hence g is uniformly Tbx-continuous.
We shall say that a strategy Φ is (ε,V )-effective for f where ε > 0 and

V ∈B(E) if for every sequence of block subspaces Vj ⊂V there exists n∈N

so that
f(Φ(∅, V1, . . . , Vn)) < sup

W∈B(E)
f ′
W (∅) + ε.
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If (u1, . . . ,ur)∈Σ<∞(E) we shall say that a strategy Φ is (ε,u1, . . . ,ur,V )-
effective for f where ε > 0 and V ∈ B(E) if for every sequence of block
subspaces Vj⊂V there exists n∈N so that

f(Φ(u1, . . . , ur, V1, . . . , Vn)) < sup
W∈B(E)

f ′
W (u1, . . . , ur) + ε.

Theorem 3.8. Suppose f : Σ<∞(A∞)→ [0,∞) is admissible. Then, given
ε> 0 there is a block subspace V and a strategy Φ which is (ε,V )-effective
for f .

Proof. Before presenting the details of the proof we outline it: First we
assume without loss of generality that f ′

V (∅) = 0 for all V ∈ B(E). Then
we add a penalty function to f to define a function h. We pass to a block
subspace to stabilize h to h′. The penalty function makes sure that for every
W =[u1,u2, . . .]∈Σ∞(A∞) there exists an integer r such that h′(u1, . . . ,ur) is
large. Then for some sequence (εj) of small positive numbers we inductively
use Proposition 3.6 to define the strategy, so that at each step, either h or h′
is controlled by the value of h′ at the previous step. Because of the penalty
function, it is impossible that always h′ is controlled. So at some step h is
controlled. The first time that this happens gives you the result!

Now let’s go over the proof again, slowly this time, and see the details:
We assume (after stabilization) that f ′

V (∅) = 0 for all V ∈ B(E); indeed
if a = supV ∈B(E) f

′
V (∅) then replace f by max(f − a,0). We consider the

admissible function

h(u1, . . . , ur) = f(u1, . . . , ur) + 2(ε− 2g(u1, . . . , ur))+,

where g is the function defined in Lemma 3.7. By Lemma 3.4 we can pass
to a block subspace where h is stable; so let us assume h is stable on E.

We first claim that if (u1, . . . ,un, . . .) ∈ Σ∞(A∞) then there exists n so
that h′(u1, . . . ,un)>ε. Indeed, let W =[u1, . . . ,un, . . .]. Then, since f

′
W (∅)=0,

there exists (v1, . . . ,vs)∈Σ<∞(W ) with f(v1, . . . ,vs)<ε/4. Then we may find
r > s so that (v1, . . . ,vs)≺ (u1, . . . ,ur). Hence for any (x1, . . . ,xt) such that
(u1, . . . ,ur,x1, . . . ,xt)∈Σ<∞(A∞) we have

h(u1, . . . , ur, x1, . . . , xt) ≥ 2(ε− 2f(v1, . . . , vs))

so that
h′(u1, . . . , ur) ≥ 2(ε− 2f(v1, . . . , vs)) > ε,

which proves the claim.
On the other hand, given any block subspace V , there exists a minimal

s≥1 so that we can find (v1, . . . ,vs)∈Σ<∞(V ) with f(v1, . . . ,vs)<ε/2. Thus
g(v1, . . . ,vs)≥ε/2 which implies h(v1, . . . ,vs)<ε/2. Hence h′(∅)<ε/2.
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We now use a strategy for h indicated by Proposition 3.6. Suppose εj>0
for each j ≥ 0 and

∑
εr < ε/2. Given (u1, . . . ,ur) ∈Σ<∞(E) and V ∈ B(E)

we define Φ(u1, . . . ,ur,V ) to be (u1, . . . ,ur, ξ) where ξ ∈V \{0} is chosen so
that h′(u1, . . . ,ur, ξ)<h′(u1, . . . ,ur)+εr or h(u1, . . . ,ur, ξ)<h′(u1, . . . ,ur)+εr.
Let (Vj)

∞
j=1 be a sequence in B(E) and let (u1, . . . ,ur, . . .) = Φ(∅;V1, . . .).

Then, by our previous claim there exists a first n≥1 so that h′(u1, . . . ,un)>
h′(u1, . . . ,un−1)+εn−1. Hence

h(u1, . . . , un) < h′(u1, . . . , un−1) + εn−1 < h′(∅) +
n−1∑

j=0

εj < ε.

We need an obvious extension of this result.

Theorem 3.9. Suppose f : Σ<∞(A∞)→ [0,∞) is admissible. Then there is
a block subspace V such that for each (u1, . . . ,ur) ∈ Σ<∞(A∞) there is a
strategy Φu1,...,ur which is (ε,u1, . . . ,ur,V )-effective for f .

Proof. For each (u1, . . . ,ur), it is easy to produce a block subspace Vu1,...,ur

and device a strategy Ψu1,...,ur which is (ε/2,u1, . . . ,ur,Vu1,...,ur)-effective
for f . Indeed, suppose ur∈Em; define

f1(v1, . . . , vs) = f(u1, . . . , ur, v1, . . . , vs), (v1, . . . , vs) ∈ Σ<∞
(

A∞ ∩ E(m)
)

and apply the preceding theorem to f1. (Ψu1,...,ur has to be defined in some
arbitrary fashion for (w1, . . . ,ws) which do not have (u1, . . . ,ur) as an initial
segment.) Furthermore it can be seen that for each block subspace W we
can choose Vu1,...,ur ⊂W .

To obtain a single block subspace V we first construct a dense countable
subsetDm,r in each Σr(Em∩A∞). We arrange the elements of D=

⋃

m,rDm,r

as a sequence and hence find a descending sequence of subspaces (Vn) so that
the strategy Φu1,...,ur is (ε/2,u1, . . . ,ur,Vn)-effective for f when (u1, . . . ,ur) is
the nth member of D. If we select V to be block subspace so that V ⊂Vn+Fn

for some finite-dimensional Fn for each n, then (via a simple modification)
each Φu1,...,ur is (ε/2,u1, . . . ,ur,V )-effective for f . Finally we observe that if
(v1, . . . ,vr)∈Σr(Em) is arbitrary and we then choose (u1, . . . ,ur)∈D close
enough, we can define a strategy by

Φv1,...,vr(v1, . . . , vr, w1, . . . , ws) = Ψu1,...,ur(u1, . . . , ur, w1, . . . , ws)

(and arbitrarily otherwise) then we will have that Φv1,...,vn is (ε,v1, . . . ,vr,V )-
effective for f .
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4. The infinite case

We now turn to the infinite case. Suppose f : Σ∞(A∞)→ [0,∞) is a bounded
uniformly Tbx-continuous function. We may define f ′

V : Σ<∞(A∞)→ [0,∞)
in a precisely analogous way. As before we adopt the convention that f=+∞
on EN \Σ∞(A∞). Let

f ′
V (u1, . . . , ur) =

lim
m→∞ inf

{

f(u1, . . . , ur, v1, . . . , vs, . . .) : vj ∈ V ∩ E(m), j = 1, 2, . . .
}

.

It is clear that the functions {f ′
V : V ∈ B(E)} are equi-uniformly Tbx-

continuous.
Proceeding in the same manner as before we can show:

Proposition 4.1. If fn : Σ∞(A∞)→R is any countable family of bounded
Tbx uniformly continuous functions, there is a block subspace V of E so that
f ′
W =f ′

V whenever W ∈B(V ).

We shall say that f is stable if f ′
E=f ′

V for every V ∈B(E).

Lemma 4.2. Let fn : Σ∞(A∞) → [0,∞) be a sequence of bounded uni-
formly Tbx-continuous functions and suppose f=inf fn is also Tbx-uniformly
continuous. Assume that each fn and f are stable. Let h : Σ<∞(A∞) =
infn f

′
n. Then for every V ∈B(E) we have h′V ≤f ′.

Proof. Let V ∈B(E). Let us assume h′V (u1, . . . ,ur)>λ> f ′(u1, . . . ,ur) for
some (u1, . . . ,ur)∈Σ<∞(A∞∩V ). Then there exists m so that if (v1, . . . ,vs)∈
Σ<∞(E(m)∩V ) with s≥1 we have

h(u1, . . . , ur, v1, . . . , vs) > λ.

Thus

f ′
n(u1, . . . , ur, v1, . . . , vs) > λ, n = 1, 2 . . . .

Let us pick w1 ∈A∞∩E(m) ∩V . We will construct a sequence (wn)
∞
n=1

in V by induction. Suppose (w1, . . . ,wn) have been selected and let Wn =
[w1, . . . ,wn]. Then by compactness we can find p so that Wn ⊂ Ep and if
1≤k≤n and (v1, . . . ,vk)∈Σk(Wn∩A∞) then

fk(u1, . . . , ur, v1, . . . , vk, x1, x2, . . .) > λ

for all choices of (xj)
∞
j=1 in E(p). Pick wn+1∈E(p)∩V .
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Now let W =[wj ]
∞
j=1. Our construction guarantees that for every n it is

true that

fn(u1, . . . , ur, x1, x2, . . .) > λ, xj ∈ W, j = 1, 2, . . . .

Indeed we have (x1, . . . ,xn) ∈ Σn([w1, . . . ,wm]) where m ≥ n and so this
follows from our inductive construction. Thus

f ′(u1, . . . , ur) ≥ λ,

contradicting our initial hypothesis.

We now use the space N
N with the usual product topology; this can be

regarded as the space of all infinite words of the natural numbers. We will
write N

<∞ =
⋃∞

n=0N
k which is the space of all finite words of the natural

numbers, including the empty word. We will use (n1, . . . ,nk) or (n1,n2, . . .)
to denote a typical member of N<∞ or NN respectively.

Theorem 4.3. Suppose F : NN×Σ∞(A∞)→ [0,∞) is a bounded map. De-
fine fn1,n2,... : Σ∞(A∞)→ [0,∞) by

fn1,n2,...(u1, u2, . . .) = F (n1, n2, . . . ;u1, u2, . . .).

Suppose

(i) the maps {fn1,n2,... : (n1,n2, . . .)∈N
N}are equi-uniformly Tbx-continuous;

(ii) the map F : NN ×Σ∞(A∞) → [0,∞) is lower semi-continuous for the
product topology on N

N×(Σ∞(A∞),Tp).

Let

f(u1, u2, . . .) = inf
(n1,n2,...)∈NN

F (n1, n2, . . . ;u1, u2, . . .).

If f ′
V (∅)=0 for every block subspace V , then given ε>0 there is a block

subspace V so that {f <ε} is V -strategically large.

Proof. For each (n1, . . . ,nk)∈N
<∞ we define

fn1,n2,...,nk
(u1, u2, . . .) = inf

m1,m2,...
F (n1, . . . , nk,m1,m2, . . . ;u1, u2, . . .).

The family fn1,n2,...,nk
is Tbx-equi-uniformly continuous. By passing to a block

subspace we can assume that each fn1,n2,...,nk
is stable. Of course the family

f ′
n1,...,nk

is also Tbx-equi-uniformly continuous. Let

hn1,...,nk
(u1, . . . , ur)= inf

m∈N
f ′
n1,...,nk,m

(u1, . . . , ur), (u1, . . . , ur)∈Σ<∞(A∞).
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This family is also equi-uniformly Tbx-continuous. Passing to a further block
subspace we can suppose that this family is also stable.

By Lemma 4.2 we have that h′n1,...,nk
≤f ′

n1,...,nk
.

Let us choose a sequence (εr)
∞
r=0 with

∑
εr = ε′<ε. Again, by the proof

of Theorem 3.8, and by exploiting the countability of the family hn1,...,nk
we

can pass to a further block subspace and, by relabelling as E, suppose that
for each (n1, . . . ,nk)∈N

<∞ and (u1, . . . ,ur)∈Σ<∞(A∞) there is a strategy
Φn1,...,nk,u1,...,ur with the property that if (Vj)

∞
j=1 is any sequence of subspaces

then for some p≥1,

hn1,...,nk
Φn1,...,nk,u1,...,ur(u1, . . . , ur, V1, . . . , Vp) < h′n1,...,nk

(u1, . . . , ur) + εk.

We will now define a strategy Ψ . To do this we first define maps
θ : Σ<∞(A∞) → N

<∞ and ϕ : Σ<∞(A∞) → N such that ϕ(u1, . . . ,ur) ≤ r.
This is done inductively on the length of (u1, . . . ,ur). We define θ(∅)=∅ and
ϕ(∅)=0. Suppose that θ and ϕ have been defined for all ranks up to r and
consider (u1, . . . ,ur+1).

Let θ(u1, . . . ,ur)=(n1, . . . ,nk) and ϕ(u1, . . . ,ur)=s. If

hn1,...,nk
(u1, . . . , ur+1) < h′n1,...,nk

(u1, . . . , us) + εk

then we can choose m∈N so that

f ′
n1,...,nk,m

(u1, . . . , ur+1) < h′n1,...,nk
(u1, . . . , us) + εk.

Let θ(u1, . . . ,ur+1)=(n1,n2, . . . ,nk,m) and ϕ(u1, . . . ,ur+1)=r+1.
Otherwise we simply put θ(u1, . . . ,ur+1) = (n1, . . . ,nk) and ϕ(u1, . . . ,

ur+1)=s.
To define Ψ we set

Ψ(u1, . . . , ur, V ) = Φn1,...,nk,u1,...,us(u1, . . . , ur, V )

where (n1, . . . ,nk)=θ(u1, . . . ,ur) and s=ϕ(u1, . . . ,ur).
Finally, we must show that if (Vj)

∞
j=1 is any sequence of subspaces the

sequence (u1,u2, . . .)=Ψ(∅,V1,V2, . . .) is in {f <ε}.
Let k(r) be the length of θ(u1, . . . ,ur). Then k(r)≤ r for all r. Suppose

k(r) remains bounded. Then there exists s so that ϕ(u1, . . . ,ur) = s for all
r ≥ s and θ(u1, . . . ,uk) = (n1, . . . ,nt) for some fixed (n1,n2, . . . ,nt) ∈ N<∞
when k≥s. Thus

(u1, . . . , ur) = Φn1,...,nt,u1,...,us(u1, . . . , us, Vs+1, . . . , Vr), r ≥ s.

It follows that for some r>s we have

hn1,...,nt(u1, . . . , ur) < h′n1,...,nt
(u1, . . . , us) + εt
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which implies that ϕ(r)=r which is a contradiction. Hence k(r)↑∞. Let rj
be the first natural number at which k(r)=j. Then there exists (n1,n2, . . .)∈
N
N so that

θ(u1, . . . , urj ) = (n1, . . . , nj).

By construction

f ′
n1
(u1, . . . , ur1) < h′(∅) + ε0

and then for j≥1,

f ′
n1,...,nj+1

(u1, . . . , urj+1) < h′n1,...,nj
(u1, . . . , urj ) + εj.

Since h′n1,...,nj
≤f ′

n1,...,nj
we conclude that

f ′
n1,...,nj

(u1, . . . , ukj) < ε′

for all j. But this implies the existence of (nj,1,nj,2, . . .) ∈ N
N and

(uj,1,uj,2, . . .)∈Σ∞(A∞) so that nj,i=ni for i≤j and uj,i=ui for i≤kj and

F (nj,1, nj,2, . . . ;uj,1, uj,2, . . .) < ε′, j = 1, 2, . . . .

Finally we invoke lower semi-continuity:

F (n1, n2, . . . ;u1, u2, . . .) < ε

and so f(u1,u2, . . .)<ε.

We now recall (Lemma 2.1) that Σ∞(E) is a Polish space for the topol-
ogy Tp. Thus every Borel set is analytic (i.e., a continuous image of NN).

Theorem 4.4. Let σ be a large subset of Σ∞(E). Suppose:

(a) There is a sequence of absolutely convex sets Cn such that Cn ∩F is
compact for all finite-dimensional subspaces F and σ⊂

∏∞
n=1Cn.

(b) σ is analytic as a subset of (Σ∞(E),Tp).

Let ρn be any sequence of F -norms on E and define for u =
(u1,u2, . . .), v=(v1,v2, . . .)∈Σ∞(E)

d(u, v) =

∞∑

j=1

ρj(uj − vj).

Let σε = {u= (uj)
∞
j=0 : d(u,σ) = infv∈σ d(u,v)< ε}. Then for every ε > 0

there is a block subspace V so that σε is strategically large for V .
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Proof. We start by reducing this to the case when Cn = {x : ‖x‖∞ ≤ 1}.
To do this first observe that each Cn is T -closed. Since σ is large the linear
space generated by Cn is of finite codimension; if En is a complementary
space we can replace Cn by the bigger set Cn+Kn where Kn is a compact
absolutely convex neighborhood of the origin in En. So we can suppose Cn

is absorbent and hence generates a norm ‖ ·‖n on E. By induction, we can
find a sequence of positive numbers δn so that ‖x‖=

∑∞
n=1 δn‖x‖n <∞ for

all x∈E. Thus we can assume that each Cn = {x : ‖x‖ ≤Mn} for a single
norm ‖·‖.

We can now pass to block basis which is a normalized basic sequence in
the completion of (E,‖·‖). Intersecting σ with Σ∞(V ) for a block subspace
gives again an analytic set since Σ∞(V ) is closed; thus we can relabel so that
the block subspace is already E. It now follows that each Cn is included in a
set {x : ‖x‖∞≤M ′

n} whereM ′
n is some sequence of positive numbers. Finally

we put σ′={(u1,u2, . . .) : (M ′
1u1,M

′
2u2, . . .)∈σ} and note that σ′⊂Σ∞(A∞).

Clearly it is enough to prove the result for σ′ with ρj replaced by ρ′j(x) =
ρj(M

′
jx).

We therefore assume that σ⊂Σ∞(A∞).
Now there is a continuous surjective map g : NN→σ for the Tp-topology.

We will define
F : NN ×Σ∞(A∞) → [0,∞)

by

F (n1, n2, . . . ;u1, u2, . . .) = min
(

1, d((u1, u2, . . .), g(n1, n2, . . .))
)

.

It is clear that the family fn1,n2,... given by

fn1,n2,...(u1, u2, . . .) = F (n1, n2, . . . ;u1, u2, . . .)

is equi-uniformly Tbx-continuous. It is also clear that F is lower semi-
continuous for the Tp-topology in the second factor.

The result now follows directly from Theorem 4.3.

5. Applications to F -spaces

Recall that an F -space is a complete metric linear space, i.e., a vector space
X over the real or complex numbers, along with a metric ρ : X ×X → R

such that the addition is continuous with respect the metric ρ, the scalar
multiplication is continuous with respect the standard metric of R or C and
the metric ρ, the metric is translation invariant, i.e., ρ(x+a,y+a)=ρ(x,y)
and (X,ρ) is complete. We now apply the previous results to obtain the
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Gowers dichotomy for F -spaces. Before doing this we make some remarks
on basic sequences in F -spaces. There is an F -space (indeed a quasi-Banach
space) which contains no basic sequence [10]. It turns out that there is a
dichotomy result for the existence of basic sequences with a very similar
flavor to that of the Gowers dichotomy, which has been known for some
time.

We will need some background (see [11]). Let X be an F -space and let
ρ be an F -norm inducing the topology. A basic sequence (xn)

∞
n=1 is called

regular if infn ρ(xn)>0. We denote by ω the space of all sequences (i.e., the
countable product of lines). The canonical basis of ω is not regular, and ω
contains no regular basic sequence. The following result is elementary.

Proposition 5.1. Suppose X contains no subspace isomorphic to ω. Then
given a basic sequence (xn)

∞
n=1 we may choose an > 0 so that (anxn)

∞
n=1 is

regular.

Proof. Indeed if not we have infn∈N supt∈R ρ(ten) = 0. Then some subse-
quence of (en)

∞
n=1 is equivalent to the canonical basis of ω.

Two subspaces Y , Z of an F -space X are called separated if Y ∩Z={0}
and the canonical projection Y +Z→Y is continuous. An F -space is called
HI if no two infinite dimensional subspaces are separated.

Proposition 5.2. Suppose X has a regular basis (en)
∞
n=1. If there exist

two separated infinite-dimensional subspaces Y,Z of X then there exist two
separated block subspaces of X.

Proof. Since X is regular the seminorm ‖x‖∞ = sup |e∗n(x)| defines a con-
tinuous norm on X. Now, fixing 0 < ε < 1/8 we may inductively define a
sequence (xn)

∞
n=1∈X and a block basic sequence (un)

∞
n=1 such that:

(i) ‖xn‖∞=1 for all n;
(ii) ρ(xn−un)+‖xn−un‖∞<ε/2n for all n; and
(iii) xn∈Y for n odd, xn∈Z for n even.

Note that ‖un‖∞≥1−ε>1/2.
Let PY be the canonical projections of Y +Z onto Y with kernel Z.

For v =
∑n

j=1ajuj in the linear span of the sequence (un)
∞
n=1 we define

Kv=
∑n

j=1aj(xj−uj). Then

ρ(Kv) ≤ ε max
1≤j≤n

|aj | ≤ 2ε‖v‖∞

so that K is continuous. Furthermore

‖Kv‖∞ ≤ 2ε max
1≤j≤n

|aj | sup ‖un‖∞ ≤ 4ε‖v‖∞.
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Thus T = I+K extends to a continuous operator T : [un]
∞
n=1 → Y +Z.

Now

‖Tv‖∞ ≥ (1− 4ε)‖v‖∞ ≥ 1/2‖v‖∞, v ∈ [un]
∞
n=1.

If (vn)
∞
n=1 is a sequence such that limn→∞ ρ(Tvn)=0 then limn→∞‖Tvn‖∞=

0 and so limn→∞‖vn‖∞ = 0. Thus limn→∞ρ(Kvn) = 0 and hence
limn→∞ρ(vn)=0. Hence T is an isomorphism of [un]

∞
n=1 into Y+Z. Consider

the operator S=T−1PY T : then S is a projection of [un]
∞
n=1 onto [u2n−1]

∞
n=1

and the block subspaces V =[u2n−1]
∞
n=1 and W =[u2n]

∞
n=1 are separated.

Theorem 5.3. Let X be an F -space with a regular basis containing no
unconditional basic sequence. Then X has an HI subspace Y .

Proof. We assume that X has a regular basis (en)
∞
n=1.

We now consider the countable dimensional E with Hamel basis (en)
∞
n=1.

Note that the norm ‖ · ‖∞ on E is continuous with respect to the F -space
topology since (en)

∞
n=1 is regular. For any block basic sequence (un)

∞
n=1 we

say that (un)
∞
n=1 is somewhat unconditional if the map

∞∑

j=1

ajuj →
∞∑

j=1

(−1)jajuj

(defined for (aj)
∞
j=1∈ c00) is continuous for the F -space topology restricted

to E. Let σ0 be the collection of all somewhat unconditional sequences. We
claim that with respect to Tp this set is a Borel subset of Σ∞(E). Indeed let
(Um)∞m=1 be a base of open neighborhoods of zero. Let σ0(m,n) be the set
of (uj)

∞
j=1 so that

∞∑

j=1

ajuj ∈ Um =⇒
∞∑

j=1

(−1)jajuj ∈ Un.

Then σ0(m,n) is Tp-closed and σ0=
⋂∞

n=1

⋃∞
m=1σ0(m,n).

We define σ to be the subset of Σ∞E of all block basic sequences (un)
∞
n=1

such that ‖un‖∞ = 1 for all n and (un)
∞
n=1 fails to be somewhat uncondi-

tional. Then σ is also Borel in Tp. Furthermore, since X contains no uncon-
ditional basic sequence we conclude that σ is large.

Fix some 0< ε < 1 and let σ′ be the subset of Σ∞(E) of all sequences
(vj)

∞
j=1 such that

inf

{ ∞∑

j=1

(

‖uj − vj‖∞ + ρ(uj − vj)
)

: (uj)
∞
j=1 ∈ σ

}

< ε.
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Note that if (vj)
∞
j=1 ∈ σ′ there exists (uj)

∞
j=1 ∈ σ which is equivalent to

(vj)
∞
j=1. Hence each (vj)

∞
j=1∈σ′ fails to be somewhat unconditional.

According to Theorem 4.4 we can find a block subspace V so that σ′ is
strategically large for V . Let Y be the closure of V . We show that Y is HI.
Y has a regular basis (un)

∞
n=1 which is a block basis of (en)

∞
n=1. According to

Proposition 5.2 we need only check that if W1,W2 are two block subspaces
of V then W1 and W2 cannot be separated.

Let Φ be the strategy guaranteed by the fact that σ′ is strategically large.
Then Φ(W1,W2,W1,W2, . . .) = (v1,v2, . . .) and the sequence (vj)

∞
j=1 fails to

be somewhat unconditional so that W1,W2 are not separated.

Let us now recall the criterion of the existence of basic sequences given
in [8] (see also [12]). An F -space X is called minimal if there is no strictly
weaker Hausdorff topology on X.

Proposition 5.4. If X is a non-minimal F -space then X contains a regular
basic sequence.

Let us call an infinite-dimensional F -space X strongly HI (SHI) if it con-
tains a non-zero vector e so that e∈L for every infinite-dimensional closed
subspace L of X. We remark that it is possible to consider spaces X which
satisfy the slightly stronger condition that any two infinite-dimensional
closed subspaces have non-trivial intersection; this condition implies X con-
tains no basic sequence, but it is not clear if it implies that X is SHI. The
problem is that we do not know if, under this condition, the intersection of
any three infinite-dimensional closed subspaces is non-trivial. This is related
to the fact, discussed later, that the sum of two strictly singular operators
need not be strictly singular (see the discussion after Theorem 6.1).

Let X be an F -space. We say that a collection L of closed subspaces of X
is a subspace-filter in X if each L∈L is infinite-dimensional and L1∩L2∈L
whenever L1,L2∈L; we say that a subspace-filter L is a subspace-ultrafilter
if it is not contained properly in any other subspace-filter.

Theorem 5.5. Let X be an F -space containing no basic sequence. Then
X has an SHI-subspace Y .

Proof. We may assume that X is separable. We pick L to be a subspace-
filter such that H=

⋂
{L : L∈L} has minimal dimension (1≤dimH≤∞).

We will argue that dimH>0. Indeed if H={0} then we define a topology
τ on X by taking as a base of neighborhoods sets of the form U+L where
U is a neighborhood of zero in the F -space topology and L∈L. If H={0}
then τ is Hausdorff. By Proposition 5.4 we have that τ coincides with the
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original topology. Then we may find a strictly decreasing sequence Ln ∈L
so that Ln⊂{x : ρ(x)< 2−n}. If we pick xn ∈Ln \Ln+1, it is easy to verify
that (xn)

∞
n=1 is a basic sequence equivalent to the canonical basis of ω.

If dimH=∞ then it follows from maximality thatH has no proper closed
infinite-dimensional subspace and so we may take Y =H and y any non-zero
element of Y . If dimH<∞ we first argue by Lindelof’s theorem that since
X is separable we can find a descending sequence of subspaces Ln ∈ L so
that

⋂
Ln = H. We may suppose this sequence is strictly descending and

take xn∈Ln \Ln+1 for n≥1. Let Vn=[xk]k≥n so that Vn⊂Ln. Suppose W
is any closed infinite-dimensional subspace of V1; then dimVn∩W =∞ for
each n. Let L′ be any subspace-ultrafilter containing each Vn and W . Then
⋂
{L : L ∈ L′} ⊂H but the inclusion cannot be strict because the original

minimality assumption on dimH. Hence H ⊂W . Thus we can take Y =V1

and y∈H \{0}.
An examination of the proof shows that we have actually proved a slightly

stronger result:

Corollary 5.6. Let X be an F -space containing no basic sequence. Then
X has an SHI-subspace Y with the property that if E is the intersection of
all infinite-dimensional subspaces of Y then there is a descending sequence
of infinite-dimensional subspaces (Ln)

∞
n=1 of Y with

⋂∞
n=1Ln=E.

We are now ready to establish the full force of the Gowers dichotomy for
F -spaces.

Theorem 5.7. Let X be an F -space. If X contains no unconditional basic
sequence, then X contains an HI subspace.

Proof. If X contains no basic sequence then X contains a SHI subspace
(Theorem 5.5). So we may assume X has a basis. Clearly X cannot contain
a copy of ω so we can assume the basis is regular (Proposition 5.1). Now
apply Theorem 5.3.

We conclude this section with:

Theorem 5.8. Let X be an HI F -space. Suppose X has a closed infinite-
dimensional subspace containing no basic sequence. Then X contains no
basic sequence.

Proof. We will show that if (Vn)
∞
n=1 is any descending sequence of closed

infinite-dimensional subspaces of X then
⋂∞

n=1Vn �= {0}. We use Corol-
lary 5.6 to deduce the existence of a descending sequence of infinite-
dimensional closed subspaces (Ln)

∞
n=1 such that, if E =

⋂∞
n=1Ln, then



A NEW APPROACH TO RAMSEY-TYPE GAMES 379

E �= {0} and E is contained in any infinite-dimensional subspace of L1.
Consider the sequence (Ln ∩Vn)

∞
n=1. Then if dimLn∩Vn =∞ for all n we

have E⊂
⋂∞

n=1Ln∩Vn⊂
⋂∞

n=1Vn.
If not then there exists n0 such that dim(Ln∩Vn) is finite and constant

for n ≥ n0. Hence Ln ∩Vn = F some fixed finite dimensional subspace for
n≥n0. We show dimF > 0. If for some n≥n0 we have Ln∩Vn = {0} then
Ln+Vn cannot be closed since X is HI. Thus there are sequences (xk)

∞
k=1

in Ln and (vk)
∞
k=1∈Vn so that limρ(xk+vk)=0 but ρ(xk)≥ δ>0 for all k.

Consider the metric topology on Ln defined by the F -norm x→d(x,Vn) :=
inf{ρ(x+v) : v∈V }. This topology is Hausdorff on Ln and strictly weaker
than the ρ-topology. Hence Ln contains a basic sequence by Proposition 5.4,
and this is a contradiction. Hence dimF >0 and F ⊂

⋂∞
n=1Vn.

6. Strictly singular maps

In [7] the following Theorem is shown:

Theorem 6.1. Let X be a complex Banach space. If X is HI then every
bounded linear operator T : X →X is of the form T = λI +S where S is
strictly singular.

We do not know whether such a theorem can hold for a complex F -space
but we show that it holds equally for complex quasi-Banach spaces. There
are some small wrinkles in the proof as the reader will see.

From now on we will deal with quasi-Banach space X (or Y , etc.) with
a given quasi-norm which is assumed to be p-subadditive (for a suitable
0<p≤1), i.e.,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, x, y ∈ X.

A linear operator T : X → Y is an isomorphic embedding if there exists
c>0 so that ‖Tx‖≥ c‖x‖ for x∈X. T is called strictly singular if T |V fails
to be an isomorphic embedding for every infinite-dimensional subspace V
of X. T is called semi-Fredholm if kerT is finite-dimensional and T (X) is
closed. T is called Fredholm if T is semi-Fredholm and dimY/T (X)<∞.

T is semi-Fredholm if and only if for every bounded sequence (xn)
∞
n=1 such

that limn→∞‖Txn‖=0 we can extract a convergent subsequence. Thus it is
clear the restriction of a semi-Fredholm operator to an infinite-dimensional
closed subspace remains semi-Fredholm.

Let us make some remarks. Suppose X is a SHI space and let EX be the
intersection of all closed infinite-dimensional subspaces of X. If dimEX =∞
then EX is an atomic space, i.e., it has no proper closed infinite-dimensional
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subspace. The existence of atomic spaces is still open (the only known results
in this direction are in [15]). However it is known that there exist quasi-
Banach spaces X for which EX is finite-dimensional and non-trivial, even
with dimEX >1 ([9, Theorem 5.5]). The quotient map Q : X→X/EX is then
both semi-Fredholm and strictly singular (this cannot happen for operators
on Banach spaces). Furthermore if dimEX>1 then let L1,L2 be two distinct
one-dimensional subspaces of EX . Then the quotient maps Q1 : X→X/L1

and Q2 : X→X/L2 are both strictly singular and semi-Fredholm. However
the map x→(Q1x,Q2x) from X into X/L1⊕X/L2 is an isomorphism. Thus
the sum of two strictly singular operators need not be strictly singular!

The key fact we will need is the following:

Theorem 6.2. Let X be an infinite-dimensional complex quasi-Banach
space and suppose T : X → X is a bounded operator. Then there exists
λ∈C so that T −λI is not semi-Fredholm.

This Theorem is proved for Banach spaces by Gowers and Maurey [7].
The proof for quasi-Banach spaces requires some additional tricks. These
tricks are necessitated by the fact that finite-dimensional subspaces are not
always complemented.

We list the relevant facts we need:

Proposition 6.3. If X is a complex quasi-Banach space and T : X→X is
a bounded linear operator then Sp(T )={λ∈C : T −λI is not invertible} is
a non-empty compact set and maxλ∈Sp (T ) |λ|=limn→∞‖T n‖1/n.

This is due to Żelazko [16]. We point out that the key ideas in the
proof involve a reduction to the Banach algebra case. One starts with
the fact ([16]) that on a commutative quasi-Banach algebra the formula
r(x) = limn→∞‖T n‖1/n defines a seminorm. Using this one can prove the
Gelfand–Mazur theorem (see e.g. [11]) in this context and develop the basic
theory of commutative quasi-Banach algebras. The Proposition is obtained
by looking at the double commutant of T .

Proposition 6.4. Let X be a complex quasi-Banach space and let G1 de-
note the subset of L(X) consisting of all isomorphic embeddings and G2

be the collection of all surjections. Then G1 and G2 are both open sets and
G1∩G2 is a clopen subset relative to G1 and relative to G2.

See [11, pp. 132–134].

Proposition 6.5. Let X be an infinite-dimensional complex Banach space
and suppose T : X→X is quasi-nilpotent, i.e., Sp(T )={0}. Then T cannot
be semi-Fredholm.
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See [7, Lemma 19]. We will now need to prove this Proposition for a
general complex quasi-Banach space. We do this in several very simple steps.
Assume throughout that X is an infinite-dimensional complex quasi-Banach
space.

Lemma 6.6. Suppose T : X→X is any bounded operator and λ∈∂Sp(T ).
Then T −λI can be neither an isomorphic embedding nor a surjection.

Proof. This follows from Proposition 6.4.

Lemma 6.7. Suppose X has trivial dual. If T : X →X is quasi-nilpotent
then T cannot be Fredholm.

Proof. If T (X) has finite codimension in X then T is onto in this case. We
then use Lemma 6.6.

Lemma 6.8. If X is any infinite-dimensional complex quasi-Banach space
and T : X→X is quasi-nilpotent then T cannot be Fredholm.

Proof. Denote by X∗ the dual of X; this is a Banach space but it can
be quite small (even {0}). We assume X∗ �= {0} as this case is covered
in Lemma 6.7. Assume T : X →X is quasi-nilpotent and Fredholm. Then
T ∗ : X∗ →X∗ is Fredholm. In fact T ∗(X∗) = ker(T )⊥; this depends on the
fact that every continuous linear functional y∗ on T (X) can be extended to
x∗ ∈X∗ since dimX/T (X)<∞. Since ‖(T ∗)n‖ ≤ ‖T n‖ the spectral radius
formula shows that T ∗ is quasi-nilpotent. By Proposition 6.5 we must have
dimX∗ <∞. Let X0 = {x∈X : x∗(x) = 0 ∀ x∗ ∈X∗}. Then X0 is invariant
for T and of finite-codimension in X. Clearly X∗

0 ={0} and T |X0→X0 remains
Fredholm so we can apply Lemma 6.7 to get a contradiction.

Lemma 6.9. If X is any infinite-dimensional complex quasi-Banach space
and T : X→X is quasi-nilpotent then T cannot be semi-Fredholm.

Proof. Assume T is semi-Fredholm. Then by a Baire Category argument
there exists x∈X so that T nx �=0 for every n∈N. Let Y =[T nx]∞n=1. Then
T : Y →Y is Fredholm and remains quasi-nilpotent (using Proposition 6.3).
Clearly T |Y→Y is not nilpotent so dimY = ∞. This is a contradiction by
Lemma 6.8.

Proof of Theorem 6.2. The remaining steps in the proof of Theorem 6.2
are very similar to those in [7] for the Banach space case. Assume T −λI
is semi-Fredholm for all λ∈C. We suppose λ∈ ∂Sp(T ) is an accumulation
point of ∂Sp(T ). Let λn → λ with λn �= λ and λn ∈ ∂Sp(T ). Each λn is
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an eigenvalue of T (by Lemma 6.6, since T − λnI is semi-Fredholm), say
with eigenvector xn. Let Y = [xn]

∞
n=1. Then Y is invariant for T and λ ∈

∂Sp(T |Y→Y ). However (T−λI)|Y →Y has dense range and is semi-Fredholm.
Hence (T−λI)|Y→Y is surjective and we have a contradiction by Lemma 6.6.

It follows that ∂Sp(T ) has no accumulation points and hence is a finite
set. Thus Sp(T ) is also finite say Sp(T )={λ1, . . . ,λn}. Then S=

∏n
k=1(T −

λkI) is semi-Fredholm and Sp(S)={0}. This contradicts Lemma 6.9.

Theorem 6.10. Let X be an infinite-dimensional complex quasi-Banach
space. If T : X→X is strictly singular then T cannot be semi-Fredholm.

Remark. Note that this is false for operators T : X → Y by the remarks
above.

Proof. In fact T−λI is always semi-Fredholm if λ �=0 (Theorem 7.10 of [11]).
The result follows from Theorem 6.2.

Theorem 6.11. Let X be an infinite-dimensional complex quasi-Banach
space. If T : X →X is a bounded linear operator then exactly one of the
following two conditions holds:

(i) For every ε > 0 there is an infinite-dimensional closed subspace V of X
such that ‖T |V ‖<ε.

(ii) T is semi-Fredholm.

If X is HI then (i) is equivalent to:

(i′) T is strictly singular.

Proof. Assume (ii). Then there is a constant c>0 so that ‖Tx‖≥ cd(x,F )
for x ∈ X, where F = kerT . If V is an infinite-dimensional closed sub-
space we can find a sequence (vn)

∞
n=1 in the unit ball so ‖vm− vn‖ ≥ 1/2

for m �= n. Assuming that the norm is p-convex, by a simple compact-
ness argument we can then show the existence of a pair m �= n so that
(d(vm,F )p + d(vn,F )p)1/p ≥ 1/4. Hence ‖Tvm‖p+ ‖Tvn‖p ≥ (1/4)pcp. This
implies a lower bound on ‖T |V ‖.

Now assume (ii) fails and that F =ker(T ) is finite dimensional. Then T
factors in the form T = T0Q where Q : X →X/F is the quotient map and
T0 : X/F→X is one-one but not an isomorphic embedding. Then there is a
normalized sequence ξn∈X/F so that ‖T0ξn‖<2−n. Now using Theorem 4.6
of [11] we can assume by passing to a subsequence that (ξn)

∞
n=1 satisfies an

estimate

max
1≤k≤n

|ak| ≤ C

∥
∥
∥
∥

n∑

k=1

akξk

∥
∥
∥
∥
, a1, . . . , an ∈ C.
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In particular if Vk = Q−1[ξj ]j≥k then each Vk is infinite-dimensional and
‖T |Vk

‖→0. Thus (i) holds.
Now assume X is HI. Suppose T satisfies (i) and is not strictly singular.

Then there is an infinite-dimensional subspace W so that ‖Tw‖≥ δ‖w‖ for
w ∈ W where δ > 0. Pick ε = δ/2 and then choose V as in (i) for this ε.
Clearly V ∩W ={0}.

Now assume v∈V , w∈W with ‖v+w‖=1. Then

‖v‖p ≤ 1 + ‖w‖p

≤ 1 + 2−p‖v‖p + ‖w‖p − 2−p‖v‖p

≤ 1 + 2−p‖v‖p + δ−p‖Tw‖p − 2−pε−p‖Tv‖p

= 1 + 2−p‖v‖p + δ−p(‖Tw‖p − ‖Tv‖p)
≤ 1 + 2−p‖v‖p + δ−p‖T (v +w)‖p

≤ 1 + 2−p‖v‖p + δ−p‖T‖p.

Thus

‖v‖ ≤
(
1 + δ−p‖T‖p

1− 2−p

)1/p

.

This contradicts the fact that X is HI.
Conversely if T is strictly singular it cannot be semi-Fredholm by Theo-

rem 6.10 and so (i) must hold.

Theorem 6.12. Let X be an infinite-dimensional complex quasi-Banach
space. If X is HI then every bounded linear operator T : X →X is of the
form T =λI+S where S is strictly singular.

Proof. There exists λ so that T−λI is not semi-Fredholm by Theorem 6.2.
By Theorem 6.11 this means T −λI is strictly singular.

In the case when X is SHI this result is much simpler. Indeed we have:

Theorem 6.13. Let X be an SHI space and suppose E is the intersection
of all infinite-dimensional subspaces of X. Let Q : X→X/E be the quotient
map (which is strictly singular). Then if T : X→X is a bounded operator,
there exists λ∈C and a bounded operator S : X/E →X so that T = λI+
SQ.

Proof. Let us first give a simpler proof of Theorem 6.12. It is clearly that
if R : X → X is an invertible operator then R(E) ⊂ E and this implies
that E is invariant for all operators on X. If E is atomic then E is rigid
([11, Theorem 7.22, p. 155]). Otherwise E is finite-dimensional. In either
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case T |E has an eigenvalue λ and so T−λI factors through a quotient map
Q′ : X → X/F ′ where F ′ is a non-trivial subspace of E. Hence T − λI is
strictly singular.

Now using Theorem 6.11 it is clear any strictly singular operator on X
vanishes on E and so we get the desired factorization.
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