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1. Introduction

The long-standing Banach-Mazur rotation problem [2] asks whether every sepa-
rable Banach space with a transitive group of isometries is isometrically isomorphic
to a Hilbert space. This problem has attracted a lot of attention in the literature
(see a survey [3]) and there are several related open problems. In particular it is not
known whether a separable Banach space with a transitive group of isometries is
isomorphic to a Hilbert space, and, until now, it was unknown if such a space could
be isomorphic to `p for some p 6= 2. We show in this paper that this is impossible
and we provide further restrictions on classes of spaces that admit transitive or
almost transitive equivalent norms (a norm on X is called almost transitive if the
orbit under the group of isometries of any element x in the unit sphere of X is norm
dense in the unit sphere of X).

It has been known for a long time [28] that every separable Banach space (X, ‖·‖)
is complemented in a separable almost transitive space (Y, ‖ · ‖), its norm being an
extension of the norm on X. In 1993 Deville, Godefroy and Zizler [9, p. 176] (cf.
[12, Problem 8.12]) asked whether every super-reflexive space admits an equiva-
lent almost transitive norm. Recently Ferenczi and Rosendal [12] answered this
question negatively by constructing a complex super-reflexive HI space which does
not admit an equivalent almost transitive renorming. They asked [12, Remark af-
ter Theorem 7.5] whether an example can be found among more classical Banach
spaces.

The first main result of this paper is that the spaces `p, 1 < p < ∞, p 6= 2, and
all infinite-dimensional subspaces of their quotient spaces do not admit equivalent
almost transitive renormings. We also prove that all infinite-dimensional subspaces
of Asymptotic-`p spaces for 1 ≤ p < ∞, p 6= 2, fail to admit equivalent almost
transitive norms (Theorem 2.9). Moreover we give an example of a super-reflexive
space which does not contain either an Asymptotic-`p space or a subspace which
admits an almost transitive norm (Corollary 2.15).

We combine our results with known results about the structure of subspaces of
Lp, 2 < p <∞, and we obtain that if X is a subspace of Lp, 2 < p <∞, or, more
generally, of any non-commutative Lp-space [17] for 2 < p < ∞, such that every
subspace of X admits an equivalent almost transitive norm, then X is isomorphic
to a Hilbert space (Corollary 2.18). The same result is also true for subspaces of
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the Schatten class Sp(`2) for 1 < p <∞, p 6= 2, (Corollary 2.20). This suggests the
following question.

Problem 1.1. Suppose that every subspace of a Banach space X admits an equiv-
alent almost transitive renorming. Is X isomorphic to a Hilbert space?

As additional information related to this problem, we prove that if such a space
X is isomorphic to a stable Banach space then X is `2-saturated (Corollary 2.21
and Remark 2.22).

Our results are a consequence of a new property of almost transitive spaces with
a Schauder basis. Namely we prove that in such spaces the unit vector basis of `22
belongs to the two-dimensional asymptotic structure. We also obtain some infor-
mation about the asymptotic structure in higher dimensions. This enables us to
obtain several results on spaces which admit an almost transitive norm. In partic-
ular we obtain estimates for the power types of the upper and lower envelopes of
X and of p and q in (p, q)-estimates of X (Corollaries 2.11 and 2.14). From this
we obtain a version of Krivine’s theorem for spaces with asymptotic unconditional
structure and a subspace which admits an almost transitive norm (Theorem 2.12).
Another consequence is a characterization of subspaces of Orlicz sequence spaces
which contain a subspace which admits an equivalent almost transitive norm (The-
orem 2.16).

The second part of the paper is devoted to the study of maximal renormings
on Banach spaces. We say that a Banach space (X, ‖ · ‖) is maximal if whenever
||| · ||| is an equivalent norm on X such that Isom(X, ‖ · ‖) ⊆ Isom(X, ||| · |||), then
Isom(X, ‖ · ‖) = Isom(X, ||| · |||). This notion was introduced by Pe lczyński and
Rolewicz [35], cf. [40], and has been extensively studied, see e.g. a survey [3].
Rolewicz [40] proved that all non-hilbertian 1-symmetric spaces are maximal. In
1982 Wood [46] posed a problem whether every Banach space admits an equivalent
maximal norm.

The study of isometry groups of renormings of X is equivalent to the study
of bounded subgroups of the group GL(X) of all isomorphisms from X onto X.
Indeed, if G is a bounded subgroup of GL(X) we can define an equivalent norm
‖ · ‖G on X by

‖x‖G = sup
g∈G
‖gx‖.

Then G is a subgroup of Isom(X, ‖ · ‖G). Thus Wood’s problem asks whether for
every space X, GL(X) has a maximal bounded subgroup.

In 2013 Ferenczi and Rosendal [12] answered Wood’s problem negatively by
constructing a complex super-reflexive space and a real reflexive space, both without
a maximal bounded subgroup of the isomorphism group.

In 2006 Wood [45], cf. [15, p. 200] and [12, p. 1774], asked, what he called a
more natural question, whether for every Banach space there exists an equivalent
maximal renorming whose isometry group contains the original isometry group, i.e.
whether every bounded subgroup of GL(X) is contained in a maximal bounded sub-
group of GL(X). As elaborated by Wood [45] and Ferenczi and Rosendal [12] this
question is related to the Dixmier’s unitarisability problem whether every countable
group all of whose bounded representations on a Hilbert space are unitarisable is
amenable, see also [36].

There are several known groups with bounded representations not contained in
the unitary group; however it is unknown whether isometry groups of renormings
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of Hilbert space induced by these representations are maximal or even contained
in a maximal isometry group of another equivalent renorming. The answer to this
question would elucidate the following portion of the Banach-Mazur problem.

Problem 1.2. (see [12, Problems 1.2 and 8.7]) Suppose that ||| · ||| is an equivalent
maximal norm on a Hilbert space H. Is ||| · ||| necessarily Euclidean?

In this paper we show that even in Banach spaces which have a maximal bounded
subgroup of GL(X) there can also exist bounded subgroups of GL(X) which are
not contained in any maximal bounded subgroup of GL(X). We prove that `p,

1 < p < ∞, p 6= 2, the 2-convexified Tsierelson space T (2), and the space U with
a universal unconditional basis, have a continuum of renormings none of whose
isometry groups is contained in any maximal bounded subgroup of GL(X). We
note that T (2) is a weak Hilbert space. We do not know whether T (2) or general
weak Hilbert spaces, other than `2, have a maximal bounded subgroup of GL(X).

We also study maximal bounded subgroups of GL(X) for Banach spaces X
with 1-unconditional bases. We prove that `p, 1 < p < ∞, p 6= 2, and U have
continuum different renormings with 1-unconditional bases each with a different
maximal isometry group, and that every symmetric space other than `2 has at least
a countable number of such renormings. As mentioned above it is unknown whether
the Hilbert space has a unique, up to conjugacy, maximal bounded subgroup of
GL(X). Motivated by our results we ask the following question.

Question 1.3. Does there exist a separable Banach space X with a unique, up
to conjugacy, maximal bounded subgroup of GL(X)? If yes, does X have to be
isomorphic to a Hilbert space?

2. Almost and convex transitivity

Throughout this section X and Y will denote real or complex infinite dimensional
Banach spaces and the term subspace always means a closed infinite-dimensional
linear subspace.

If a Banach space X has a Schauder basis, a normalized Schauder basis will be
denoted (ei) and its biorthogonal sequence will be denoted (e∗i ). For n ≥ 1, PXn
will denote the basis projection from X onto the linear span of e1, . . . , en. The
support of x ∈ X is defined by suppx = {i ∈ N : e∗i (x) 6= 0}. If x, y ∈ X we write
x < y if max suppx < min supp y and x > N if suppx ⊂ [N + 1,∞). We say that
a sequence (xi) of vectors is a normalized block basis if x1 < x2 < x3 < . . . and
‖xi‖ = 1 (i ≥ 1).

Lemma 2.1. Suppose that X has a Schauder basis and contains a subspace Y
which is almost transitive. Given δ > 0, y0 ∈ Y , and N ∈ N there exists y ∈ Y ,
with ‖PXN (y)‖ < δ, such that for all scalars a, b, we have

(2.1) (1− δ)(|a|2‖y0‖2 + |b|2)1/2 ≤ ‖ay0 + by‖ ≤ (1 + δ)(|a|2‖y0‖2 + |b|2)1/2.

Proof. By compactness there exists n := n(N, δ) such that if (yi)
n
i=1 ⊂ BY then

there exist 1 ≤ i < j ≤ n such that ‖PXN (yj − yi)‖ < δ. By Dvoretzky’s theorem
[10] and almost transitivity of Y , there exist (yi)

n
i=1 ⊂ SY such that for all scalars
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a, b1, . . . , bn, we have

(1− δ)

(
|a|2‖y0‖2 +

n∑
i=1

|bi|2
)1/2

≤

∥∥∥∥∥ay0 +

n∑
i=1

biyi

∥∥∥∥∥
≤ (1 + δ)

(
|a|2‖y0‖2 +

n∑
i=1

|bi|2
)1/2

.

(2.2)

Choose 1 ≤ i < j ≤ n such that ‖PXN (yj − yi)‖ < δ and set y = (1/
√

2)(yj − yi).
Then (2.1) follows from (2.2). �

Remark 2.2. For a Banach space X, let

FR(X) := {1 ≤ r ≤ ∞ : `r is finitely representable in X}.

Suppose that r ∈ FR(Y ), where Y is as in Lemma 2.1. The proof yields (after the
obvious modifications) the same conclusion except (2.1) should be replaced by

(2.3) (1− δ)(|a|r‖y0‖r + |b|r)1/r ≤ ‖ay0 + by‖ ≤ (1 + δ)(|a|r‖y0‖r + |b|r)1/r

with the obvious modification for r = ∞. In particular, by the Maurey-Pisier
theorem [31], this holds for all r ∈ [pY , 2] ∪ {qY }, where

pY := sup{1 ≤ p ≤ 2: Y has type p}

and

qY := inf{2 ≤ q <∞ : Y has cotype q}.

Theorem 2.3. Suppose that X has a Schauder basis and contains a subspace Y
which is almost transitive. Let r ∈ FR(Y ). Then, given ε > 0 and any sequence
(ai) of nonzero scalars, there exists a normalized block basis (xi) in X such that,
for all m ≥ 1 and all scalars b, we have

(1− ε)

(
m∑
k=1

|ak|r + |b|r
)1/r

≤

∥∥∥∥∥
m∑
k=1

akxk + bxm+1

∥∥∥∥∥
≤ (1 + ε)

(
m∑
k=1

|ak|r + |b|r
)1/r

.

(2.4)

Proof. First we prove the result for r = 2. Let (δi)
∞
i=1 be a (sufficiently small)

positive decreasing sequence. We construct (xi) and an auxiliary sequence (yi) ⊂ Y
iteratively. Let y1 ∈ SY be chosen arbitrarily. Chose a finitely supported vector
x1 ∈ SX such that ‖y1 − x1‖ < δ1. Let (εi) be a strictly increasing sequence
satisfying 0 < εi < ε/3 for all i. Suppose m ≥ 1 and that yi ∈ Y and finitely
supported xi ∈ SX (1 ≤ i ≤ m) have been chosen such that x1 < x2 < · · · < xm,
‖xi − yi‖ < δi, and, for all 1 ≤ j ≤ m and scalars b,

(1− εj)

(
j−1∑
k=1

|ak|2 + |b|2
)1/2

≤

∥∥∥∥∥
j−1∑
k=1

akyk + byj

∥∥∥∥∥
≤ (1 + εj)

(
j−1∑
k=1

|ak|2 + |b|2
)1/2

.

(2.5)
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Let N := max supp(xm) and let δ > 0 be sufficiently small. By Lemma 2.1 applied
to y0 =

∑m
k=1 akyk, there exists ym+1 ∈ Y such that ‖PXN (ym+1)‖ < δ and, for all

scalars a, b,

(2.6) (1− δ)(|a|2‖y0‖2 + |b|2)1/2 ≤ ‖ay0 + bym+1‖ ≤ (1 + δ)(|a|2‖y0‖2 + |b|2)1/2.

In particular, for all scalars b, we have

(1− εm)(1− δ)

(
m∑
k=1

|ak|2 + |b|2
)1/2

≤

∥∥∥∥∥
m∑
k=1

akyk + bym+1

∥∥∥∥∥
≤ (1 + εm)(1 + δ)

(
m∑
k=1

|ak|2 + |b|2
)1/2

,

and hence (2.5) holds for n = m + 1 provided δ(1 + εm) < εm+1 − εm, which we
may assume. Set x̃m+1 := PXN1

(ym+1)−PXN (ym+1), where N1 is chosen sufficiently

large to ensure that ‖ym+1 − PXN1
(ym+1)‖ < δ. Then xm < x̃m+1 and

‖x̃m+1 − ym+1‖ ≤ ‖ym+1 − PXN1
(ym+1)‖+ ‖PXN (ym+1)‖ < 2δ.

By (2.6) |1−‖ym+1‖| ≤ δ, and hence |1−‖x̃m+1‖| < 3δ. Let xm+1 = x̃m+1/‖x̃m+1‖.
Then ‖xm+1‖ = 1 and

‖xm+1 − ym+1‖ ≤ ‖xm+1 − x̃m+1‖+ ‖x̃m+1 − ym+1‖ < 3δ + 2δ = 5δ.

Nence ‖xm+1 − ym+1‖ < δm+1 provided 5δ < δm+1, which we may assume. This
completes the proof of the inductive step.

Finally, provided (
∑∞
i=1 |ai|δi) < |a1|ε/3 and δ1 < ε/3, which we may assume,

(2.4) follows from (2.5) by an easy triangle inequality calculation and the fact that
‖xi − yi‖ < δi for all i ≥ 1.

The proof for r ∈ FR(Y ) is very similar except (2.3) is used instead of (2.1). �

Since the behaviour of block bases in `p and c0 is well understood, as an imme-
diate consequence we obtain

Theorem 2.4. No subspace of `p, 1 ≤ p < ∞, p 6= 2, or of c0 admits an almost
transitive renorming.

Proof. Let Y be a subspace of X so that Y admits an equivalent almost transitive
norm |||·|||. It is well-known that any equivalent norm on a subspace may be extended
to an equivalent norm on the whole space, see e.g. [11, p. 55]. So ||| · ||| extends to
an equivalent norm ||| · ||| on X. By Theorem 2.3 for all n ∈ N and any ε > 0 there
exists a normalized block basis (xk) in X such that,

(2.7) (1− ε)n1/2 ≤
∣∣∣∣∣∣∣∣∣ n∑
k=1

xk

∣∣∣∣∣∣∣∣∣ ≤ (1 + ε)n1/2.

It is well known that when X = `p, 1 ≤ p <∞, every block basis is isometrically
equivalent to the standard basis of `p, see e.g. [27]. Since ||| · ||| is C-equivalent to
‖ · ‖`p , n is arbitrary and p 6= 2, we obtain a contradiction. The proof for c0 is
similar. �

Remark 2.5. F. Cabello [5] proved that almost transitive Banach spaces which ei-
ther are Asplund or have the Radon-Nikodym property actually are super-reflexive,
and thus, in particular, it was known that `1 and c0 and their subspaces do not
admit an equivalent almost transitive norm.
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Remark 2.6. It is clear from the proof of Theorem 2.3 that if we consider the
corresponding infinite asymptotic game in X then the vector player has a winning
strategy. More precisely, suppose that ε > 0 and (an) are fixed. Then ∀n1 ∃x1 > n1

s.t. ∀n2 ∃x2 > n2 . . . such that the outcome (xi) satisfies (2.4).

We recall the notion of asymptotic structure introduced by Maurey, Milman,
and Tomczak-Jaegermann [30]. A basis (bi)

n
i=1 of unit vectors for an n-dimensional

normed space belongs to {X, (ei)}n if, given ε > 0, the second player has a
winning strategy in the asymptotic game to produce a sequence (xi)

n
i=1 that is

(1 + ε)-equivalent to (bi)
n
i=1. Precisely, ∀m1 ∃x1 > m1 s.t. ∀m2 ∃x2 > m2 s.t.

. . . ∀mn ∃xn > mn such that there exist c and C, with 0 < c ≤ C and C/c < 1 + ε,
such that for all scalars (ai)

n
i=1, we have

c

∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ≤ C
∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥ .
Theorem 2.7. Suppose that X has a Schauder basis and contains a subspace Y
which is almost transitive. Let r ∈ FR(Y ). Then, for all n ≥ 2 and for all nonzero
scalars a1, . . . , an−1, there exists (bi)

n
i=1 ∈ {X, (ei)}n such that for all scalars λ and

for all 1 ≤ k < n, we have

(2.8)

∥∥∥∥∥
k∑
i=1

aibi + λbk+1

∥∥∥∥∥ =

(
k∑
i=1

|ai|r + |λ|r
)1/r

.

In particular, the unit vector basis of `2r belongs to {X, (ei)}2.

Proof. By a theorem of Knaust, Odell, and Schlumprecht [23] (cf. [32]), given
εn ↓ 0, the basis (ei) may be blocked as (Ek), where Ek = span{ei : mk ≤ i < mk+1}
so that, for all n ≥ 1, if mn ≤ x1 < x2 < · · · < xn is a skipped sequence of
unit vectors with respect to the blocking (Ek) (i.e., if i < j then there exists k
such that xi < mk ≤ mk+1 ≤ xj), then (xi)

n
i=1 is (1 + εn)-equivalent to some

(bi)
n
i=1 ∈ {X, (ei)}n. The result now follows from the proof of Theorem 2.3 and

Remark 2.6. �

Remark 2.8. Theorem 2.7 remains valid for the asymptotic structure associated to
the collection B0(X) of subspaces of X of finite codimension (see [30, Section 1.1]),
and in that case it is not necessary to assume that X has a basis. In fact, Theo-
rem 2.7 can also be proved using [30, Section 1.5] instead of [23].

Recall that X is an asymptotic-`p space (1 ≤ p <∞) in the sense of [30] if there
exists C > 0 such that for all n ≥ 1, for all (bi)

n
i=1 ∈ {X, (ei)}n, and for all scalars

(ai)
n
i=1, we have

(2.9)
1

C

(
n∑
i=1

|ai|p
)1/p

≤

∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥ ≤ C
(

n∑
i=1

|ai|p
)1/p

,

and that X is an asymptotic `∞-space if (in place of (2.9)) we have

(2.10)
1

C
max

1≤i≤n
|ai| ≤

∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥ ≤ C max
1≤i≤n

|ai|.

We shall follow [32, p. 238] in calling such spaces Asymptotic-`p spaces (with a
capital A) in order to to distinguish them from a smaller class of spaces which
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are also known, somewhat confusingly, as asymptotic-`p spaces [32, p. 226]. This
narrower notion of asymptotic-`p space is defined by the following condition on
finite block sequences: there exists C > 0 such that for all n ≤ x1 < · · · < xn, we
have

1

C

(
n∑
k=1

‖xk‖p
)1/p

≤

∥∥∥∥∥
n∑
k=1

xk

∥∥∥∥∥ ≤ C
(

n∑
k=1

‖xk‖p
)1/p

,

with the obvious modification for p =∞. The latter narrower class of asymptotic-
`p space contains, e.g., the p-convexified Tsirelson space T (p) for 1 ≤ p <∞ (see [6]

and [7]), while T ∗, the dual of the Tsirelson space T (= T (1)), is an asymptotic-`∞
space.

Theorem 2.9. Suppose X is an Asymptotic-`p space, 1 ≤ p ≤ ∞, p 6= 2. Then no
subspace Y of X admits an equivalent almost transitive norm.

Proof. Suppose X contained such a subspace Y . By Theorem 2.7, for all n ≥ 1
there exists (bi)

n
i=1 ∈ {X, (ei)}n such that ‖

∑n
i=1 bi‖ =

√
n. But this contradicts

(2.9) (or (2.10) if p =∞) when n is sufficiently large. �

For 1 < p <∞, let Cp denote the class of Banach spaces X which are isomorphic
to a subspace of an `p-sum of finite-dimensional normed spaces. It is known that
if X ∈ Cp and Y is isomorphic to a subspace of a quotient space of X, then Y ∈ Cp
[19]. In particular, Cp contains every infinite-dimensional subspace of a quotient
space of `p.

Corollary 2.10. Let 1 < p < ∞, p 6= 2. If X ∈ Cp then X does not admit an
equivalent almost transitive norm. In particular, no infinite-dimensional subspace
of a quotient space of `p admits an equivalent almost transitive norm.

Proof. X is isomorphic to a subspace of Zp := (
∑∞
n=1⊕`n∞)p since every finite-

dimensional normed space is 2-isomorphic to a subspace of `n∞ provided n is suffi-
ciently large. Zp is an Asymptotic `p-space with respect its natural basis (ei). By
Theorem 2.9, X does not admit an equivalent almost transitive norm. �

Recall (see [30, Section 1.9.1]) that the upper envelope is the norm rX on c00

given by

rX((ai)) := sup

{∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥ : n ≥ 1, (bi)
n
i=1 ∈ {X, (ei)}n

}
,

and the lower envelope is the function gX on c00 given by

gX((ai)) := inf

{∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥ : n ≥ 1, (bi)
n
i=1 ∈ {X, (ei)}n

}
.

Corollary 2.11. Suppose that X has a Schauder basis (ei) and contains a subspace
Y which is almost transitive. Then

gX((ai)) ≤

( ∞∑
i=1

|ai|qY
)1/qY

≤

( ∞∑
i=1

|ai|pY
)1/pY

≤ rX((ai)),

with the obvious modification if qY =∞.
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Theorem 2.12. Suppose that X has an unconditional basis (ei). If X contains
an almost transitive subspace Y , then there exist p ∈ [pX , pY ] and q ∈ [qY , qX ]
such that, for r = p and r = q and for all n ≥ 1 and ε > 0, there exist disjointly
supported vectors (xi)

n
i=1 ⊂ X such that (xi)

n
i=1 is (1 + ε)-equivalent to the unit

vector basis of `nr . In particular, if Y = X, then p = pX and q = qX .

Proof. Sari [43] defined {X, (ei)}d as the collection of all finite sequences (wi)
n
i=1

such that, for some m ≥ n, there exist (bi)
m
i=1 ∈ {X, (ei)}m and a partition

{A1, . . . , An} of {1, . . . ,m} such that wi =
∑
j∈Ai

αjbj for some scalars (αj)
m
j=1

and ‖wi‖ = 1. Thus, (wi)
n
i=1 is a normalized basis for a block subspace of the

asymptotic space with basis (bi).
Recall (see [43, Definition 3.1]) that the upper disjoint-envelope function is the

norm rdX on c00 given by

rdX((ai)) := sup

{∥∥∥∥∥
n∑
i=1

aiwi

∥∥∥∥∥ : n ≥ 1, (wi)
n
i=1 ∈ {X, (ei)}d

}
.

The lower disjoint-envelope function gdX is defined similarly with supremum re-
placed by infimum. Corollary 2.11 gives

gdX((ai)) ≤

( ∞∑
i=1

|ai|qY
)1/qY

≤

( ∞∑
i=1

|ai|pY
)1/pY

≤ rdX((ai)).

In particular, rdX has power type p and gdX has power type q for some p ∈ [1, pY ]
and q ∈ [qY ,∞] (see [43, Definition 5.3]). It follows from [43, Theorem 5.6] that
{X, (ei)}d contains the unit vector basis of `np and of `nq for all n ≥ 1, which implies,
for r = p and r = q, the existence of disjointly supported vectors (xi)

n
i=1 ⊂ X such

that (xi)
n
i=1 is (1 + ε)-equivalent to the unit vector basis of `nr . �

Remark 2.13. Theorem 2.12 holds also (with the same proof) under the weaker
assumption that X has asymptotic unconditional structure. See [30, Section 2.2.1]
for the definition of this notion.

Recall that a basis satisfies (p, q)-estimates, where 1 < q ≤ p <∞, if there exists
C > 0 such that

1

C

(
n∑
k=1

‖xk‖p
)1/p

≤

∥∥∥∥∥
n∑
k=1

xk

∥∥∥∥∥ ≤ C
(

n∑
k=1

‖xk‖q
)1/q

,

whenever x1 < x2 < · · · < xn. Theorem 2.3 has the following immediate conse-
quence.

Corollary 2.14. Suppose that a Banach space X with a Schauder basis (ei) con-
tains a subspace Y which admits an equivalent almost transitive norm. If (ei)
satisfies (p, q)-estimates, then q ≤ 2 ≤ p.

Proof. Let ||| · ||| be the equivalent almost transitive norm on Y . Then (as in The-
orem 2.4) ||| · ||| extends to an equivalent norm ||| · ||| on X. Clearly, (ei) satisfies
(p, q)-estimates under ||| · |||. Hence (2.4) gives the desired conclusion. �

A natural question, in the light of Theorem 2.9, is whether every super-reflexive
space which does not admit an almost transitive norm must contain an asymptotic-
`p space? The next result answers this question negatively.
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Corollary 2.15. There exist super-reflexive spaces which do not contain either an
Asymptotic-`p space or a subspace which admits an almost transitive norm.

Proof. The spaces Sq,r(log2(x+ 1)) (1 < q < r <∞) constructed in [8] are super-
reflexive and satisfy (r, q)-estimates. Hence, if 1 < q < r < 2 or 2 < q < r < ∞,
Sq,r(log2(x+ 1)) does not contain any subspace which admits an almost transitive
norm. Moreover, Sq,r(log2(x+1)) is complementably minimal, has a subsymmetric
basis, and does not contain a copy of any `p space [8], which is easily seen to
preclude the containment of an Asymptotic-`p space. �

2.1. Orlicz spaces.

Theorem 2.16. Suppose that X is an Orlicz sequence space `M (where M is an
Orlicz function). Then X contains a subspace Y which admits an almost transitive
norm if and only if X contains a subspace isomorphic to `2.

Proof. Corollary 2.14 implies that the Matuszewska-Orlicz indices of M satisfy
αM ≤ 2 ≤ βM , which in turn implies by a theorem of Lindenstrauss and Tzafriri
[25, 26] (see also [27]) that `M contains a subspace isomorphic to `2. Conversely, if
X contains a subspace Y isomorphic to `2 then Y admits an equivalent transitive
norm. �

2.2. Convex transitive spaces. We say that a Banach space X is convex tran-
sitive if for any x in the unit sphere of X, conv{Tx : T ∈ Isom(X, ‖ · ‖)} is equal
to the unit ball of X. This notion was introduced in [35] where it was shown that
in general it is weaker than almost transitivity. However in super-reflexive Banach
spaces convex transitivity is equivalent to almost transitivity [5]. A long list of
additional related results is summarized in [3, Theorem 6.8 and Corollary 6.9], see
also [44, 13]. Thus, in particular, we obtain from Corollary 2.10:

Corollary 2.17. For 1 < p < ∞, p 6= 2, no infinite-dimensional subspace of a
quotient space of `p admits a convex transitive renorming.

It is well known that the spaces Lp[0, 1], 1 < p < ∞, with the original norm
are almost transitive. Next we consider their subspaces which admit an almost
transitive renorming.

Corollary 2.18. Let X be a subspace of Lp[0, 1], 2 < p < ∞, which admits an
equivalent convex transitive norm. Then X contains a subspace isomorphic to `2.

Proof. By [18] either X contains a subspace isomorphic to `2 or X is isomorphic to
a subspace of `p. By Corollary 2.17, the latter case would contradict the fact that
X admits a convex transitive norm, which proves the corollary. �

Corollary 2.19. Let X be a subspace of Lp[0, 1], 2 < p < ∞, or, more generally,
of any non-commutative Lp-space [17] for 2 < p <∞, so that every subspace Y of
X admits an equivalent convex transitive norm, then X is isomorphic to `2.

Proof. In the commutative case by [21], and in the non-commutative case by [38,
Theorem 0.2], either X is isomorphic to `2 or X contains a subspace Y isomorphic
to `p. By Corollary 2.17, in the latter case Y does not admit an equivalent convex
transitive norm, which proves the corollary. �
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Corollary 2.20. Let X be a subspace of the Schatten class Sp(`2), 1 < p < ∞,
p 6= 2, so that every subspace Y of X admits an equivalent convex transitive norm,
then X is isomorphic to `2.

Proof. The proof is the same as that of Corollary 2.19, except that we use [16] to
conclude that either X is isomorphic to `2 or X contains a subspace Y isomorphic
to `p, which, by Corollary 2.17, gives the conclusion of the corollary. �

Corollary 2.21. Let X be a subspace of Lp[0, 1], 1 < p < 2, such that every
subspace Y of X admits an equivalent convex transitive norm. Then, for all 1 ≤
r < 2, X is isomorphic to a subspace of Lr[0, 1] and every subspace of X contains
almost isometric copies of `2.

Proof. By Corollary 2.17, X does not contain a copy of `r for any 1 ≤ r < 2.
Thus, by a theorem of Rosenthal [42], X is contained in Lr[0, 1] for all p ≤ r < 2.
The latter implies by a theorem of Aldous [1] that every subspace of X contains
isomorphic (even almost isometric [24]) copies of `2. �

Remark 2.22. The last statement of Corollary 2.21 generalizes to the class of
stable spaces introduced in [24]. If X is stable then every subspace of X contains
almost isometric copies of `p for some 1 ≤ p <∞ [24]. Thus, if, in addition, every
subspace of X admits an equivalent almost transitive norm, then by Theorem 2.4
every subspace of X contains almost isometric copies of `2.

Remark 2.23. We do not know whether Corollary 2.21 generalizes to the setting
of non-commutative Lp-spaces. Rosenthal’s theorem used in the proof of Corol-
lary 2.21 generalizes to non-commutative Lp-spaces, [20] and [37]. However non-
commutative Lp-spaces are not stable in general [29]. As far as we know, it is
not known whether Aldous’s theorem can be generalized to the non-commutative
setting.

3. Maximal bounded subgroups of the isomorphism group

As noted in the Introduction, maximal isometry groups of equivalent renormings
of a Banach space X are exactly maximal bounded subgroups of the group GL(X)
of isomorphisms from X onto X. Thus all results in this and the next section can
be stated equivalently in the terminology of bounded subgroups of GL(X). We
choose the terminology of isometry groups of renormings of X since our arguments
rely heavily on Rosenthal’s characterization of isometry groups of a general class of
Banach spaces, which we recall below.

We will need the following definitions and results from [41].
A Banach space X with a normalized 1-unconditional basis {eγ}γ∈Γ is called

impure if there exist α 6= β in Γ so that (eα, eβ) is isometrically equivalent to the
usual basis of 2-dimensional `22 and for all x, x′ ∈ span(eα, eβ) with ‖x‖ = ‖x′‖ and
for all y ∈ span{eγ : γ 6= α, β} we have ‖x + y‖ = ‖x′ + y‖. Otherwise the space
X is called pure (cf. [41, Corollary 3.4]). For convenience, we will also say that
{eγ}γ∈Γ is pure (resp. impure) if (X, {eγ}γ∈Γ) is pure (resp. impure).

Definition 3.1. ([41, p. 430 and Proposition 1.11]) Let X be a Banach space
and Y be a subspace of X. Y is said to be well-embedded in X if there exists a
subspace Z of Z so that X = Y + Z and for all y, y′ ∈ Y, z ∈ Z, if ‖y‖ = ‖y′‖ then
‖y + z‖ = ‖y′ + z‖.
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Y is called a well-embedded Hilbert space if Y is well-embedded and Euclidean.
Y is called a Hilbert component of X if Y is a maximal well-embedded Hilbert
subspace (a similar concept in complex Banach spaces was introduced by Kalton
and Wood [22]).

If X is space with a 1-unconditional basis E = {eγ}γ∈Γ and (Hγ)γ∈Γ are Hilbert
spaces all of dimension at least 2, then Z = (

∑
Γ⊕Hγ)E is called a functional

hilbertian sum [41].

Rosenthal [41] proved the following useful fact:

Theorem 3.2. ([41, Theorem 1.12]) If Y is a well-embedded Hilbert subspace of
X, then there exists a Hilbert component of X containing Y .

The main result of [41] which we will use extensively is the following:

Theorem 3.3. ([41, Theorem 3.12]) Let X be a pure space with a 1-unconditional
basis E = {eγ}γ∈Γ and (Hγ)γ∈Γ be Hilbert spaces all of dimension at least 2, and let
Z = (

∑
Γ⊕Hγ)E be the corresponding functional hilbertian sum. Let P (Z) denote

the set of all bijections σ : Γ→ Γ so that

(a) {eσ(γ)}γ∈Γ is isometrically equivalent to {eγ}γ∈Γ, and
(b) Hσ(γ) is isometric to Hγ for all γ ∈ Γ.

Then T : Z → Z is a surjective isometry if and only if there exist σ ∈ P (Z)
and surjective linear isometries Tγ : Hγ → Hσ(γ), for all γ ∈ Γ, so that for all
z = (zγ)γ∈Γ in Z, and for all γ ∈ Γ,

(3.1) (Tz)σ(γ) = Tγ(zγ).

In particular, if T ∈ Isom(Z) and H is a Hilbert component of Z, then T (H) is a
Hilbert component of Z.

Theorem 3.3 is valid for both real and complex spaces. For separable complex
Banach spaces it was proved earlier by Fleming and Jamison [14], cf. also [22].

As a consequence of [41, Theorem 2] we obtain a condition when maximal isom-
etry groups of functional hilbertian sums are conjugate to each other.

Proposition 3.4. Suppose (Z, ‖ · ‖) has two renormings ‖ · ‖1 and ‖ · ‖2 such that
(Z, ‖ · ‖1) is isometric to a functional hilbertian sum, Z1 = (

∑
Γ1
⊕Hγ)E1

, and

(Z, ‖ · ‖2) is isometric to a functional hilbertian sum, Z2 = (
∑

Γ2
⊕Hγ)E2

, where

E1 and E2 are pure. Suppose G1 := Isom(Z, ‖ · ‖1) and G2 := Isom(Z, ‖ · ‖2) are
conjugate in the isomorphism group of (Z, ‖ ·‖) and are maximal. Then there exists
a bijection ρ : Γ1 → Γ2 such that Hγ is isometric to Hρ(γ) for all γ ∈ Γ1.

Proof. Let G1 = T−1G2T for some isomorphism T of (Z, ‖ · ‖). Define

‖z‖3 := sup
g∈G1

‖g(z)‖ (z ∈ Z).

Clearly, ‖·‖3 is G1-invariant and is equivalent to ‖·‖. Since (Z, ‖·‖1) is isometric to
the functional hilbertian sum Z1, and since G1 is its isometry group, it follows that
(Z, ‖ ·‖3) is isometric to a functional hilbertian sum Y1 = (

∑
Γ1
⊕Hγ)F1

. Moreover,

by maximality of G1, we have that G1 = Isom(Z, ‖ · ‖3). In particular, since E1 is
pure, it follows that F1 is also pure, for otherwise the isometry group of (Z, ‖ · ‖3)
would strictly contain G1. On the other hand,

‖z‖3 = sup
g∈G2

‖T−1gT (z)‖,
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which implies likewise that (Z, ‖ · ‖3) is isometric to a functional Hilbert sum Y2 =
(
∑

Γ2
⊕Hγ)F2

, where F2 is pure. The existence of the bijection ρ now follows

from a uniqueness theorem of Rosenthal for pure functional hilbertian sums [41,
Theorem 2]. �

We are now ready to describe a countable number of different equivalent maximal
norms on Banach spaces with 1-symmetric bases, which are not isomorphic to `2.

Theorem 3.5. Let X be a pure Banach space with a non-hilbertian 1-symmetric
basis E = {ek}∞k=1, let n ∈ N, n ≥ 2, and Zn = Zn(X) = (

∑∞
k=1⊕Hk)E, where, for

all k ∈ N, Hk is isometric to `n2 . Then Zn is isomorphic to X and the isometry
group of Zn is maximal.

Moreover, if n 6= m then Isom(Zn) and Isom(Zm) are not conjugate to each
other in the isomorphism group of X.

Proof. It is easily seen that Zn is isomorphic to the direct sum of n copies of X
and hence isomorphic to X itself since X has a symmetric basis.

By Theorem 3.3, all isometries of Zn have form (3.1), and, since the basis is
1-symmetric and all Hk are isometric to each other, the set P (Zn) is equal to the
set of all bijections of N.

Suppose that Zn has a renorming Z̃n = (Zn, ||| · |||) so that Isom(Z̃n) ⊇ Isom(Zn).

Then the 1-unconditional basis of Zn is also 1-unconditional in Z̃n, and for all

k ∈ N the subspace Hk is well-complemented in Z̃n. By Theorem 3.2, for each

k ∈ N, there exists a Hilbert component of Z̃n containing Hk. Thus every Hilbert

component of Z̃n has dimension greater than or equal to n, and N can be split into

disjoint subsets {Aj}j∈J , so that every Hilbert component of Z̃n is given by

H̃j =

∑
k∈Aj

⊕Hk


2

,

and

Z̃n =

∑
j∈J
⊕H̃j


{ẽj}j∈J

,

for some 1-unconditional basis {ẽj}j∈J . Since Zn, and thus also Z̃n, is not isomor-
phic to `2, J is not finite.

Therefore, by Theorem 3.3, all isometries of Z̃n have form (3.1).
Suppose that there exists k0 ∈ N so that Hk0 is strictly contained in a component

H̃j0 of Z̃n. Since H̃j0 is strictly larger than Hk0 , there exists k′0 6= k0 so that

Hk′0
⊂ H̃j0 . Let j1, j2 ∈ J be distinct indices in J , both different from j0, and

let k1, k2 ∈ N be such that Hk1 ⊂ H̃j1 and Hk2 ⊂ H̃j2 . Let σ : N → N be
bijection such that σ(k0) = k1 and σ(k′0) = k2. Let T : Zn → Zn be defined for all
z = (zk)k∈N ∈ Zn by

(Tz)σ(k) = zk.

By Theorem 3.3, T ∈ Isom(Zn), and thus, by assumption T ∈ Isom(Z̃n). How-

ever T (H̃j0) ∩ H̃j1 6= ∅ and T (H̃j0) ∩ H̃j2 6= ∅. Thus T (H̃j0) is not a component of

Z̃n, which contradicts the fact that T ∈ Isom(Z̃n). Hence every Hilbert component
12



of Zn is a Hilbert component of Z̃n and, since P (Zn) contained all bijections of N,

P (Z̃n) ⊆ P (Zn). Hence Isom(Z̃n) ⊆ Isom(Zn), and thus Isom(Zn) is maximal.
The ‘moreover’ sentence follows from Proposition 3.4. �

Remark 3.6. Theorem 3.5 applies in particular to the space S(T (2)), the sym-
metrization of the 2-convexified Tsirelson space, see [7]. Indeed, it is known that
S(T (2)) does not contain `2, and it is easy to verify that for all k, l ∈ N, ‖ek +
el‖S(T (2)) = 1, and thus the standard basis of S(T (2)) is pure. It is clear that the
isometry groups of renormings described in Theorem 3.5 are not almost transitive.

It is known that any symmetric weak Hilbert space is Hilbertian, but in some
sense the space S(T (2)) is very close to a weak Hilbert space, see [7, Note A.e.3 and
Proposition A.b.10].

We do not know whether or not the space S(T (2)) (or any other non-hilbertian
symmetric space) admits an almost transitive renorming.

Theorem 3.7. Let X be a pure Banach space with a non-hilbertian 1-symmetric
basis E = {ek}∞k=1 and let Z = (

∑∞
k=1⊕`k2)E. Let J be any subset of N, with

min J ≥ 2, and let N =
⋃
j∈J Aj, where Aj are disjoint infinite subsets of N. For

k ∈ Aj, let Hk = `j2, and let

ZJ = ZJ(E) =

( ∞∑
k=1

⊕Hk

)
E

.

Then ZJ is isomorphic to Z, Isom(ZJ) is maximal, and, if J 6= J ′ then Isom(ZJ)
and Isom(ZJ′) are not conjugate in the group of isomorphisms of Z. Hence there are
continuum different (pairwise non-conjugate) maximal isometry groups of renorm-
ings of Z.

Proof. It is well-known (see [4]) that if (kj)
∞
j=1 is any unbounded sequence of positive

integers then (
∑∞
j=1⊕`

kj
2 )E is 4-isomorphic to Z. In particular, ZJ is 4-isomorphic

to Z for all J .
Let P (ZJ) be the set defined in Theorem 3.3. Then, by the symmetry of E,

P (ZJ) consists of all bijections σ : N→ N, so that, for all j ∈ J , σ(Aj) = Aj .
By Theorem 3.3, Isom(ZJ) consists of all maps T : ZJ → ZJ so that there exist

σ ∈ P (ZJ) and surjective linear isometries Tk : Hk → Hσ(k), for all k ∈ N, so that
for all z = (zk)k∈N ∈ ZJ , where zk ∈ Hk, and for all k ∈ N,

(3.2) (Tz)σ(k) = Tk(zk).

As in Theorem 3.5, let Zj = (
∑
k∈Aj

⊕`j2)E . Then T ∈ Isom(ZJ) if and only

if there exist surjective linear isometries Sj : Zj → Zj , j ∈ J , so that for all
z = (z̃j)j∈J ∈ ZJ , where z̃j ∈ Zj , and for all j ∈ J ,

(3.3) (̃Tz)j = Sj(z̃j).

Thus
Isom(ZJ) =

∑
j∈J
⊕ Isom(Zj).

The proof that Isom(ZJ) is maximal is essentially the same as the proof that
Isom(Zn) is maximal in Theorem 3.5.

The fact that if J 6= J ′ then Isom(ZJ) and Isom(ZJ′) are not conjugate to each
other in the isomorphism group of Z follows from Proposition 3.4. �
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Remark 3.8. As Z is a separable Banach space the collection of equivalent norms
on Z has cardinality c. Hence Theorem 3.7 implies that the cardinality of any
maximal collection of pairwise non-conjugate maximal bounded subgroups of GL(Z)
is exactly equal to c.

Let Ep be the standard unit vector basis of `p. It is a well-known consequence of
the fact that `p is a prime space [33] that `p is isomorphic to Zp = (

∑∞
k=1⊕`k2)Ep

for 1 < p <∞. Hence we obtain the following consequence of Theorem 3.7.

Theorem 3.9. For 1 < p <∞, p 6= 2, `p admits a continuum of renormings whose
isometry groups are maximal and are not pairwise conjugate in the isomorphism
group of `p.

The latter theorem may be generalized as follows.

Proposition 3.10. Let X be a space with a non-hilbertian symmetric basis E such
that

• X(X) (i.e., the E-sum of infinitely many copies of X) is isomorphic to X,
and

• X contains uniformly complemented and uniformly isomorphic copies of
`n2 .

Then X is isomorphic to Z = (
∑∞
k=1⊕`k2)E and hence X has a continuum of

renormings whose isometry groups are maximal and are not pairwise conjugate in
the isomorphism group of X.

Proof. The hypotheses imply that Z is isomorphic to a complemented subspace of
X. Since Z is isomorphic to its square Z ⊕ Z (e.g., with the sum norm) it follows
from the Pe lczyński decomposition method (see e.g. [27]) that Z is isomorphic to
X. �

Remark 3.11. We note that there exist symmetric spaces X which are not iso-
morphic to `p and so that X(X) is isomorphic to X, see [39].

4. Isometry groups not contained in any maximal bounded subgroup
of the isomorphism group

Let S be the collection of all partitions B = (Bk)∞k=1 of N into finite sets of
bounded size, i.e.

NB := max
k
|Bk| <∞.

We define a partial order ≤ on S by B ≤ B̃ if B is a refinement of B̃, and let
SB = {B̃ ∈ S : B ≤ B̃}.

The following properties are easily proved:

• (S,≤) has cardinality of the continuum,
• (S,≤) contains order-isomorphic copies of every countable ordinal,
• (SB,≤) is order-isomorphic to (S,≤) with B ←→ ({k})∞k=1 in this isomor-

phism.

Let Ep = {ek}∞k=1 be the standard basis for `p, where 1 < p < ∞, p 6= 2, and,

for k ≥ 1, let Hk be isometric to `2
k

2 . We define a space Y as follows:

(4.1) Y :=

( ∞∑
k=1

⊕Hk

)
Ep

.
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By [33] Y is isometric to a renorming of `p. Let (xi)
∞
i=1 ⊂ `p be the basis of `p

which is sent to the natural basis of Y under the isometry.
For each B ∈ S, consider the specific renorming of `p given by

YB :=

( ∞∑
k=1

⊕HBk

)
Ep

,

where HBk = (
∑
i∈Bk

⊕Hi)`2 , for which (xi) is the basis of `p corresponding to the

natural basis of YB. This is possible because the condition NB := maxk |Bk| < ∞
guarantees that the norm of YB is equivalent to the norm of Y . In fact, we have

‖x‖Y ≤ ‖x‖YB ≤ N
1/p−1/2
B ‖x‖Y (x ∈ `p, 1 < p < 2)

and

N
1/p−1/2
B ‖x‖Y ≤ ‖x‖YB ≤ ‖x‖Y (x ∈ `p, 2 < p <∞).

We identify YB with this particular renorming of `p in which the basis (xi) of `p
corresponds to the natural basis of YB. Note that YB is not a maximal renorming
of `p since

Isom(YB) ( Isom(YB̃)

for all B̃ ∈ SB \ {B}.

Proposition 4.1. Let B, B̃ ∈ S. If Isom(YB) and Isom(YB̃) are conjugate in the

isomorphism group of `p then B = B̃.

Proof. This does not follow from Proposition 3.4 because the maximality hypothesis
is not satisfied. Note that nBk := dimHBk =

∑
i∈Bk

2i. By the uniqueness of binary

representations the map k 7→ nBk is one-to-one.
Since Isom(YB) and Isom(YB̃) are conjugate to each other it follows that the

Isom(YB)-invariant and Isom(YB̃)-invariant subspaces of `p have the same dimen-
sions. By Theorem 3.3 there is an n-dimensional Isom(YB)-invariant subspace of
`p if and only if n =

∑
k∈A n

B
k for some finite A ⊂ N, and similarly for Isom(YB̃).

Thus, by uniqueness of the binary representation, B = B̃. �

Proposition 4.2. Let B ∈ S and let (`p, ‖ · ‖0) be a renorming of `p so that

Isom(`p, ‖ · ‖0) ⊇ Isom(YB). Then there exists B̃ ∈ SB so that

Isom(`p, ‖ · ‖0) = Isom(YB̃).

In particular, Isom(`p, ‖ · ‖0) is not maximal. Conversely, every B̃ ∈ SB determines
such a renorming.

Proof. By Theorem 3.3, it is clear that for every B̃ ∈ SB, Isom(YB̃) ⊇ Isom(YB),
which is the last sentence of the theorem.

Now suppose that Isom(`p, ‖ · ‖0) ⊇ Isom(YB). Thus, (`p, ‖ · ‖0) is a functional
hilbertian sum

(`p, ‖ · ‖0) =

( ∞∑
k=1

⊕HBk

)
E

,

for some (possibly impure) 1-unconditional basis E. Moreover, (xi)
∞
i=1 is the basis

of `p corresponding to the natural basis of (
∑∞
k=1⊕HBk )E . Arguing as in the proof
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of Theorem 3.5, N can be partitioned into disjoint subsets {Aj}j∈J , so that every
Hilbert component of (`p, ‖ · ‖0) is given by

H̃j =

∑
k∈Aj

⊕HBk


2

,

and

(`p, ‖ · ‖0) =

∑
j∈J
⊕H̃j


E0

,

for some pure 1-unconditional basis E0. Let

B̃j = ∪k∈Aj
Bk (j ≥ 1).

Since ‖·‖0 is equivalent to ‖·‖YB it follows that maxj≥1 |B̃j | <∞. Let B̃ = (B̃j)
∞
j=1.

Then B̃ ∈ SB, and (since E0 is pure) Theorem 3.3 gives

Isom(`p, ‖ · ‖0) = Isom(YB̃).

Since (as observed above) YB is not maximal for any B ∈ S, it follows that (`p, ‖·‖0)
is not maximal. �

Combining the last two propositions gives the main result of this section.

Theorem 4.3. For 1 < p <∞, p 6= 2, `p has a continuum of renormings none of
whose isometry groups is contained in any maximal bounded subgroup of the iso-
morphism group of `p. Moreover, these isometry groups are not pairwise conjugate
in GL(`p).

Remark 4.4. Symmetry of the standard basis of `p is not used in the proof of
Theorem 4.3. In particular, the theorem holds for any space Z with the following
properties:

• Z has an unconditional basis E such that no subsequence of E is equivalent
to the unit vector basis of `2;

• Z is isomorphic to (
∑∞
n=1⊕Hn)E for every collection (Hn)∞n=1 of finite-

dimensional Hilbert spaces.

These properties are satisfied for example by the space (
∑∞
n=1⊕`n2 )X , where X is

symmetric, pure, and non-hilbertian [4].

Proposition 4.5. T (2) admits a continuum of renormings none of whose isometry
groups is contained in any maximal bounded subgroup of the isomorphism group of
T (2). Moreover, these isometry groups are not pairwise conjugate in GL(T (2)).

Proof. The standard basis {ei}∞i=1 of T (2) is pure since ‖ei+ej‖T (2) = 1 for all i 6= j.
For each J ⊆ {2n : n ≥ 1}, let {nJk}k≥1 be the arrangement of J ∪ {2n− 1: n ≥ 1}
as an increasing sequence, and let mJ

k := 2n
J
k . Note that for all J and k ≥ 1, we

have

(4.2) mJ
k ≤ 22k−1.

Let AJ = ∪k≥1{i : mJ
k ≤ i < 2mJ

k}. Then by [6, Corollary 12] the growth condition
(4.2) ensures that the subsequences {ei}i∈AJ and {emJ

k
}k≥1 of the basis {ei}i≥1 are

in fact both equivalent to the whole sequence {ei}i≥1.
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Note that from the definition of the T (2) norm we have that {ei : mJ
k ≤ i < 2mJ

k}
is 2-equivalent to the unit vector basis of `

mJ
k

2 . Let F Jk := span(ei : m
J
k ≤ i < 2mJ

k ).
Suppose xk ∈ F Jk (k ≥ 1). Then by [6, Corollary 7],

1√
3

∥∥∥∥∥
∞∑
k=1

‖xk‖emJ
k

∥∥∥∥∥
T (2)

≤

∥∥∥∥∥
∞∑
k=1

xk

∥∥∥∥∥
T (2)

≤
√

18

∥∥∥∥∥
∞∑
k=1

‖xk‖emJ
k

∥∥∥∥∥
T (2)

.

Since ‖ · ‖2 and ‖ · ‖T (2) are 2-equivalent on F Jk and since {emJ
k
}k≥1 is equivalent to

{ei}i≥1 there exists a constant C > 0 such that

1

C

∥∥∥∥∥
∞∑
k=1

‖xk‖2ek

∥∥∥∥∥
T (2)

≤

∥∥∥∥∥
∞∑
k=1

xk

∥∥∥∥∥
T (2)

≤ C

∥∥∥∥∥
∞∑
k=1

‖xk‖2ek

∥∥∥∥∥
T (2)

.

But this implies that the the natural basis of XJ := (
∑∞
k=1⊕`

mJ
k

2 )T (2) is equivalent
to {ei}i∈AJ and hence also equivalent to {ei}. In particular, XJ is isomorphic to
T (2) and therefore may be regarded as a renorming of T (2). Since T (2) does not
contain an isomorphic copy of `2, arguing as in Proposition 4.2, Isom(XJ) is not
contained in any maximal isometry group, and, arguing as in Proposition 4.1, if
J 6= J ′ then Isom(XJ) and Isom(XJ′) are not conjugate in the isomorphism group
of T (2). �

We do not know whether or not T (2) admits an equivalent maximal norm.
Let U be the space with a universal unconditional basis constructed by Pe lczyński

[34]. We finish the paper by observing that both Proposition 3.10 and Theorem 4.3
hold for U .

Theorem 4.6. The space U with a universal unconditional basis has two continua
of renormings whose isometry groups are not pairwise conjugate in the isomorphism
group of U such that the renormings of the first continuum are maximal and for the
renormings of the second continuum no isometry group is contained in any maximal
bounded subgroup of GL(U).

Proof. It is known that U has a symmetric basis E = (ei)
∞
i=1 [27, p. 129]. By

renorming U , we may assume that E is pure. To see this, let B be the unit ball of
any norm on U for which E = (ei)

∞
i=1 is a normalized 1-symmetric basis. Let

B1 = conv{B ∪ {ei ± ej : i 6= j}}.
Then B1 is the unit ball for an equivalent norm ‖ · ‖ on U such that (ei)

∞
i=1 is a

1-symmetric basis satisfying

‖ei‖ = ‖ei ± ej‖ = 1 (i 6= j).

In particular, for all i 6= j, (ei, ej) is not isometric to the unit basis of `22, so E is
pure.

The universality property of U implies that U(U) is isomorphic to U (see e.g.
[39]) and that U is isomorphic to every space of the form

Z =
( ∞∑
n=1

⊕Hn

)
E
,

where (Hn)∞n=1 is any collection of finite-dimensional Hilbert spaces (see e.g. [27,
p. 93]). From this it follows that conditions of Remark 4.4 are satisfied, and thus
Theorem 4.3 is valid for U .
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U (with the symmetric basis E) satisfies the hypotheses of Proposition 3.10 and
hence its conclusion holds. However, we prefer to give a more direct argument
which also shows that the analogue of Proposition 4.2 (with Ep replaced by E in

the definition of YB) holds for U . So consider a renorming (Z̃, ‖ · ‖0) of any space Z

of the form as above, such that Isom(Z̃, ‖ · ‖0) ⊇ Isom(Z). Then, arguing as in the

proof of Theorem 3.5, the Hilbert components of Z̃ are spans of unions of Hilbert
components of Z, that is, N can be partitioned into disjoint subsets {Nj}j∈J , so

that every Hilbert component of Z̃ is given by

H̃j =
( ∑
k∈Nj

⊕Hk

)
2
,

and

Z̃ =
(∑
j∈J
⊕H̃j

)
{ẽj}j∈J

,

for some pure 1-unconditional basis {ẽj}j∈J . Since the symmetric basis E is not
equivalent to the unit vector basis if `2 it follows that the constant of equivalence
between (ei)

n
i=1 and the standard basis of `n2 becomes unbounded as n → ∞. But

this implies that the sets Nj have uniformly bounded size, i.e.

max
j∈J
|Nj | <∞,

for otherwise the norms of Z and Z̃ would not be equivalent. The latter shows that
the analogue of Proposition 4.2 holds for U . �
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Abstract. We prove that the spaces `p, 1 < p < ∞, p 6= 2, and all infinite-

dimensional subspaces of their quotient spaces do not admit equivalent almost
transitive renormings. This answers a problem posed by Deville, Godefroy

and Zizler in 1993. We obtain this as a consequence of a new property of

almost transitive spaces with a Schauder basis, namely we prove that in such
spaces the unit vector basis of `22 belongs to the two-dimensional asymptotic

structure and we obtain some information about the asymptotic structure

in higher dimensions. We also obtain several other results about properties
of classical, Tsirelson type and non-commutative Banach spaces with almost

transitive norms. These results place restrictions on the isomorphism class of
separable spaces that could satisfy the Banach-Mazur rotation problem.

Further, we prove that the spaces `p, 1 < p < ∞, p 6= 2, have continuum

different renormings with 1-unconditional bases each with a different maximal
isometry group, and that every symmetric space other than `2 has at least a

countable number of such renormings. On the other hand we show that the

spaces `p, 1 < p < ∞, p 6= 2, have continuum different renormings each with
an isometry group which is not contained in any maximal bounded subgroup

of the group of isomorphisms of `p. This answers a question of Wood.
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