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We study different facets of property (β) of Rolewicz. We remark that the notions of
compact uniform convexity and property (β) are isometrically equivalent and present new
examples of spaces with that property. An observation is made that the property (β) can
be formulated in terms of graphs and an estimate of the (β)-modulus is also given.
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1. Introduction

In the 1980’s Stefan Rolewicz introduced a geometric property (β) [22,23] which is intermediate between uniform
convexity and nearly uniform convexity. It turned out that it defined an isomorphically different class of spaces [10,17,
11,12].

Recently, Lima and Randrianarivony [16] pointed out the role of the property (β) in nonlinear quotient problems, and
answered a ten-year-old question of Bates, Johnson, Lindenstrauss, Preiss and Schechtman [2]. Lima and Randrianarivony
used an isometric characterization of (β) [13] and estimates of the (β)-modulus for ℓp-spaces [1]. The results from [16] are
further generalized in [8].

Independently, the last two authors [21] introduced recently the notion of compact uniform convexity in connection to
the study of metric projections. They proved that in the class of compactly uniformly convex spaces, the set of points x for
which the best approximation problem to a nonempty closed set A is generalized well-posed and has a complement which
is a σ -porous set. Their result is an isometric generalization of a theorem of De Blasi, Myjak and Papini [5], proved in the
setting of uniformly convex spaces.

In the present paper we show that property (β) of Rolewicz and compact uniform convexity are isometrically equivalent.
Thus, by [10,17,11,12], the above mentioned result from [21] is isomorphically stronger than the corresponding result
from [5].

Reformulation of a characterization of property (β) from [13] is given with the help of graphs in Section 3.
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The typical examples of spaces with property (β) [10,17] were ℓp-sums of finite dimensional spaces for 1 < p < ∞. In
Section 4we give some new examples of spaceswith this property, namely the injective and projective tensor products of ℓp
and ℓq, for p and q in a determined range. We obtain property (β) for these spaces somewhat indirectly, by appealing to the
result from [12] that a space which is simultaneously nearly uniformly smooth and nearly uniformly convex has property
(β). To apply this result, we first compute exactly the power type of the moduli of nearly uniform smoothness and nearly
uniform convexity for these spaces.

Finally, in Section 5, we study the modulus β(t). It is known [12] that if the norm of a Banach space X is both nearly
uniformly convex (NUC) and nearly uniformly smooth (NUS), then the norm has property (β). We prove an estimate for the
(β)-modulus β(t), provided that the estimates for the NUC and NUS moduli are of certain power types.

2. Preliminaries and equivalence

Let (X, ∥ · ∥) be a real Banach space with topological dual X∗. As usual BX and SX will stand for the closed unit ball and
unit sphere in X respectively, and more generally, B[x, r] and S(x, r) will be used for the closed ball centered at x ∈ X and
radius r > 0 and the corresponding sphere of this ball. As usual B(x, r) is reserved for the open ball centered at x and with
radius r > 0. The origin in X is denoted by θ . For given x, y ∈ X , the closed line segment between x and y is designated by
[x, y], and (x, y) is the set [x, y] \ {x, y}.

Let us recall that the norm ∥ ·∥ (or, equivalently, the space X) is called locally uniformly convex (briefly, LUC) if, whenever,
x ∈ SX and (xn)n ⊂ SX are such that limn ∥x+ xn∥ = 2, then the sequences (xn)n converges to x. Based on this definition, the
following generalization was employed in [27,18] for the study of certain properties of metric projections: a Banach space
X , (dim X ≥ 2), is called compactly locally uniformly convex (in brief, CLUC) if, whenever x ∈ SX and (xn)n ⊂ SX are such that
limn ∥x + xn∥ = 2, then (xn)n has a convergent subsequence.

Evidently, every locally uniformly convex space is compactly locally uniformly convex. Reciprocally, it can be seen that,
if the space X is CLUC and also strictly convex (the latter as usual means that SX does not contain line segments) then X is
LUC.

In order to present a geometric characterization of the above generalized property, let us recall that the Kuratowski index
of non-compactness α(A) for a set A ⊂ X is the infimum of all ε > 0 such that A can be covered by a finite number of sets
with diameters less than ε. It is known that α(A) = 0 if and only if A is relatively compact. The generalized Cantor lemma
says that, if (An)n is a nested sequence of nonempty closed sets in a Banach space X , such that α(An) → 0, then ∩n An is a
nonempty compact set of X .

Let now x ∈ SX , and δ ∈ [0, 1]. Consider the following ‘‘cap’’ generated by x and δ:

Cap[x, δ] =


y ∈ SX :

x + y
2

 ≥ 1 − δ


.

This is the (nonempty) set of points y on the sphere SX such that the mid-points of the segments [x, y] do not lie deeper
inside BX than 1 − δ. The set Cap[x, δ] is obviously a closed subset of SX . These sets are monotone with respect to δ, that is

Cap[x, δ1] ⊂ Cap[x, δ2] whenever 0 ≤ δ1 ≤ δ2.

Of course, one can define similar ‘‘caps’’ on any sphere S(x, r) of any ball in the space and the properties which we will
mention below are true for such caps as well. The following fact was observed in [21].

Lemma 2.1 ([21, Lemma 2.1 and Remark 2.2]). The Banach space X is CLUC if and only if for any x ∈ SX one has
limδ↓0 α(Cap[x, δ]) = 0.

Let us mention that evidently, in a CLUC Banach space X , the set Cap[x, 0] = ∩0<δ≤1 Cap[x, δ] is nonempty and compact
for every x ∈ SX .

The above characterization of CLUC Banach spaces suggested the following definition in [21].

Definition 2.2. The Banach space X is called compactly uniformly convex (shortly, CUC), if we have limδ↓0 α(Cap[x, δ]) = 0
uniformly on x ∈ SX .

It is evident that any compactly uniformly convex Banach space is also a CLUC space. It is clear also that any finite
dimensional normed space is compactly uniformly convex. It can be seen that any uniformly convex space is compactly
uniformly convex as well: we recall that (X, ∥ · ∥) is uniformly convex if for any ε ∈ (0, 2] there is some δ ∈ (0, 1) so that
x, y ∈ SX with ∥x − y∥ > ε implies ∥x + y∥ < 2(1 − δ).

The compact uniform convexity property was introduced in [21] as a strengthening of the CLUC property, again with the
aim to study properties of metric projections, and more specifically, to investigate the descriptive nature of the set of points
of existence and stability of best approximations to closed sets in Banach spaces. The name of the property is derived from
the notion of compactly locally uniformly convex space.

Although the main goal of the paper [21] was to study metric projections, several properties of the above notion were
obtained and some examples were given. In particular, it was shown that any CUC space X is a nearly uniformly convex
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space [21, Proposition 2.6]. We recall that a Banach space X is called nearly uniformly convex (NUC, in short) [9], if for any
ε > 0 there is δ ∈ (0, 1) such that for each sequence (xn)n ⊂ BX with sep(xn) ≥ ε it follows co(xn) ∩ (1 − δ)BX ≠ ∅. Here,
sep(xn) is defined as

sep(xn) := inf{∥xm − xl∥ : m ≠ l},

and co(xn) is the convex hull of the elements of the sequence (xn)n.
In particular, every CUC space is reflexive. Example 2.9 from [21] shows that there are nearly uniformly convex norms

which are not CLUC norms (and thus are not compactly uniformly convex either).
We will see below that the compact uniform property is equivalent to another geometric property proposed and studied

by Rolewicz in [22,23] in the 1980’s, called property (β). To present it, let us recall that given x ∈ X \ BX , the drop generated
by x is the set D(x, BX ) := co({x} ∪ BX ). Denote by R(x, BX ) the part of the drop which is not in the unit ball, that is
R(x, BX ) := D(x, BX ) \ BX . Rolewicz proved in [22] that the space X is uniformly convex if and only if for any ε > 0 there
is δ > 0 such that 1 < ∥x∥ < 1 + δ implies that diam(R(x, BX )) < ε. And then, related to this, he introduced in [23] the
following property: a Banach space is said to have property (β) if for any ε > 0 there is δ > 0 so that 1 < ∥x∥ < 1 + δ
implies that α(R(x, BX )) < ε.

It was shown in [23] that any uniformly convex space has property (β) and that spaces with property (β) are nearly
uniformly convex spaces. It was proved that the class of Banach spaces in which there is an equivalent norm with property
(β) contains strictly the class of superreflexive spaces (cf. [10,17]) and is contained strictly in the class of spaces in which
there is an equivalent NUC norm (cf. [11]). The isomorphic characterization of property (β) for Banach spaces with a basis
was given later in [12].

In order to prove the equivalence between the compact uniform convexity and property (β) we need two lemmas.

Lemma 2.3. Let X be normed space with dim X ≥ 2. For every x ∈ SX , and δ > 0 such that
√

δ + 2δ ≤ 2−1 we have:

(i) 2
√

δx + (1 + 2
√

δ)−1Cap[x, δ] ⊂ R((1 + 2
√

δ)x, BX );
(ii) diamCap[x, δ] ≤ (1 + 2

√
δ)diamR((1 + 2

√
δ)x, BX );

(iii) α(Cap[x, δ]) ≤ (1 + 2
√

δ)α(R((1 + 2
√

δ)x, BX )).

Proof. It suffices to prove the assertion (i) only, as (ii) and (iii) follow immediately from it. Put for brevity s = 2
√

δ and take
z ∈ sx + (1 + s)−1Cap[x, δ]. There exists y ∈ Cap[x, δ] such that z = sx + (1 + s)−1y. Certainly, ∥y∥ = 1 and from the
presentation z = s(1 + s)−1(1 + s)x + (1 + s)−1y it is evident that z ∈ D((1 + s)x, BX ). Also,

(1 + s)z = (s + s2)x + y = x + y − (1 − s − s2)x,

2 −
s2

2
≤ ∥x + y∥ ≤ (1 + s)∥z∥ + 1 − s − s2,

whence (1 + s)∥z∥ ≥ 1 + s + s2/2 > 1 + s, i.e. ∥z∥ > 1 and z ∈ R((1 + 2
√

δ)x, BX ). �

In a normed space X, dim X ≥ 2, for x ∈ X with ∥x∥ > 1 define the set R̃(x, BX ) = co({x} ∪ BX ) \ B(θ, 1). Certainly,
R(x, BX ) ⊂ R̃(x, BX ) and generally R̃(x, BX ) ≠ R(x, BX ) (both diamR̃(x, BX ) > diamR(x, BX ), and α(R̃(x, BX )) > α(R(x, BX ))
in infinite dimensions, might occur).

Nevertheless, we have

Lemma 2.4. Let X be a normed space, dim X ≥ 2. For every x ∈ SX and δ ∈ (0, 1) the following hold:

(i) R̃((1 + δ)x, BX ) ⊂ Cap[x, δ/2] + δBX ;
(ii) diamR̃((1 + δ)x, BX ) ≤ diamCap[x, δ/2] + 2δ;
(iii) α(R̃((1 + δ)x, BX )) ≤ α(Cap[x, δ/2]) + 2δ.

Proof. The assertion (i) relies on the following fact from the planar geometry:
Fact: In a 2-dimensional normed space P , three points x, y, and z are given such that ∥x∥ > 1, ∥y∥ = ∥z∥ = 1, and both
(x, y) ⊂ P \ BP and (x, z) ⊂ P \ BP are true. Then for every u ∈ SP ∩ co{x, y, z} it follows (x, u) ⊂ P \ BP .

In order to verify this fact, assume the contrary: There are u ∈ SP such that u ∈ ∆ = co{x, y, z} and v ∈ (x, u)∩BP . Notice
first, that u ∈ (y, z): Indeed, u is not in the interior of co{y, z, v}, as ∥u∥ = 1, and certainly u ∉ [y, v] ∪ [z, v]. Observe next,
that v and the origin θ are in the same open half-plane defined by the line lyz through y and z: This is so, since otherwise
(θ, v) meets lyz at an interior point w of BP and then uwhich is between y and z should be interior to BP .

Thus θ and v, as well as x, and −y, and −z, are in one and the same open half-plane defined by lyz . The segment [−y, −z]
is not contained in ∆. Assume, without loss of generality, that −y ∉ ∆ and apply the planar version of Radon theorem with
respect to the set Q = {x, y, −y, z}. Then Q is partitioned on two sets Q1 and Q2 such that coQ1 ∩ coQ2 ≠ ∅. Since no point
from Q is in the convex hull of the other three, and since [x, −y] ∩ [y, z] = ∅ then

[x, y] ∩ [−y, z] ≠ ∅ or [x, z] ∩ [y, −y] ≠ ∅,

which gives a contradiction and establishes the fact.
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Let now z ∈ R̃((1 + δ)x, BX ). Put z ′
= z/∥z∥. Certainly, ∥z − z ′

∥ < δ. Having in mind the aforementioned fact, for
w = 2−1z ′

+2−1(1+δ)x, conclude that ∥w∥ ≥ 1. On the other handw = 2−1(x+z ′)+2−1δxwhence 1−δ/2 ≤ 2−1
∥x+z ′

∥,
i.e. z ′

∈ Cap[x, δ/2] and (i) holds true.
The assertions (ii) and (iii) follow from (i). �

With Lemmas 2.3 (iii) and 2.4 (iii) in hand, we establish the equivalence between the compact uniform convexity and
(β) property.

Proposition 2.5. The Banach space X is compactly uniformly convex if and only if it satisfies (β) property.

The localized property (β) for a Banach space X (called L-β) is defined in [25]: for any xwith ∥x∥ = 1, α(R(tx, BX )) −→ 0
as t → 1, t > 1. It follows from Lemmas 2.1, 2.3 (iii), and 2.4 (iii) that L-β coincides with CLUC.

Proposition 2.6. The Banach space X is compactly locally uniformly convex if and only if it satisfies L-β property.

Remark. In view of Lemmas 2.4 (iii), and 2.3 (iii), both properties (β) and L-β can be defined by using the sets R̃(x, BX ) in
place of R(x, BX ).

In [14] a characterization of property (β) by lens sets is given. Given x, y ∈ X, r > 0, y ∈ B(x, r), y ≠ x, σ ∈ (0, 2∥x−y∥),
recall that the lens set depending on x, r, y, and σ is defined as follows

Lens(x, y, r, σ ) = B[y, r − ∥y − x∥ + σ ] \ B(x, r).

In case x = θ and r = 1 we write (whenever there is no ambiguity) Lens(y, σ ) instead of Lens(x, y, r, σ ), i.e.

Lens(y, σ ) = B[y, 1 − ∥y∥ + σ ] \ B(θ, 1), 0 < ∥y∥ < 1, σ ∈ (0, 2∥y∥).
The lens sets appear naturally in approximation problem.Wemention only a result in [24], namely, the observation that

in uniformly convex spaces ‘uniformly small lenses have uniformly small diameters’, more precisely, for each ε > 0 and
each t ∈ (0, 1) there is δ > 0 such that for every x, ∥x∥ = 1, we have diam(Lens(tx, δ)) < ε. A more detailed reference
concerning lenses is found in [14,4].

Theorem 2.7 ([14, Theorem 2]). Let X be a Banach space. If the norm has the property (β), then for each 0 < t < 1 and
each ε > 0 there is a δ > 0 so that for every x ∈ SX , α(Lens(tx, δ)) < ε. Conversely, if for some 0 < t < 1 we have that
α(Lens(tx, δ)) → 0 as δ → 0 uniformly in x, then the norm has the property (β).

Theorem2.7 is established by a proposition (Proposition 1, [14]) giving quantitative relations between the sets Lens(tx, δ)
and R((1 + δ)x, BX ) for ∥x∥ = 1, 0 < t < 1, and small δ > 0. Similar relations between ‘drop remainders’ and ’caps’ were
given by Lemmas 2.3 and 2.4 in the present paper. In [21] (Lemma 3.1 (ii)), it is shown that

α(Lens(tx, δ)) ≤ (1 − t)α

Cap


x,

δ

2t


+ 2δ, ∥x∥ = 1, 0 < t < 2−1, σ ∈ (0, 2t). (2.1)

The missing connection between ‘caps’ and ‘lens sets’, the inverse type inequality to (2.1), is contained in the next

Lemma 2.8. Let X be a normed space, dim X ≥ 2, and δ > 0 be such that 2δ +
√
2δ ≤ 1 (i.e. 1 +

√
2δ is less than or equal to

the golden ratio!). Then for each x ∈ SX
(i)

√
2δx + (1 +

√
2δ)−1Cap[x, δ] ⊂ Lens(

√
2δx, 2δ(1 +

√
2δ)−1);

(ii) diam(Cap[x, δ]) ≤ (1 +
√
2δ)diam(Lens(

√
2δx, 2δ(1 +

√
2δ)−1));

(iii) α(Cap[x, δ]) ≤ (1 +
√
2δ)α(Lens(

√
2δx, 2δ(1 +

√
2δ)−1)).

Proof. Denote for brevity s =
√
2δ and take z ∈ sx + (1 + s)−1Cap[x, δ]. There exists y ∈ Cap[x, δ] such that

z = sx + (1 + s)−1y. Then

(1 + s)z = (s + s2)x + y = x + y − (1 − s − s2)x.

Since

2 − s2 ≤ ∥x + y∥ ≤ (1 + s)∥z∥ + (1 − s − s2),

we have (1 + s)∥z∥ ≥ 1 + s, and consequently ∥z∥ ≥ 1.
On the other hand,

∥z − sx∥ =
1

1 + s
= 1 − s +

s2

1 + s
,

whence z ∈ Lens(
√
2δx, 2δ(1 +

√
2δ)−1) and (i) is proved. The inequalities (ii) and (iii) follow immediately from (i). �

It has to be noted that the three sets: the cap, the lens, and the drop remainder are similar with respect to property
(β), and property CLUC. Alternative proofs of Propositions 2.5 and 2.6 can be obtained via results in [14], inequality (2.1)
(Lemma 3.1 (ii), [21]), and Lemma 2.8.
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3. Property (β) in terms of graphs

In this small section the property (β) is characterized by families of locally finite graphs. We shall use the following
isometric characterization of property (β) which is a partial case of Theorem 7 from [13]:

Theorem 3.1 ([13]). A Banach space X has property (β) if, and only if, for each ε > 0 there exists δ ∈ (0, 1) such that for every
x ∈ BX and every sequence (xn)n ⊂ BX with sep(xn) > ε there is an index nk such that [x, xnk ] ∩ (1 − δ)BX ≠ ∅.

A graph Γ in a Banach space X is a pair of sets (V , E) called vertices and edges, respectively, such that V is a subset X
and E is a set of unordered pairs of elements from V , i.e. we consider simple infinite undirected without loops graphs. It is
convenient, for our purpose, to identify graphs with pairs (V , φ) where φ is an adjacency relation defining the set of edges,
i.e. φ is a symmetric function on V × V with values 0 and 1. Thus, for u, v ∈ V , φ(u, v) = φ(v, u) = 1 means that u and v
are connected by an edge, and the value of φ is 0 when they are not. Formally always, φ(u, u) = 0 whenever u ∈ V .

The degree of a vertex v ∈ V in a graph Γ = (V , φ) is the cardinality of the set of vertices in Γ that are connected to v,
i.e. deg(v) = card{u ∈ V :φ(u, v) = 1}.

Suppose, for ε ∈ (0, 1), and δ ∈ (0, 1), a class of graphsGδ
ε is defined by the following construction: Let V δ

ε ⊂ B\ (1−δ)B
be a set (of arbitrary possible cardinality) such that ∥u − v∥ > ε whenever u, v ∈ V δ

ε and u ≠ v. Consider the graph
Γ (V δ

ε ) = (V δ
ε , φδ) such that φδ(u, v) = 1 iff [u, v] ∩ (1 − δ)B = ∅ for u, v ∈ V δ

ε . Then

Gδ
ε = {Γ (V δ

ε ): ε ∈ (0, 1), δ ∈ (0, 1)}.

Proposition 3.2. A Banach space X has property (β) if and only if for every ε > 0 there is δ > 0 such that for every Γ ∈ Gδ
ε all

vertices in Γ have finite degrees.

Proof. Assume first, that the property from Theorem 3.1 is valid. For ε > 0 let δ > 0 comply with Theorem 3.1. Let
Γ = (V δ

ε , φδ) ∈ Gδ
ε . If a vertex v ∈ V δ

ε exists with deg(v) ≥ ℵ0 then there is a sequence (vn) in B, such that ∥vi − vj∥ > ε,
for all i, j, i ≠ j, and [v, vn] ∩ (1 − δ)B = ∅ for every n ∈ N, which is a contradiction.

Conversely, for ε > 0, let δ > 0 be such that for every Γ ∈ Gδ
ε/2 all vertices of Γ have finite degrees. Let x ∈ B, and (xn)

is an ε-separated sequence in B, i.e. ∥xi − xj∥ > ε, i, j ∈ N, i ≠ j. Then after eventually removing an element from (xn), say
x1, the sequence χ = (x, x2, . . .) is ε/2-separated. Indeed, if the sequence (x, x1, x2, . . .) is not so, assume with no loss of
generality that ∥x − x1∥ ≤ ε/2. Then

ε < ∥x1 − xn∥ ≤ ∥x1 − x∥ + ∥x − xn∥ ≤ ε/2 + ∥x − xn∥,

whence ∥x − xn∥ > ε/2 for n > 1. Thus χ is ε/2-separated.
Put V = {x, x2, . . .}. We may assume V ⊂ B \ (1 − δ)B. According to the choice of δ, the graph Γ = (V , φδ) has all

vertices of finite degrees. Since V is infinite, due to the separation property of its elements, there is nk such that x and xnk
are disconnected which means [x, xnk ] ∩ (1 − δ)B ≠ ∅. �

4. Property (β) for ℓp⊗̌ℓq and ℓp⊗̂ℓq

Throughout this section 1 < p, q < ∞. Let K(ℓp, ℓq) denote the space of all compact operators T : ℓp → ℓq with
operator norm ∥T∥∞, and let N (ℓq, ℓp) denote the space of nuclear operators T =


∞

n=1 x
∗
n ⊗ yn, where (x∗

n) ⊂ ℓ∗
q = ℓq′

(1/q + 1/q′
= 1) and (yn) ⊂ ℓp, equipped with the nuclear norm

∥T∥1 = inf


∞
n=1

∥x∗

n∥q′∥yn∥p: T =

∞
n=1

x∗

n ⊗ yn


.

It is well-known that the dual of K(ℓp, ℓq) is naturally isometrically isomorphic to N (ℓq, ℓp) under the duality pairing

(T , S) = trace(ST ) =

∞
n=1

∞
m=1

x∗

n(Tem)e∗

m(yn),

where (em)∞m=1 is the standard basis of ℓp and (e∗
m)∞m=1 its dual basis. It is again well-known that K(ℓp, ℓq) is isometrically

isomorphic to the projective tensor product ℓp⊗̌ℓq′ , while N (ℓq, ℓp) is isometrically isomorphic to the injective tensor
product ℓp′⊗̂ℓq. We refer the reader to [6] for these facts and for further information about tensor products of Banach spaces.

In [7, Proposition 15] it was proved that K(ℓp, ℓq) always contains ℓn
∞
’s uniformly. By duality it follows that N (ℓq, ℓp)

contains ℓn
1’s uniformly. In particular, these spaces all fail to admit uniformly convex or uniformly smooth renormings. The

main result of this section is that they nevertheless enjoy property (β) if (and only if) p > 2 > q.
Let τ be a Hausdorff topology on a Banach space X (usually the w- or w∗-topology). Let us recall the notions of nearly

uniformly smooth and uniformly Kadec–Klee with respect to τ , denoted NUS(τ ) and UKK(τ ), and the moduli associated with
them, introduced by Prus [19,20], and also the notion of nearly uniformly convex, denoted NUC, introduced by Huff [9] (Huff
proved that his original definition of NUC is equivalent to what is stated below). These properties in combination with the
results of Kutzarova [12] will be used to obtain property (β) in Theorem 4.9 below.
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Definition 4.1. (a) For t > 0, let

bX,τ (t) = sup{lim sup
n→∞

∥x + txn∥ − 1}

where the supremum is taken over all x ∈ BX and τ -null sequences (xn)∞n=1 ⊂ BX .
(b) X is NUS(τ ) if bX,τ (t) = o(t) as t → 0.
(c) X is nearly uniformly smooth, denoted NUS, if X is NUS(w) and reflexive.
(d) For t > 0, let

dX,τ (t) = inf{lim inf
n→∞

∥x + txn∥ − 1}

where the infimum is taken over all x ∈ X with ∥x∥ ≥ 1 and all τ -null sequences (xn)∞n=1 with ∥xn∥ ≥ 1.
(e) X is UKK(τ ) if dX,τ (t) > 0 for all t > 0.
(f) X is NUC if X is UKK(w) and reflexive.

Example 4.2. Note that for X = ℓp, we have bX,w(t) ≍ dX,w(t) ≍ tp.

Theorem 4.3. Let X = K(ℓp, ℓq). Then bX,w(t) ≍ t r and dX∗,w∗(t) ≍ t r
′

, where r = min(p′, q).

Proof. Note that (e∗
n ⊗e1)∞n=1 and (e∗

1 ⊗en)∞n=1 are isometrically equivalent to the unit vector bases of ℓp′ and ℓq respectively.
Hence, by Example 4.2,

bX,w(t) ≥ ct r for some c > 0. (4.1)

Similarly,

dX∗,w∗(t) ≤ ct r
′

for some c > 0. (4.2)

Now we extend the argument of Besbes [3]. Let P denote one of the basis projections in ℓp, i.e.

P


∞
i=1

e∗

i (x)ei


=

n
i=1

e∗

i (x)ei (x ∈ ℓp),

where n is a fixed positive integer, let Q = I − P be the complementary projection, and let P̃ be a basis projection in ℓq with
complementary projection Q̃ . Then, for all T ∈ K(ℓp, ℓq),

∥T∥∞ ≤ sup
ap+bp=1

(a∥TP∥∞ + b∥TQ∥∞)

= (∥TP∥
p′

∞
+ ∥TQ∥

p′

∞
)1/p

′

≤ ((∥P̃TP∥
q
∞

+ ∥Q̃ TP∥
q
∞

)p
′/q

+ ∥TQ∥
p′

∞
)1/p

′

≤ (∥P̃TP∥
r
∞

+ ∥Q̃ TP∥
r
∞

+ ∥TQ∥
r
∞

)1/r . (4.3)

Now suppose that T ∈ BX and that (Tn)∞n=1 ⊂ BX is weakly null. Hence

lim sup
n→∞

∥T + tTn∥∞ ≤ lim sup
n→∞

(∥P̃(T + tTn)P∥
r
∞

+ ∥Q̃ (T + tTn)P∥
r
∞

+ ∥(T + tTn)Q∥
r
∞

)1/r .

We have ∥P̃TnP∥∞ → 0 as n → ∞, and ∥T − P̃TP∥∞ → 0 as min(rank(P), rank(P̃)) → ∞. Hence, taking the limit as
min(rank(P), rank(P̃)) → ∞, we get

lim sup
n→∞

∥T + tTn∥∞ ≤ (∥T∥
r
∞

+ 2t r lim sup
n→∞

∥Tn∥r
∞

)1/r ≤ (1 + 2t r)1/r . (4.4)

Combining (4.1) and (4.4) yields b(t) ≍ t r . Dualizing (4.3) yields for T ∈ X∗
= N (ℓq, ℓp)

∥T∥1 ≥ (∥PT P̃∥
r ′
1 + ∥PT Q̃∥

r ′
1 + ∥QT∥

r ′
1 )1/r

′

. (4.5)

Suppose ∥T∥1 ≥ 1, ∥Tn∥1 ≥ 1, and that (Tn)∞n=1 is w∗-null. Then (4.5) yields

lim inf
n→∞

∥T + tTn∥1 ≥ lim inf
n→∞

(∥P(T + tTn)P̃∥
r ′
1 + ∥P(T + tTn)Q̃∥

r ′
1 + ∥Q (T + tTn)∥r ′

1 )1/r
′

. (4.6)

Now ∥PTnP̃∥1 → 0 as n → ∞, and both ∥PT Q̃∥1 → 0 and ∥QT∥1 → 0 as min(rank(P), rank(P̃)) → ∞. So, given ε > 0,
the triangle inequality yields

lim inf
n→∞

(∥P(T + tTn)Q̃∥1 + ∥Q (T + tTn)∥1) ≥ (1 − ε)t
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provided min(rank(P), rank(P̃)) is sufficiently large. Hence (4.6) yields

lim inf
n→∞

∥T + tTn∥1 ≥ lim inf
n→∞


1 +


t∥Tn∥
2

r ′
1/r ′

≥


1 +


t
2

r ′
1/r ′

. (4.7)

Combining (4.2) and (4.7) yields dX∗,w∗(t) ≍ t r
′

. �

Corollary 4.4. Let 1 < q < p < ∞. Then K(ℓp, ℓq) is NUS and N (ℓq, ℓp) is NUC.

Proof. Recall that K(ℓp, ℓq) is reflexive if and only if 1 < q < p < ∞, so this is also a necessary condition for the NUC
property. On the other hand, by Theorem 4.3, K(ℓp, ℓq) is NUS(w) for all 1 < p, q < ∞, which establishes sufficiency. The
statement for N (ℓq, ℓp) follows from the duality between NUC and NUS [19]. �

Van Dulst and Sims [26] proved that the UKK(w∗) property for a dual space X∗ implies the w∗-fixed point property, i.e.,
that every nonexpansive self-mapping of aw∗-compact convex subset of X∗ has a fixed point. Hencewe obtain the following
application of Theorem 4.3 to fixed point theory. The special case p = q = 2 is the ‘‘trace class’’ C1, which was proved by
Lennard [15], and the case q = p′ was proved by Besbes [3].

Theorem 4.5. let 1 < p, q < ∞. Then N (ℓq, ℓp) has the w∗-fixed point property.

Theorem 4.6. Let p > 2 > q. Then X = K(ℓp, ℓq) is NUC and dX,w(t) ≍ t r , where

r = max


2p
p − 2

,
2q

2 − q


.

Proof. It was proved in [7, Theorem 4] that K(ℓp, ℓq) is NUC in this range and that dX,w(t) ≥ ct r . Hence it suffices to show
that dX,w(t) ≤ ct r for some c > 0. To that end, consider T = 2−1/qe∗

1 ⊗ (e1 + e2) and, for n ≥ 1, Tn = 2−1/qe∗
n ⊗ (e1 − e2).

Then ∥T∥∞ = ∥Tn∥∞ = 1 and (Tn)∞n=1 is weakly null. Note that, for t > 0,

∥T + tTn∥q
=

1
2

max
0≤x≤1

((1 − xp)1/p + xt)q + ((1 − xp)1/p − xt)q

= max
0≤x≤1


1 −

q
p
xp +

q(q − 1)
2

x2t2 + smaller terms


.

The maximum value of 1 −
q
px

p
+

q(q−1)
2 x2t2 as x ranges over [0, 1] is given by

1 +
q(p − 2)

2p
(q − 1)p/(p−2)t2p/(p−2).

Hence ∥T + tTn∥∞ ≤ 1 + ct2p/(p−2) for some c > 0, which gives dX,w(t) ≤ ct2p/(p−2). But K(ℓp, ℓq) is isometrically
isomorphic to K(ℓq′ , ℓp′) via the mapping T → T ∗, where T ∗ is the adjoint of T . So we also have dX,w(t) ≤ ct2q

′/(q′
−2). But

q′/(q′
− 2) = q/(2 − q), so dX,w(t) ≤ ct r as desired. �

Corollary 4.7. Let p > 2 > q. Then X = N (ℓq, ℓp) is NUS and bX,w(t) ≍ ts, where s = min


2p
p+2 ,

2q
3q−2


.

Proof. Note that s = r ′, where r is as in Theorem 4.6. Now N (ℓq, ℓp) is reflexive in this range with dual K(ℓp, ℓq), so
the result follows from Theorem 4.6 and the duality formula relating bX,w(t) and dX∗,w(t) in reflexive spaces proved in
[20, Theorem 4.17]. �

Remark 4.8. It was proved in [7, Theorem 13] that for the complementary range, i.e., if p ≤ q or 1 < q < p ≤ 2 or
2 ≤ q < p, then K(ℓp, ℓq) does not admit an equivalent norm with the UKK property. In particular, K(ℓp, ℓq) cannot be
renormed to be NUC. By duality it follows that N (ℓq, ℓp) cannot be renormed to be NUS in this range.

Theorem 4.9. (1) If 1 < q < 2 < p < ∞ then K(ℓp, ℓq) and N (ℓq, ℓp) have property (β).
(2) For the complementary range of values of p and q, neither K(ℓp, ℓq) nor N (ℓq, ℓp) admits an equivalent norm with

property (β).

Proof. (1) By Theorems 4.3 and 4.6, 1 < q < 2 < p < ∞ is the range for whichK(ℓp, ℓq) andN (ℓq, ℓp) are simultaneously
NUC and NUS. By a result of Kutzarova [12], NUC and NUS together imply property (β).

(2) It is known that property (β) implies NUC [12]. Hence by Remark 4.8,K(ℓp, ℓq) cannot be renormed to have property
(β). By [12] a Banach spacewith a Schauder basiswhich enjoys property (β) admits anNUS renorming. Hence, by Remark 4.8,
N (ℓq, ℓp) cannot be renormed to have property (β). �
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Finally, we translate Theorem 4.9 into the language of tensor products.

Corollary 4.10. (1) The projective tensor product ℓp⊗̌ℓq has property (β) if and only if min(p, q) > 2.
(2) The injective tensor product ℓp⊗̂ℓq has property (β) if and only if max(p, q) < 2.

5. (β)-modulus

We shall give an estimate of the (β)-modulus if we are given estimates for the moduli bX (t) and dX (t), which were
defined in Definition 4.1 and τ is the weak topology of X . Recall that the (β)-modulus [1] is given by

βX (t) = 1 − sup

inf


∥x + xn∥
2

: n ∈ N


: (xn)n ⊂ BX , x ∈ BX , sep((xn)n) ≥ t


.

Lemma 5.1. Assume that X has property (β). Let ε > 0, and let x, xn ∈ BX be such that βX (ε) is approximated by

1 − inf


∥x + xn∥
2

, n ≥ 1


.

Call σ := sep((xn)n). Then the choice of x and xn can be made so that σ → 0 as ε → 0.

Proof. First we show that βX (ε) → 0 as ε → 0 for any infinite-dimensional Banach space X . To achieve this, take
∥y∥ = 1 − ε and yn = y + εun, where (un)n is a sequence of unit vectors with ∥un − um∥ ≥ 1. (The existence of such
a sequence (un)n follows from the proof of Mazur’s Lemma.) Then y, yn ∈ BX and ∥y + yn∥/2 ≥ 1 − (3/2)ε, and hence
βX (ε) ≤ (3/2)ε.

Nowwhen X has property (β), this togetherwith the fact thatβX (ε) > 0 for ε > 0 implies that there exist two sequences
(εk)k ↓ 0 and (δk)k ↓ 0 such that βX (εk) < βX (εk−1) and [t < δk ⇒ βX (t) < βX (εk)]. Call αk =


βX (εk−1) − βX (εk)


/2.

Let ε > 0 be small enough and assume ε < δk. Let ∥x∥ ≤ 1, ∥xn∥ ≤ 1, with σ := sep((xn)n) ≥ ε, be such that

inf


∥x + xn∥
2

, n ≥ 1


> 1 − βX (ε) − αk.

We claim that we can always make such a choice of x and (xn)n such that σ < εk−1. In fact, otherwise we would have
σ ≥ εk−1. This would give

1 − βX (εk−1) ≥ 1 − βX (σ )

≥ inf


∥x + xn∥
2

, n ≥ 1


> 1 − βX (ε) − αk

> 1 − βX (εk) − αk.

The first inequality is because βX (·) is nondecreasing. The last inequality is because ε < δk. All these imply

βX (εk) + αk > βX (εk−1),

which contradicts the definition of αk. �

Theorem 5.2. Assume that there are constants D > 0, B > 0, 1 < p ≤ q < ∞ such that bX (t) ≤ Btp and dX (t) ≥ Dtq. Then
βX (t) ≥ Kts for some constant K > 0, where s =

qp−p
p−1 .

Proof. Let ε > 0. Let ∥x∥ ≤ 1, ∥xn∥ ≤ 1with sep((xn)n) ≥ ε be so that 1−βX (ε) is approximated by inf{∥x+xn∥/2, n ≥ 1}.
We already know that X has property (β), so it must be reflexive. Hence by taking a subsequence let us assume that xn → u
weakly for some u ∈ BX . Also, by taking a further subsequence, let us assume that limn→∞ ∥xn − u∥ = t for some t > 0.

Note that since ε ≤ ∥xn − xm∥ ≤ ∥xn − u∥ + ∥xm − u∥, we must have t ≥ ε/2. Also, by using Lemma 5.1, we can assume
that t → 0 as ε → 0.

We will show that ∥u∥ ≤ 1 −
D
2 t

q. This is definitely true if u = 0, so for the proof we assume that u ≠ 0. We write

xn
∥u∥

=
u

∥u∥
+

xn − u
∥u∥

.

Note that


xn−u
∥u∥


n
is weakly null, and as n → ∞, we have for any α > 1:

∥xn − u∥
∥u∥

≥ ∥xn − u∥ >
t
α

.
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So by the definition of the modulus dX (·), we have

1 + dX (t/α) ≤ lim inf
 u
∥u∥

+
xn − u
∥u∥


= lim inf

∥xn∥
∥u∥

≤
1

∥u∥
.

By the estimate we have on dX (·), we then have

∥u∥ ≤
1

1 + Dtq/αq
.

Then since α > 1 is arbitrary, ∥u∥ ≤
1

1+Dtq ≤ 1 −
D
2 t

q if t is small enough.
Next, consider 0 < λ < 1. We have

∥(1 − λ)x + λu∥ ≤ (1 − λ) + λ


1 −

D
2
tq


= 1 −
D
2

λtq.

Hence the vector y :=
(1−λ)x+λu
1− D

2 λtq
belongs to the unit ball. We then have

lim sup ∥(1 − λ)x + λxn∥ =


1 −

D
2

λtq

lim sup

y +
21/ptλ

1 −
D
2 λtq

·
xn − u
21/pt


≤


1 −

D
2

λtq


1 + bX


21/ptλ

1 −
D
2 λtq


since

xn − u
21/pt

 ≤ 1

≤


1 −

D
2

λtq


1 + B ·
2tpλp

1 −
D
2 λtq

p


≤


1 −

D
2

λtq
 

1 + 4Btpλp if t is small enough.

Hence we can find an index n0 (depending on λ) such that

∥(1 − λ)x + λxn0∥ ≤


1 −

D
2

λtq


(1 + 8Btpλp)

= 1 −
D
2

λtq + 8Bλptp − 4DBλ1+ptp+q.

This is true for any 0 < λ < 1. Let us require that 8Bλptp =
D
4 λtq. To do this, we consider two cases. If q = p, we

set λ =
 D
32B

1/(p−1)
, and note that this particular λ is less than 1 since D ≤ B when p = q. For the case p < q, we set

λ =
 D
32B t

q−p
1/(p−1)

, and note that such λ is less than 1 if t is small enough. With these respective choices of λ we have

∥(1 − λ)x + λxn0∥ ≤ 1 − K1ts − K2t2s ≤ 1 − K1ts,

where s =
qp−p
p−1 .

Now,x + xn0
2

 =

 1
2(1 − λ)

[(1 − λ)x + λxn0 ] +
1 − 2λ
2(1 − λ)

xn0


≤

1
2(1 − λ)

(1 − K1ts) +
1 − 2λ
2(1 − λ)

= 1 −
K1ts

2(1 − λ)

≤ 1 −
K1

2
ts.

Note that K1 depends only on D, B, p and q. Since t ≥ ε/2, the definition of the (β)-modulus βX (·) then gives

βX (ε) ≥
K1

2
ts ≥ Kεs. �
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We remark that our estimate is not optimal when p < q. In fact, if X = Lr [0, 1] with 1 < r < ∞, then p = min(r, 2)
and q = max(r, 2). One can check that βX (t) ≍ tq. However,

s =
qp − p
p − 1

=

 r
r − 1

> 2 for r < 2,

2(r − 1) > r for r > 2.

However, we show that our computation does give the optimal estimate when q = p.

Theorem 5.3. Under the assumptions of Theorem 5.2, assume further that p = q. Then Ktq ≤ βX (t) ≤ K ′tq for some constants
K , K ′ > 0.

Proof. Theorem 5.2 gives us βX (t) ≥ Ktp since s =
qp−p
p−1 = p when q = p.

For the reverse inequality, we start with the fact that bX (t) ≤ Btq. Consider vectors v and vn such that ∥v∥ = 1, ∥vn∥ ≤

1, vn → 0 weakly, and ∥vn − vm∥ ≥ 1/2. (For example, one can take vn = (un − u)/2 where (un)n is a subsequence of a
sequence (un)n as at the beginning of the proof of Lemma 5.1, a subsequence that is weakly convergent to some vector u.
Recall that a space with property (β) is reflexive.) By the definition of bX (·), we have

lim sup ∥v + tvn∥ ≤ 1 + Btq.

So we can extract a subsequence, still denoted (vn)n, such that ∥v + tvn∥ ≤ 1 + 2Btq for all n.
Call xn :=

1
1+2Btq (v + tvn) and x :=

1
1+2Btq v. We have xn ∈ BX , and hence x, which is the weak limit of (xn)n, is also in BX .

We also have

∥xn − xm∥ =
t

1 + 2Btq
∥vn − vm∥ ≥

t
2 + 4Btq

≥
1
3
t.

Hence,

lim inf
x + xn

2

 ≤ 1 − βX (t/3).

On the other hand, since x is the weak limit of (x + xn)/2, we have

lim inf
x + xn

2

 ≥ ∥x∥

=
1

1 + 2Btq
∥v∥

=
1

1 + 2Btq

≥ 1 − 2Btq.

This gives that βX (t/3) ≤ 2Btq. �

Remark. In Theorem 4.9 we established the range of the parameters p and q for which the spaces K(ℓp, ℓq) and N (ℓq, ℓp)
have property (β), by evaluating the power types of their NUC andNUSmoduli. Therefore, we can directly apply Theorem5.2
to obtain some estimates for the (β)-modulus of these spaces. We do not know their exact power types.
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