
THE TRANSFER OF PROPERTY (β) OF ROLEWICZ BY A
UNIFORM QUOTIENT MAP

S. J. DILWORTH, DENKA KUTZAROVA, AND N. LOVASOA RANDRIANARIVONY

Abstract. We provide a Laakso construction to prove that the property of
having an equivalent norm with the property (β) of Rolewicz is qualitatively
preserved via surjective uniform quotient mappings between separable Banach
spaces. On the other hand, we show that the (β)-modulus is not quantita-
tively preserved via such a map by exhibiting two uniformly homeomorphic
Banach spaces that do not have (β)-moduli of the same power-type even under
renorming.

1. Introduction

A map f : X −→ Y between two metric spaces is called a uniform quotient
mapping [5, Chapter 11] if there exist two nondecreasing maps ω,Ω : [0,∞) −→
[0,∞) such that ω(r) > 0 for r > 0, and Ω(r) → 0 as r → 0, and for every x ∈ X
and every r > 0,

B(f(x), ω(r)) ⊆ f(B(x, r)) ⊆ B(f(x),Ω(r)).

(In this article, all balls will be considered closed unless otherwise specified.) If
there are constants c, L > 0 such that one can use ω(r) = cr and Ω(r) = Lr, then
the map f is called a Lipschitz quotient mapping. If the map f is surjective, the
metric space Y is called a uniform quotient (resp. Lipschitz quotient) of the metric
space X.

Closely related to the above definitions are the notions of coarse Lipschitz maps
and coarse co-Lipschitz maps. A map f : X → Y between two metric spaces is
called Lipschitz for large distances, or coarse Lipschitz, if for every d > 0 there
exists L(d) > 0 such that dist(f(s), f(s′)) ≤ L(d) dist(s, s′) for every s, s′ ∈ X
with dist(s, s′) ≥ d. The map f is called co-Lipschitz for large distances, or coarse
co-Lipschitz, if for every d > 0 there exists c(d) > 0 such that for every R ≥ d,
for every x, y ∈ Y with dist(x, y) ≤ c(d)R, for every s ∈ f−1(x), there exists
s′ ∈ f−1(y) with dist(s, s′) ≤ R. It is known that when the metric spaces X and Y
are metrically convex (for example if X and Y are Banach spaces), then a surjective
uniform quotient mapping between X and Y is always coarse Lispchitz and coarse
co-Lipschitz (see [5, Chapter 11] and [24, Section 3] for example).
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In [24] and in [9] the geometric property (β) of Rolewicz is applied to the study
of the rigidity of Banach spaces under uniform quotient mappings. Rolewicz in-
troduced property (β) as an isometric generalization of uniform convexity in the
sense that a uniformly convex Banach space necessarily has property (β) (see [30]
and [31]). Furthermore a result of Baudier, Kalton, and Lancien [4] implies that
a separable reflexive Banach space X can be renormed to have property (β) if
and only if the infinitely branching infinitely deep tree with its hyperbolic metric
cannot bi-Lipschitz embed into X. Contrasted with Bourgain’s metric characteri-
zation of superreflexivity (see [6] and [3]), this indicates that for separable spaces
the isomorphic class of all Banach spaces with property (β) is also larger than the
isomorphic class of all uniformly convex Banach spaces. We remark in passing that
this statement is actually known to be true, see for example [19].

For the purpose of this article, the equivalent definition of property (β) given in
[21] is used. A Banach space X has property (β) if for any t ∈ (0, a], where the
number 1 ≤ a ≤ 2 depends on the space X, there exists δ > 0 such that for any
x in the unit ball BX , and any t-separated sequence (xn)∞n=1 in BX , there exists
n ≥ 1 satisfying

‖x− xn‖
2

≤ 1− δ.

The (β)-modulus was defined in [1] (although with a different notation) as

βX(t) = 1−sup

{
inf

{
‖x− xn‖

2
: n ∈ N

}
: (xn)n ⊆ BX , x ∈ BX , sep ((xn)n) ≥ t

}
,

where sep ((xn)n≥1) = inf{‖xn − xm‖ : n 6= m,n,m ≥ 1}.
In [9] it is proven that if a Banach space Y is a uniform quotient of another

Banach space X with property (β), then one can compare the (β)-modulus of X
with the modulus of another asymptotic geometry on Y , namely asymptotic uniform
smoothness, and under additional assumptions, asymptotic uniform convexity. (See
[26] and [15] for the notion of asymptotic uniform smoothness and asymptotic
uniform convexity. See also section 4.) On the other hand, the authors in [25]
use the (local) geometric property called Markov convexity to study the rigidity of
Banach spaces under Lipschitz quotient mappings. They do this by comparing the
Markov convexity of a space Y with the Markov convexity of a space X when Y is
a Lipschitz quotient of a subset of X.

In light of these two approaches, the present article studies the asymptotic prop-
erty (β) of Rolewicz on a Banach space Y that is a uniform quotient of another
Banach space X with property (β). This is done both in a qualitative sense and a
quantitative sense. We show that the property of having an equivalent norm with
property (β) is qualitatively preserved under a surjective uniform quotient mapping
between separable Banach spaces. We do this by first assuming reflexivity on the
range space in section 2. In section 3, we provide a modification of this approach
to remove the reflexivity assumption.

In contrast, we show in section 4 that quantitatively the modulus of (β) is not
preserved under a surjective uniform quotient mapping. We also show that in
full generality we cannot compare the (β)-modulus of the domain space with the
modulus of asymptotic uniform convexity of the range space of a surjective uniform
quotient map.
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2. Case when the range space is reflexive

One of the main ingredients in this section is a metric characterization of being
isomorphic to a space with property (β). By combining the results of [9, Theorem
6.3] and [4, Theorem 1.2], we know that a separable reflexive Banach space Y has an
equivalent norm with property (β) if and only if it does not contain any bi-Lipschitz
copy of the metric tree T∞ of all finite subsets of N with the shortest path metric.

Theorem 2.0.1. Let X be a Banach space with (an equivalent norm with) property
(β). Let Y be a separable Banach space that is a uniform quotient of X. If Y is
reflexive, then Y has an equivalent norm with property (β).

Proof. Let f : X −→ Y be a surjective uniform quotient mapping. Then f is
coarse Lipschitz and coarse co-Lipschitz. For a contradiction, assume that Y does
not admit any equivalent norm with property (β). Denote by Σ a subset of Y
that is bi-Lipschitz equivalent to T∞, with a bi-Lipschitz equivalence denoted by
j : Σ −→ T∞. The restriction f|f−1(Σ)

: f−1(Σ) −→ Σ is still a uniform quotient
map that is coarse Lipschitz and coarse co-Lipschitz. As a result, since T∞ is
discrete, the composition j ◦ f|f−1(Σ)

: f−1(Σ) −→ T∞ is a (surjective) Lipschitz
quotient map. The theorem then follows from the next proposition.

�

Proposition 2.0.2. It is not possible that T∞ be a Lipschitz quotient of a subset
of a Banach space with property (β).

Proof. We define a graph M∞ considered as a metric space, and we define a map
φ : T∞ −→ M∞. This map φ, although not a Lipschitz quotient map, will have
a property still strong enough to draw a contradiction from the composition λ =
φ ◦ j ◦ f|f−1(Σ)

: f−1(Σ) −→M∞, where j ◦ f|f−1(Σ)
: f−1(Σ) −→ T∞ is a Lipschitz

quotient map from a subset f−1(Σ) of a Banach space with property (β). We
support all these claims in the foregoing subsections. �

2.1. Definition of the graph M∞.
The graph M∞ is defined after a variant of the Laakso construction (see for

example [8,23,25]). We define a sequence of graphs (Gn)n≥1 such that Gn ⊆ Gn+1

for every n ≥ 1 as follows. The graph G1 is the following ordered graph. We start
with a root. The root has one immediate descendant. This first descendant has
countably infinitely many immediate descendants. Each one of those second gener-
ation vertices has only one immediate descendant, which is a common immediate
descendant to all of them. The graph G1 has diameter 3.

Figure 1. The graph G1. The “· · · ” represents the fact that G1

has infinitely many vertices at level 2.
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To construct Gn+1 (n ≥ 1), we take a copy of G1 and we rescale it so each edge
has length the diameter of Gn. Next we replace each rescaled edge with a copy
of Gn, matching the parent vertex of the rescaled edge with the oldest ancestor in
the copy of Gn, and the child vertex of the rescaled edge with the youngest vertex
in the copy of Gn. This gives all the vertices of Gn+1. Next we order the vertices
of Gn+1 by going downward from the root all the way to the youngest generation,
which is now at distance 3n+1 from the root. Finally, we identify the root and the
first 3n generations of Gn+1 with (the root and the first 3n generations of) Gn.
This way we have Gn ⊆ Gn+1.

Figure 2. The graph G3 with the subsets G1 and G2 highlighted.

The graph M∞ is defined to be the union
∞⋃
n=1

Gn, considered as a metric space

with the shortest path metric. The generational order of a given element of M∞
will be called its level. Note that the level of an element is also the length of a
shortest path from the root to that element. An element y is called a descendant
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of another element x, denoted x < y, if there is a shortest path from the root to y
that passes through x.

An element of M∞ will be called non-branching if it only has one immediate
descendant; and it will be called branching if it has infinitely many immediate
descendants. For each branching element of M∞, we give a fraternal order among
its immediate descendants by fixing a bijection between these descendants and the
set N of the natural numbers.

Remark 2.1.1. Laakso constructions, introduced in [22], have appeared elsewhere
as a tool to investigate the geometry of metric spaces, including that of Banach
spaces. The following list is not exhaustive: [32], [16], [25], [8], and recently [28].
We would like to point out the difference between our Laakso construction and that
of [25, Section 3] and [8, Example 1.2] for example. First, our basic block G1 has
diameter three instead of four. Second, in the construction of our basic block G1,
the first generation vertex has infinitely many immediate descendants instead of
just two as in the standard Laakso construction. Third, when constructing Gn+1

from Gn, we do not rescale down the copies of Gn. In our case, Gn+1 has diameter
three times as large as the diameter of Gn. We also note that even if the Laakso
construction in [23] can be made so that the basic block has diameter three, our
construction is still different from the construction in [23].

On the other hand we would like to mention that at the inception of this paper,
our Laakso construction did have a basic block with diameter four. The proof went
all the way through. However, as we prepared the final version of this article we
realized that we did not need the last edge of the basic block, which brought us to
the construction of M∞ as it is presented here.

2.2. Definition and properties of the map φ : T∞ −→M∞.
We define φ(root) = root. By induction, if the φ(n) is already defined for an

element n of T∞, and if m is an immediate descendant of n in T∞, then

• set φ(m) to be the one immediate descendant of φ(n) if φ(n) is non-
branching;

• otherwise, set φ(m) to be the immediate descendant of φ(n) in the same
fraternal order among all immediate descendants of φ(n) as m is among all
immediate descendants of n.

We list the properties of the map φ in the following lemma.

Lemma 2.2.1.

(1) φ is surjective, and preserves levels.
(2) φ is 1-Lipschitz.
(3) φ is ancestor-to-descendant 1-co-Lipschitz in the following sense:

∀x, y ∈M∞ with x < y, ∀n ∈ φ−1(x), ∃m ∈ φ−1(y) such that distT∞(n,m) = distM∞(x, y).

Proof.

(1) This claim is easy.
(2) Let n,m ∈ T∞. We consider two cases.

• Case n < m:
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distM∞(φ(n), φ(m)) = level(φ(m))− level(φ(n))

= level(m)− level(n)

= distT∞(n,m).

• Case n and m are not comparable:
Let o ∈ T∞ be the closest common ancestor to n and m in T∞; and
let x ∈M∞ be the closest common ancestor to φ(n) and φ(m) in M∞.
Since φ(o) is also a common ancestor to φ(n) and φ(m), the definition
of x gives us that level(φ(o)) ≤ level(x). Hence we have:

dist(φ(n), φ(m)) ≤ dist(φ(n), x) + dist(x, φ(m))

= level(φ(n))− level(x) + level(φ(m))− level(x)

≤ level(φ(n))− level(φ(o)) + level(φ(m))− level(φ(o))

= level(n)− level(o) + level(m)− level(o)

= distT∞(n,m).

(3) Let x < y ∈ M∞, and let n ∈ φ−1(x). Choose a path in M∞ from x down
to y. Record (every time such is defined) all the fraternity orders of all
elements along that path. Then, starting from x, lift that path node by
node, inductively on the level of the node, as follows:
• φ(n) = x.
• Assume all nodes on the path at distance less than or equal to k from
x have been lifted. Let z be on the path, at distance k+ 1 from x. Let
z′ be the immediate ancestor of z (which is well-defined since we are
following a given path), and let n′ ∈ φ−1(z′) be the lift of z′ chosen
according to the induction hypothesis. We consider two cases.
∗ If z′ is a non-branching node, then lift z to any immediate de-

scendant of n′.
∗ If z′ is a branching node, then lift z to the immediate descen-

dant of n′ of the same fraternal order in T∞ as z is among all
immediate descendants of z′.

• Doing this way, we eventually get to an element m of M∞ such that
φ(m) = y with m > n and dist(x, y) = dist(n,m).

�

2.3. Fork argument.
The fork argument was introduced in [24, proof of Theorem 4.1] for maps that

are coarse co-Lipschitz. Here we reduce its hypothesis when we apply it to a map
λ that is only ancestor-to-descendant coarse co-Lipschitz.
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First let us fix some notation. Consider a metric space S and a surjective map
λ : S −→ M∞ that is ancestor-to-descendant coarse co-Lipschitz. For d > 0,
consider the (nonempty) set C(d) of all c > 0 such that for all R ≥ d, for all σ ∈ S,
and for all y > λ(σ) with dist(λ(σ), y) < cR, there exists σ′ ∈ S with ‖σ− σ′‖ ≤ R
and λ(σ′) = y. Denote by cATD

d the supremum of the set C(d). It is left to the
reader to check (see also [24, Lemma 3.3]) that cATD

d is attained, and that the family(
cATD
d

)
d>0

is increasing. Denote by cATD
∞ := sup

{
cATD
d : d > 0

}
= lim
d→∞

cATD
d .

With these notation, we present the fork argument for ancestor-to-descendant
coarse co-Lipschitz maps.

Proposition 2.3.1. For a metric space S, let λ : S −→ M∞ be a surjective map
that is ancestor-to-descendant co-Lipschitz for large distances. Assume that the
quantity cATD

∞ for the map λ is finite. Then for every η > 0, one can find r > 0 as
large as we want, as well as elements x0, x1, and (x2,k)k≥1 in M∞, and elements
σ0, σ1, and (σ2,k)k≥1 in S so that λ(σ0) = x0, λ(σ1) = x1, and λ(σ2,k) = x2,k
for every k; with the σ’s and the x’s sitting in an (approximate) fork position as
follows:

dist(x0, x1) = dist(x1, x2,k) =
dist(x0, x2,k)

2
= r;

and

dist(σ0, σ1) ≤ (1 + η)
r

cATD
∞

,

dist(σ1, σ2,k) ≤ (1 + η)
r

cATD
∞

,

dist(σ0, σ2,k)

2
> (1− η)

r

cATD
∞

.

Proof. Let ε > 0. Let d0 =
3n

cATD
∞

be large enough so that cATD
d0

≤ cATD
∞ < (1 +

ε)cATD
d0

. Then, for any d ≥ d0 (for example for d ≥ 81d0), we have

cATD
d0

≤ cATD
d ≤ cATD

∞ < (1 + ε)cATD
d0

≤ (1 + ε)cATD
d ≤ (1 + ε)cATD

∞ .

Since cATD
d is a maximum, and since (1 + ε)cATD

d > cATD
d , we can find a number

R ≥ d, and elements σ ∈ S and y > λ(σ) ∈M∞ with dist(y, λ(σ)) < (1 + ε)cATD
d R

such that
∀σ′ ∈ S, (λ(σ′) = y) =⇒ (‖σ − σ′‖ > R) .

On the other hand, the ancestor-to-descendant coarse co-Lipschitz condition on λ
necessitates that dist(y, λ(σ)) ≥ cATD

d R. In passing, note that we can then make
our of choice of d0 in such a way that dist(y, λ(σ)) is as large as we want.

Let us call x := λ(σ). Let N ∈ N be such that 3N ≤ d(x, y)

2
< 3N+1. Since y

is a descendant of x, we have dist(x, y) = level(y)− level(x), and hence there must
exist an integer p ≥ 0 such that level(x) ≤ p3N < (p+ 1)3N ≤ level(y). In fact, one
can take p to be the largest integer such that (p − 1)3N < level(x). Furthermore,
since d ≥ 81d0, we must necessarily have 3n < 3N−2. In fact, d ≥ 54(1 + ε)d0 if ε
is small enough. Then since (1 + ε) ≥ cATD

∞ /cATD
d , and since cATD

∞ d0 = 3n, we have

2 · 3N+1 > dist(x, y) ≥ cATD
d R ≥ cATD

d d ≥ 6 · 9 · 3n.
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We will now identify the elements x0, x1 and x2,k(k ≥ 1) of M∞ that we need
for our purpose. First, we fix a path P downward from x to y. We consider the
elements a and b of P at levels p · 3N and (p + 1)3N respectively. Note that the
segment [a, b] has length 3N . Divide [a, b] into three subsegments, and denote by x0
the element of P at level p · 3N + 3N−1, and by x3 the one at level p · 3N + 2 · 3N−1.
Note that dist(x, x0) ≥ 3N−1 and dist(x3, y) ≥ 3N−1. Divide the segment [x0, x3]
into three again, and consider the following vertices: the element x1 of P at level
p · 3N + 3N−1 + 3N−2, and the elements x2,k (k ≥ 1) of M∞ at level p · 3N + 3N−1 +
2 ·3N−2 that lie between x1 and the element x3 already previously mentioned. Note
that although only one of the x2,k’s belongs to the original path P, the succession
x < x0 < x1 < x2,k < x3 < y can be extended to a shortest path from x to y for
any k ≥ 1.

For notation, let us set



dist(x, x0) := D,

dist(x1, x0) = dist(x2,k, x1) = dist(x3, x2,k) := r (= 3N−2 ≥ cATD
∞ d0),

dist(x3, y) = d(x, y)−D − 3r.

We will lift these elements one by one starting from x using the ancestor-to-
descendant coarse co-Lipschitz condition.

(1) dist(x, x0) = D < cATD
d0

· (1 + ε)

cATD
d0

D; and
(1 + ε)

cATD
d0

D ≥ d0 because D ≥

3N−1 ≥ cATD
∞ d0 ≥ cATD

d0
d0. So there exists an element σ0 ∈ S with

dist(σ, σ0) ≤ 1 + ε

cATD
d0

D such that λ(σ0) = x0.

(2) dist(x0, x1) = r < cATD
d0

· 1 + ε

cATD
d0

r; and
1 + ε

cATD
d0

r ≥ d0 since r = 3N−2 ≥

cATD
∞ d0. So there is an element σ1 ∈ S with dist(σ0, σ1) ≤ 1 + ε

cATD
d0

r such

that λ(σ1) = x1.
(3) Similarly, dist(x1, x2,k) = r for each k ≥ 1, so there is an element σ2,k ∈ S

with dist(σ1, σ2,k) ≤ 1 + ε

cATD
d0

r such that λ(σ2,k) = x2,k.

(4) Finally, dist(x2,k, y) = dist(x, y)−D − 2r < cATD
d0
· 1 + ε

cATD
d0

[dist(x, y)−D −

2r]; and
1 + ε

cATD
d0

[dist(x, y) − D − 2r] ≥ 1 + ε

cATD
d0

r ≥ d0, so there exists an

element σ(k) ∈ S with dist(σ2,k, σ
(k)) ≤ 1 + ε

cATD
d0

[dist(x, y) − D − 2r] such

that λ(σ(k)) = y.
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Now, by the choice of x and y, we have dist(σ, σ(k)) > R. So

R < dist(σ, σ(k)) ≤ 1 + ε

cATD
d0

[D + r + r + (dist(x, y)−D − 2r)]

=
1 + ε

cATD
d0

dist(x, y)

<
1 + ε

cATD
d0

(1 + ε)cATD
∞ R

< (1 + ε)3R.

As a result, we must have

dist(σ2,k, σ0) > [1− (34 − 1)ε] · 2r

cATD
d0

.

In fact, if dist(σ2,k, σ0) ≤ α · 2r

cATD
d0

, then

R < dist(σ, σ(k))

≤ dist(σ, σ0) + dist(σ0, σ2,k) + dist(σ2,k, σ
(k))

≤ 1 + ε

cATD
d0

D +
α

cATD
d0

2r +
1 + ε

cATD
d0

(dist(x, y)−D − 2r)

=
α

cATD
d0

2r +
1 + ε

cATD
d0

(dist(x, y)− 2r)

=
dist(x, y)

cATD
d0

[tα+ (1− t)(1 + ε)] , where t =
2r

dist(x, y)

<
(1 + ε)cATD

∞ R

cATD
d0

[tα+ (1− t)(1 + ε)]

< (1 + ε)2[tα+ (1− t)(1 + ε)]R.

This would require that α > (1+ε)−1

t

[
(1 + ε)− 1

(1 + ε)2

]
. But from the definition

of N , we have dist(x, y) < 2 · 3N+1. So, since r = 3N−2, we have

1

t
=

dist(x, y)

2r
< 33,
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and hence

α > (1 + ε)− 33
[
(1 + ε)− 1

(1 + ε)2

]
≥ (1 + ε)− 33(3ε).

To summarize, we have σ0 ∈ λ−1(x0), σ1 ∈ λ−1(x1), and σ2,k ∈ λ−1(x2,k)
(k ≥ 1), with

dist(σ0, σ1) ≤ (1 + ε)
r

cATD
d0

,

and
dist(σ1, σ2,k) ≤ (1 + ε)

r

cATD
d0

,

but

dist(σ0, σ2,k) > (1− 80ε)
2r

cATD
d0

.

This finishes the proof. �

2.4. Proof of Proposition 2.0.2.
We apply Proposition 2.3.1 to the set S := f−1 (Σ) = f−1

(
j−1(T∞)

)
and the

map λ = φ ◦ j ◦ f|S . Recall that this particular map is also Lipschitz (for large dis-
tances), and hence the hypothesis of Proposition 2.3.1 applies since cATD

d ≤ Lip(λ)
for all d > 0. We find the elements x0, x1, (x2,k)k≥1 ∈ M∞, and σ0, σ1, (σ2,k)k≥1 ∈
S ⊆ X as given by Proposition 2.3.1. We have for all k ≥ 1,

‖σ0 − σ1‖ ≤ (1 + ε)
r

cATD
d0

,

and
‖σ1 − σ2,k‖ ≤ (1 + ε)

r

cATD
d0

,

but

‖σ0 − σ2,k‖ > (1− 80ε)
2r

cATD
d0

.

On the other hand, since λ is Lipschitz , we have for all k 6= l,

‖σ2,k − σ2,l‖ ≥
1

Lip(λ)
dist(x2,k, x2,l) =

1

Lip(λ)
2r.

Since X has property (β), this implies that we must have

βX

(
cATD
∞

Lip(λ)

)
≤ βX

(
2cATD
d0

(1 + ε)Lip(λ)

)
≤ 81ε.

Since ε is arbitrary, we then get that

βX

(
cATD
∞

Lip(λ)

)
= 0.

This contradiction finishes the proof.
�



THE TRANSFER OF PROPERTY (β) OF ROLEWICZ BY A UNIFORM QUOTIENT MAP 11

3. Removing the reflexivity assumption

James proves many characterizations of reflexivity in [13]. We highlight in the
following lemma the one that we need. For this purpose, denote by T the set of all
finite subsets of N, considered in graph-theoretic terms as a tree. Note that this
time T is only considered as a tree to organize its elements, but we do not put any
metric on T. As a set, we have T = T∞.

Lemma 3.0.1 (James). Let X be a non-reflexive Banach space. Then for every
0 < θ < 1, there exists a sequence (un)n≥1 ⊆ BX such that

(1) the map from T to X given by {n1 < n2 < · · · < nk} 7−→ un1
+ · · ·+ unk

is
one-to-one,

(2) for every n1 < · · · < nk, we have

θk ≤ ‖un1
+ · · ·+ unk

‖ ≤ k,
(3) and for every n1 < · · · < nk < m1 < · · · < ml, we have

θ

3
(k + l) ≤ ‖(un1

+ · · ·+ unk
)− (um1

+ · · ·+ uml
)‖ ≤ k + l.

Proof. Let θ ∈ (0, 1). From item (31) in [13], we can find sequences (un)n≥1 ⊆ BX
and (u∗n)n≥1 ⊆ BX∗ such that u∗n(uk) = θ if n ≤ k, and u∗n(uk) = 0 if n > k.

(1) Let {n1 < · · · < nk} 6= {m1 < · · · < ml}. Denote {n′1 < · · · < n′k+l} =
{n1 < · · · < nk} ∪ {m1 < · · · < ml}, and let signs (εi)1≤i≤k+l ⊆ {−1, 1} be
such that

(un1 + · · ·+ unk
)− (um1 + · · ·+ uml

) = ε1un′1 + · · ·+ εk+lun′k+l
.

Then we have

‖(un1+· · ·+unk
)−(um1+· · ·+uml

)‖ ≥
∣∣∣un′k+l

(
ε1un′1 + · · ·+ εk+lun′k+l

)∣∣∣ = |εk+l θ| > 0.

(2) For n1 < · · · < nk, we have:

‖un1
+ · · ·+ unk

‖ ≥ u∗n1
(un1

+ · · ·+ unk
) = θ k.

The other inequality follows from the triangle inequality.

(3) Let n1 < · · · < nk < m1 < · · · < ml. On the one hand, we have

‖(un1
+· · ·+unk

)−(um1
+· · ·+uml

)‖ ≥
∣∣u∗m1

((un1
+ · · ·+ unk

)− (um1
+ · · ·+ uml

))
∣∣ = θ l,

and on the other hand,

‖(un1
+· · ·+unk

)−(um1
+· · ·+uml

)‖ ≥
∣∣u∗n1

((un1
+ · · ·+ unk

)− (um1
+ · · ·+ uml

))
∣∣ = θ|k−l|.

We get the left inequality by noting that max{l, |k − l|} ≥ 1
3 (k + l). Again

the inequality on the right follows from the triangle inequality.
�

We now state the main result in this section.

Theorem 3.0.2. Assume that a Banach space Y is a uniform quotient of a Ba-
nach space X. If X has (an equivalent norm with) property (β), then Y has to be
reflexive.
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Proof. Let f : X −→ Y be a surjective uniform quotient map. Note that f is
coarse Lipschitz and coarse co-Lipschitz. Assume that Y is not reflexive. We apply
James’ characterization with θ = 3/4. For J = {n1 < n2 < . . . < nk} ∈ T, set
vJ := un1

+ . . .+ unk
. We then get that if max J < min J ′, then

(1)



1

4
|J | ≤ ‖vJ‖ ≤ |J |,

1

4
|J ′| ≤ ‖vJ′‖ ≤ |J ′|,

1

4
(|J |+ |J ′|) ≤ ‖vJ − vJ′‖ ≤ (|J |+ |J ′|) .

Consider the subset T := {vJ ∈ Y : J ∈ T} ⊆ Y , which is a metric space.
Since the correspondence J 7−→ vJ is one-to-one, the set T is in one-to-one and
onto correspondence with T, and we extend the notions of levels, ancestors, and
descendants to elements of T as well. Consider the composition

φ̃ := (φ ◦ ≡) : T ≡ T∞ −→M∞,
where φ is the same map as in subsection 2.2, and ≡ is the natural bijection between
T and T∞. The bijection T ≡ T∞ is ancestor-to-descendant bi-Lipschitz by James’
characterization as expressed in (1) above. And hence, the composition φ̃ : T −→
M∞, considered as a map between metric spaces, is ancestor-to-descendant co-
Lipschitz.

Next, consider the restriction f|f−1(T )
: f−1(T ) −→ T ⊆ Y , which is a surjective

uniform quotient mapping that is coarse Lipschitz and coarse co-Lipschitz. As a
result, the composition λ̃ := φ̃ ◦ f|f−1(T )

: f−1(T ) −→ M∞ is also ancestor-to-

descendant co-Lipschitz. Note that cATD
∞ (λ̃) is finite since the inequalities (1) also

give that the map φ̃ is ancestor-to-descendant Lipschitz. We can thus apply the
fork argument (Proposition 2.3.1) to λ̃, producing elements x0, x1, x2,k (k ≥ 1),
x3 in M∞ with dist(x0, x1) = dist(x1, x2,k) = dist(x2,k, x3) = r = 3N−2; as well as
respective λ̃-preimages σ0, σ1, σ2,k (k ≥ 1) in f−1(T ) ⊆ X with

(2)


‖σ0 − σ1‖, ‖σ1 − σ2,k‖ ≤ (1 + ε)

r

cATD
d0

(λ̃)

‖σ0 − σ2,k‖ > (1− 80ε)
2r

cATD
d0

(λ̃)
.

Let us denote v(0) := f(σ0), v(1) := f(σ1), and vJ(k) := f(σ2,k) (for all k ≥ 1),
which are elements of the subset T of Y . Recall that the map φ preserves levels, so

level(v(0)) = level(x0),

level(v(1)) = level(x1) = level(x0) + 3N−2,

level(vJ(k)) = level(x2,k) = level(x1) + 3N−2.

But level(vJ(k)) = |J (k)|, so |J (k)| = level(x1) + 3N−2 for all k ≥ 1.
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Consider the set of all elements of T with infinitely (not necessarily immediate)
descendants among the J (k)’s. This set is nonempty since the root ∅ belongs to
it. Now let J be an element of this set such that level(J) = |J | is maximal.
Let

(
J (kn)

)
n≥1 be the infinitely many descendants of J among the J (k)’s. Write

J (kn) =: J ∪ I(n) with max J < min I(n). Then for every n ≥ 1, we must have

(3) |I(n)| ≥ 3N−2.

In fact, the map φ : T∞ −→M∞ is 1-Lipschitz, so for any k 6= j we have

2 · 3N−2 = distM∞(x2,k, x2,j) ≤ distT∞(J (k), J (j)),

i.e. the closest common ancestor to J (k) and J (j) is at least 3N−2 generations back.

Next, consider the immediate descendants (J ∪ {m})m>max(J) of J . By the fact
that level(J) is maximal among the elements of T with infinitely many descendants
among the J (k)’s, we must find an infinite sequence m1 < m2 < · · · such that

• each J ∪ {mj} has descendants among the J (kn)’s,
• and each such J ∪ {mj} has only finitely many descendants among the
J (kn)’s.

Take a further subsequence of (mj)j≥1, still denoted (mj)j≥1, such that if we denote
by J(knj ) = J ∪ I(nj) the descendant of J ∪ {mj} with max

(
I(nj)

)
being maximal,

then max(I(nj)) < mj+1 = min(I(nj+1)).
Then, by James, we have∥∥∥v

J
(knj

) − v
J

(kn
j′

)

∥∥∥ ≥ 1

4

(
|I(nj)|+ |I(nj′ )|

)
≥ 1

2
· 3N−2.

(The last inequality comes from inequality (3).) Using the Lipschitz condition for
large distances on f , we get∥∥∥σ2,knj

− σ2,kn
j′

∥∥∥ ≥ 1

L
· 3N−2 =

1

L
· r

for some constant L > 0 (for example take L/2 to be the Lipschitz constant for f
for distances larger than inf{‖σ2,knj

− σ2,kn
j′
‖ : j 6= j′}, which is strictly positive

since f is uniformly continuous).
Combining this with the distances expressed in (2), and using property (β) on

X, we must have

βX

(
cATD
∞ (λ̃)

2L

)
≤ βX

(
cATD
d0

(λ̃)

(1 + ε)L

)
≤ 81ε.

Since ε is arbitrary, we then get that

βX

(
cATD
∞ (λ̃)

2L

)
= 0,

a contradiction. �

Remark 3.0.3. A superreflexive Banach space is one that has an equivalent norm
which is uniformly convex (see for example [5, Appendix A]). A result of Bates,
Johnson, Lindenstrauss, Preiss, and Schechtman [2] shows that a Banach space
that is a uniform quotient of a superreflexive Banach space is itself superreflexive.
Our result (by combining Theorem 2.0.1 and Theorem 3.0.2) gives a generalization
of this for the case of separable Banach spaces. In fact, a uniformly convex Banach
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space has property (β) (see [30]); but there are separable spaces with property (β)
which are not superreflexive (see for example [19]).

In [4] Baudier, Kalton and Lancien show that a Banach space which coarse
Lipschitz embeds into a separable Banach space with an equivalent norm with
property (β) also has an equivalent norm with property (β). Our result here gives
the analog of this for uniform quotients.

4. Quantitative results

Recall the following asymptotic moduli.

Definition 4.0.4. Let X be an infinite-dimensional Banach space. Let t ∈ (0, 1].
(1) Modulus of asymptotic uniform convexity (AUC) [12,15,26]:

δ(t) = inf
‖x‖=1

sup
X0

inf
z∈X0

‖z‖≥t

{‖x+ z‖ − 1},

where X0 runs through all closed subspaces of X of finite codimension.
The Banach space X is said to be asymptotically uniformly convex (AUC)
if δ(t) > 0 for t > 0. A reflexive Banach space that is AUC is in particular
called nearly uniformly convex (NUC).

(2) Modulus of asymptotic uniform smoothness (AUS) [15,26,29]:

ρ(t) = sup
‖x‖=1

inf
X0

sup
z∈X0

‖z‖≤t

{‖x+ z‖ − 1},

where X0 runs through all closed subspaces of X of finite codimension.
The Banach space X is said to be asymptotically uniformly smooth(AUS)
if lim
t→0

ρ(t)/t = 0. A reflexive Banach space that is AUS is in particular
called nearly uniformly smooth (NUS).

(3) (β)-modulus [1]:

β(t) = 1− sup

{
inf

{
‖x+ xn‖

2
: n ∈ N

}}
,

where the supremum is taken over all x ∈ BX and all sequences (xn)n≥1 ⊆
BX with sep ((xn)n≥1) ≥ t. The Banach space X is said to have property
(β) if β(t) > 0 for t > 0.

Lemma 4.0.5. For any infinite-dimensional Banach space X, and any t ∈ (0, 1/2],
we have βX(t) ≤ δX(2t).

Proof. For t ∈ (0, 1/2], denote β = βX(t) > 0. Let x ∈ SX . Then for every
sequence (un)n≥1 ⊆ BX with sep ((un)n≥1) ≥ t, one has

inf

{∥∥∥∥x+ un
2

∥∥∥∥ : n ≥ 1

}
≤ 1− β < 1

1 + β
.

Multiplying everything by 1 + β and taking the contrapositive, we get for any
sequence (xn)n≥1 that if sep ((xn)n≥1) ≥ (1 + β) t, and if inf

n≥1
‖(1 + β)x+ xn‖ ≥ 2,

then ‖xn‖ > 1 + β on a subsequence, and hence lim inf ‖xn‖ ≥ 1 + β.

Denote T = 2t. For a finite codimensional subspace X0, denote

δX(T, x,X0) = inf{‖x+ z‖ − 1 : z ∈ X0, ‖z‖ ≥ T};
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and denote δX(T, x) the supremum of δX(T, x,X0) over all finite codimensional
subspaces X0.

Fix ε > 0. Let x∗ ∈ SX∗ be such that x∗(x) = ‖x‖ = 1. Denote by X1 = ker(x∗).
Let z1 ∈ X1 be such that ‖z1‖ ≥ T and

‖x+ z1‖ − 1 < δX(T, x,X1) + ε ≤ δX(T, x) + ε.

Let z∗1 ∈ SX∗ be such that z∗1(z1) = ‖z1‖. Call X2 = X1 ∩ ker(z∗1), and let z2 ∈ X2

be such that ‖z2‖ ≥ T and

‖x+ z2‖ − 1 < δX(T, x,X2) + ε ≤ δX(T, x) + ε.

Continuing by induction, we find a sequence (zn)n≥1 ⊆ ker(x∗) and functionals
(z∗n)n≥1 ⊆ SX∗ such that for every n ≥ 1 one has z∗n(zn) = ‖zn‖ ≥ T , and zn+1 ∈⋂n
i=1 ker(z∗i ), and

‖x+ zn‖ − 1 ≤ δX(T, x) + ε.

Denote xn = x+ zn. Then for m > n,

‖xn − xm‖ = ‖zn − zm‖ ≥ z∗n(zn − zm) = z∗n(zn) = ‖zn‖ ≥ T.

So sep ((xn)n≥1) ≥ T = 2t ≥ (1 + β) t. (Note that β ≤ 1 by definition.) On the
other hand, we have

‖(1 + β)x+ xn‖ = ‖(2 + β)x+ zn‖ ≥ x∗((2 + β)x+ zn) = 2 + β ≥ 2.

As a result, we must have lim inf ‖xn‖ = lim inf ‖x+ zn‖ ≥ 1 + β.

This implies that β = βX(t) ≤ δX(2t, x) + ε, and since ε > 0 and x ∈ SX are
arbitrary, we get βX(t) ≤ δX(2t).

�

Definition 4.0.6. We say that the (β)-modulus has power type p if there is a
constant C > 0 so that β(t) ≥ Ctp.

Proposition 4.0.7. Let 1 < p <∞. There exist uniformly homeomorphic Banach
spaces Z and Y so that Z has (β)-modulus of power type p while Y has no equivalent
norm with (β)-modulus of power type p.

Proof. Let (Gn)n≥1 be a sequence of finite-dimensional Banach spaces dense in all
finite-dimensional Banach spaces for the Banach-Mazur distance. Let 1 < p < ∞.
Johnson [14] introduced the space Cp given by Cp = (

∑∞
n=1Gn)`p . Kalton [17]

considered the space X =
(

(
∑∞
n=1Gn)

Tp

)2
, where Tp is the p-convexification of

Tsirelson space T (see for example [7]). Kalton proved in [17] that Cp and X are
uniformly homeomorphic.

The computation in [9, Proposition 5.1] gives that Cp has (β)-modulus of power
type p. On the other hand, Kalton remarks in [17] that X does not admit any
equivalent norm with AUC modulus of power type p. Assume that X admits an
equivalent norm with (β)-modulus of power type p, that is βX(t) ≥ Ctp. By Lemma
4.0.5, we have βX(t) ≤ δX(2t). Thus, for this norm we obtain δX(t) ≥ Ctp which
is in contradiction with Kalton’s result. �
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Remark 4.0.8. In contrast with Theorems 2.0.1 and 3.0.2, as well as with [25,
Proposition 4.1], the above proposition shows that we cannot compare βZ(t) and
βY (t) even under renorming, despite the fact that one is a uniform quotient of the
other.

Furthermore, it was proved in [9] that if a Banach space Y is a uniform quotient
of a Banach space Z, then for some constants C1 and C2 we have,

C1βZ(C2t) ≤ ρY (t).

Taking Z = Cp and Y = X, it follows from the above proposition that one can
not replace the AUS modulus ρY (t) with the AUC modulus δY (t) even under an
equivalent norm on Y .

The rest of the article is devoted to an investigation of the following question.

Assume that two Banach spaces are uniformly homeomorphic and
that one of them has (β)-modulus of power type p. Given an arbi-
trary q > p, does the other space always have an equivalent norm
with (β)-modulus of power type q?

In the case of the conterexample provided by the pair of spaces Cp and X, we
can give a positive answer to the above question.

Proposition 4.0.9. Assume that X is a separable reflexive Banach space which
is uniformly homeomorphic to a space with ρ(t) ≤ C1t

p, 1 < p < ∞, and that
the dual space X∗ is uniformly homeomorphic to a space with ρ(t) ≤ C2t

p′ where
1/p + 1/p′ = 1. Then for any γ > 0, X admits an equivalent norm with β(t) ≥
Ctp+γ .

Proof. It is shown in [11] that the space X has an equivalent norm ‖.‖1 with ρ‖.‖1(t)

of power type p− ε (see also [18]). Similarly, for any ε1 > 0, X∗ has an equivalent
norm ‖.‖∗2 with ρ‖.‖∗2 (t) of power type p′ − ε1. By duality [29], X has δ‖.‖2(t) of
power type p+ε provided we choose ε1 accordingly. Then by [15, Proposition 2.10]
(see also [27]), X admits an equivalent norm ‖.‖ with both ρ(t) of power type p− ε
and δ(t) of power type p+ ε.

It was shown in [20] that if a norm is both NUC and NUS then it also has
property (β). Following the same avenue, it was proved in [10] that a norm with
the above power types for ρ(t) and δ(t) has a (β)-modulus β(t) of power type

(p− ε)(p+ ε)− (p− ε)
(p− ε)− 1

= p+ ε′.

Letting ε tend to 0, ε′ can be made as close to 0 as we want. �

Corollary 4.0.10. For every ε > 0, the space X =
(

(
∑
nGn)

Tp

)2
has an equiva-

lent norm with β(t) of power type p+ ε.

Proof. By [17], X is uniformly homeomorphic to Cp and ρ
Cp

(t) ≤ Ctp. On the
other hand,

X∗ =

(
(
∑
n

G∗n)T∗p

)2

=

(
(
∑
n

G∗n)Tp′

)2

.
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Since (G∗n)n≥1 is also dense in Banach-Mazur metric, we obtain by the same theorem

in [17] that
(

(
∑∞
n=1G

∗
n)
Tp′

)2
is uniformly homeomorphic to Cp′ ; and ρ

C
p′

(t) ≤

Ctp
′
. �
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