
EXPLICIT CONSTRUCTIONS OF RIP MATRICES
AND RELATED PROBLEMS

JEAN BOURGAIN, STEPHEN DILWORTH, KEVIN FORD,
SERGEI KONYAGIN, and DENKA KUTZAROVA

Abstract
We give a new explicit construction of n×N matrices satisfying the Restricted Isometry
Property (RIP). Namely, for some ε > 0, large N , and any n satisfying N1−ε ≤ n ≤ N ,
we construct RIP matrices of order k ≥ n1/2+ε and constant δ = n−ε. This overcomes
the natural barrier k = O(n1/2) for proofs based on small coherence, which are
used in all previous explicit constructions of RIP matrices. Key ingredients in our
proof are new estimates for sumsets in product sets and for exponential sums with the
products of sets possessing special additive structure. We also give a construction of
sets of n complex numbers whose kth moments are uniformly small for 1 ≤ k ≤ N

(Turán’s power sum problem), which improves upon known explicit constructions
when (log N)1+o(1) ≤ n ≤ (log N)4+o(1). This latter construction produces elementary
explicit examples of n×N matrices that satisfy the RIP and whose columns constitute a
new spherical code; for those problems the parameters closely match those of existing
constructions in the range (log N )1+o(1) ≤ n ≤ (log N)5/2+o(1).
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1. Introduction
Suppose that 1 ≤ k ≤ n ≤ N and 0 < δ < 1. A signal x = (xj )Nj=1 ∈ CN is
said to be k-sparse if x has at most k nonzero coordinates. An n × N matrix � is
said to satisfy the RIP of order k with constant δ if, for all k-sparse vectors x, we
have

(1 − δ)‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δ)‖x‖2
2. (1.1)

While most authors work with real signals and matrices, in this paper we work with
complex matrices for convenience. Given a complex matrix � satisfying (1.1), the
2n × 2N real matrix �′, formed by replacing each element a + ib of � by the 2 × 2
matrix ( a b

−b a ), also satisfies (1.1) with the same parameters k, δ.
We know from Candès, Romberg, and Tao that matrices satisfying the RIP have

application to sparse signal recovery (see [13], [14], [15]). A variant of the RIP (with
the �2 norm in (1.1) replaced by the �1 norm) is also useful for such problems (see
[8]). A weak form of the RIP, where (1.1) holds for most k-sparse x (called statistical
RIP), is studied in [22]. Other applications of RIP matrices may be found in [30] and
[34].

Given n, N, δ, we wish to find n × N RIP matrices of order k with constant δ,
and with k as large as possible. If the entries of � are independent Bernoulli random
variables with values ±1/

√
n, then there is a high probability � will have the required

properties for∗

k 	 δ
n

log(2N/n)
. (1.2)

See [14], [32]; see also [6] for a proof based on the Johnson-Lindenstrauss lemma [25,
Lemma 1]. The first result of similar type for these matrices is due to Kashin [27].
See also [16], [40] for RIP matrices with rows randomly selected from the rows of a
discrete Fourier transform matrix and for other random constructions of RIP matrices.
The parameter k cannot be taken larger; in fact, we have

k 
 δ
n

log(2N/n)

for every RIP matrix (see [35]).

∗For convenience, we utilize the Vinogradov notation a 
 b, which means a = O(b), and the Hardy notation
a 	 b, which means b 
 a 
 b.
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It is an open problem to find good explicit constructions of RIP matrices (see Tao’s
weblog [43] for a discussion of the problem). We mention here that all known explicit
examples of RIP matrices are based on constructions of systems of unit vectors (the
columns of the matrix) with small coherence.

The coherence parameter μ of a collection of unit vectors {u1, . . . , uN } ⊂ Cn is
defined by

μ := max
r �=s

|〈ur , us〉|. (1.3)

Matrices whose columns are unit vectors with small coherence are connected to a
number of well-known problems, a few of which we describe below. Systems of vectors
with small coherence are also known as spherical codes. Some other applications of
matrices with small coherence may be found in [18], [20], [31].

PROPOSITION 1
Suppose that u1, . . . , uN are the columns of a matrix � and have coherence μ. Then
� satisfies the RIP of order k with constant δ = (k − 1)μ.

Proof
For any k-sparse vector x,

|‖�x‖2
2 − ‖x‖2

2| ≤ 2
∑
r<s

|xrxs〈ur , us〉|

≤ μ
((∑

|xj |
)2

− ‖x‖2
2

)
≤ (k − 1)μ‖x‖2

2. �

All explicit constructions of matrices with small coherence are based on number
theory. There are many constructions producing matrices with

μ 
 log N√
n log n

. (1.4)

In particular, such examples have been constructed by Kashin [26]; Alon, Goldreich,
Håstad, and Peralta [2]; DeVore [17]; and Nelson and Temlyakov [35]. By Proposition
1, these matrices satisfy the RIP with constant δ and order

k 	 δ

√
n log n

log N
. (1.5)
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It follows from random constructions of Erdős and Rényi for Turán’s problem (see
Proposition 2 and (1.15) below) that, for any n, N , there are vectors with coherence

μ 

√

log N

n
.

By contrast, there is a universal lower bound

μ �
( log N

n log(n/ log N)

)1/2
≥ 1√

n
(1.6)

valid for 2 log N ≤ n ≤ N/2 and all �, due to Levenshtein [29] (see also [21] and
[35]). Therefore, by estimating RIP parameters in terms of the coherence parameter,
we cannot construct n × N RIP matrices of order larger than

√
n and constant δ < 1.

Using methods of additive combinatorics, we construct RIP matrices of order k

with n = o(k2).

THEOREM 1
There is an effective constant ε0 > 0 and an explicit number n0 such that, for any
positive integers n ≥ n0 and n ≤ N ≤ n1+ε0 , there is an explicit n × N RIP matrix
of order �n1/2+ε0� with constant n−ε0 .

Remark 1
For application to sparse signal recovery, it is sufficient to take fixed δ <

√
2 − 1 (see

[13]); one also needs an upper bound on n in terms of k, N . By Theorem 1, for some
ε′

0 > 0, large N , and N1/2−ε′
0 ≤ k ≤ N1/2+ε′

0 , we construct explicit RIP matrices with
n ≤ k2−ε′

0 .
The proof of Theorem 1 uses a result on additive energy of sets (see Corollary 2,

Theorem 4), estimates for sizes of sumsets in product sets (see Theorem 5), and bounds
for exponential sums over products of sets possessing special additive structure (see
Lemma 10).

We now return to the problem of constructing matrices with small coherence. By (1.6),
the bound (1.4) cannot be improved if log n � log N , but there is a gap between
bounds (1.6) and (1.4) when log n = o(log N). For example, (1.4) is nontrivial only
for n � (log N/ log log N)2. Of particular interest in coding theory is the range
n = O(logC N) for fixed C, where some improvements have been made to (1.4).
A construction obtained by concatenating algebraic-geometric codes with Hadamard
codes (see, e.g., [23, Corollary 3] and [7, Section 3]) produces matrices with coherence

μ 

( log N

n log(n/ log N)

)1/3

, (1.7)
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which is nontrivial for n � log N , and is better than (1.4) when log N 
 n 

(log N/log log N)4. In the range (log N/log log N)5/2 
 n 
 (log N/log log N )5,
Ben-Aroya and Ta-Shma [7] improved both (1.4) and (1.7) by constructing binary
codes (vectors with entries ±1/

√
n) with coherence

μ 

( log N

n4/5 log log N

)1/2

. (1.8)

In this paper, we introduce very elementary constructions of matrices with co-
herence which matches (up to a log log N factor) the bound (1.7). Our constructions,
which are based on a method of Ajtai, Iwaniec, Komlós, Pintz, and Szemerédi [1],
have the added utility of applying to Turán’s power-sum problem and to the problem
of finding thin sets with small Fourier coefficients. For these last two problems, our
construction gives better estimates than existing explicit constructions in certain ranges
of the parameters.

Roughly speaking, a set with small Fourier coefficients can be used to construct
a set of numbers for Turán’s problem, and a set of numbers in Turán’s problem can be
used to produce a matrix with small coherence. This is made precise below.

We next describe the problem of explicitly constructing thin sets with small
Fourier coefficients. If N is a positive integer and if S is a set (or multiset) of residues
modulo N , we let

fS(k) =
∑
s∈S

e2πiks/N

and

|fS | := 1

|S| max
1≤k≤N−1

|fS(k)|.

Given N , we wish to find a small set S with |fS | also small.
Turán’s problem (see [45]) concerns the estimation of the function

T (n, N ) = min
|z1|=···=|zn|=1

MN (z), MN (z) := max
k=1,...,N

∣∣∣
n∑

j=1

zk
j

∣∣∣,

where n, N are positive integers. There is a vast literature related to Turán’s problem
(see, e.g., [3], [4], [33, Chapter 5], [41], [42]).

If S = {t1, . . . , tn} is a multiset of integers modulo N and if zj = e2πitj /N for
1 ≤ j ≤ n, we see that

T (n, N − 1) ≤ MN−1(z) ≤ n|fS |. (1.9)

We also have the following easy connection between Turán’s problem and coherence.
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PROPOSITION 2
Given any vector z = (z1, . . . , zn) with |zj | = 1 for all j , the coherence μ of the
n × N matrix with the columns

u−1/2
k (zk−1

1 , . . . , zk−1
n )T , k = 1, . . . , N (1.10)

satisfies μ = n−1MN−1(z).

Combining (1.9) and Proposition 2, for any multiset S of residues modulo N , the
vectors (1.10) satisfy

μ ≤ |fS |. (1.11)

A corollary of a character sum estimate of Katz [28] (see also [36]) shows∗ that
for certain N and 1/N ≤ μ ≤ 1, there are (explicitly defined) sets T of residues
modulo N so that

|fT | ≤ μ, |T | = O
( log2 N

μ2(log log N + log(1/μ))

)
. (1.12)

An application of Dirichlet’s approximation theorem shows that a set S with
|S| < log N must have |fS | � 1. In [1], sets which are not much larger are explicitly
constructed so that |fS | is small. Specifically, by [1, (1), (2)], for each prime† N there
is a set S with |S| = O(log N(log∗ N)13 log∗ N ) and

|fS | = O(1/ log∗ N),

where log∗ N is the integer k so that the kth iterate of the logarithm of N lies in [1, e).
The proof uses an iterative procedure. By modifying this procedure and truncating
after two steps, we prove the following. To state our results, for brevity we write

L1 = log N, L2 = log log N, L3 = log log log N.

THEOREM 2
For sufficiently large prime N and μ such that

L4
2

L1
≤ μ < 1, 1/μ ∈ N, (1.13)

∗Here we take N = pd −2, where p is prime, p ≈ ((d−1)/μ)2 and ((d−1)μ−1)2d ≈ N . Let F = Fpd . The group
of characters on F is a cyclic group of order N +1 with generator χ1. For any x ∈ F \{0} write χ1(x) = e(tx/N).
Let x be an element of F not contained in any proper subfield of F and take T = {tx+j : j = 0, . . . , p − 1}.
Then |T | = p, and |fT | ≤ (d − 1)

√
p by [28].

†A corresponding result when N is composite is given in [38].
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a set S of residues modulo N can be explicitly constructed so that

|fS | ≤ μ and |S| = O
( L1L2 log(2/μ)

μ4(L3 + log(1/μ))

)
= O

(L1L2

μ4

)
.

Remark 2
The method from [1], if applied without modification (with two iterations of the basic
lemma), produces a conclusion in Theorem 2 with

|S| = O
(L1L2

μ8L3

)
.

Remark 3
The bound on |S| in Theorem 2 is better than (1.12) for μ � L

−1/2
1 L2.

Together, the construction for Theorem 2 and (1.9) give explicit sets z for Turán’s
problem. By further modifying the construction, we can do better.

THEOREM 3
For sufficiently large positive integer N and μ such that

L3
2

L1
≤ μ < 1, (1.14)

a multiset z = {z1, . . . , zn} such that |z1| = · · · = |zn| = 1 can be explicitly
constructed so that

MN (z) ≤ μn, n = O
( L1L2 log(2/μ)

μ3(L3 + log(1/μ))

)
= O

(L1L2

μ3

)
.

To put Theorem 3 in context, we briefly review what is known about T (n, N). Erdős
and Rényi [19] used probabilistic methods to prove an upper estimate

T (n, N ) ≤ (
6n log(N + 1)

)1/2
. (1.15)

Using the character sum bound of Katz [28], Andersson [5] gave explicit examples of
sets z which give

T (n, N ) ≤ MN (z) 

√

n log N

log n
. (1.16)



152 BOURGAIN, DILWORTH, FORD, KONYAGIN, and KUTZAROVA

One can see that (1.16) supersedes (1.15) for log N 
 log2 n. Also, combining (1.16)
with Proposition 2 provides yet another construction of matrices with coherence
satisfying (1.4). On the other hand, by (1.6) and Proposition 2, we have the lower
estimate

T (n, N) �
( n log N

log(n/ log N)

)1/2

� n1/2, (2 log N ≤ n ≤ N/2).

By comparison, the constructions in Theorem 3 are better than (1.16) in the range
n 
 L4

1/L
8
2, that is, throughout the range (1.14) (our constructions require n to be

prime, however).
The constructions in Theorem 3 also produce, by Proposition 2, explicit examples

of matrices with coherence

μ 

(L1L2

n

)1/3

,

which is close to the bound (1.7). By Proposition 1, these matrices satisfy the RIP
with constant δ and order

k � δ
( n

L1L2

)1/3
.

We prove Theorem 1 in Sections 2 – 6, Theorem 2 in Section 7, and Theorem 3
in Section 8.

2. Construction of the matrix in Theorem 1
We fix a large even number m. A value of m can be specified; it depends on the constant
c0 in an estimate from additive combinatorics (see Proposition 3, Section 4). Also, the
value m can be reduced if one proves a better version of the Balog-Szemerédi-Gowers
lemma (Lemma 6 below).

For sufficiently large n, we take the largest prime p ≤ n, which satisfies p ≥ n/2
by Bertrand’s postulate. By Fp we denote the field of the residues modulo p, and we
let F∗

p = Fp \ {0}. For x ∈ Fp, let ep(x) = e2πix/p. We construct an appropriate
p × N matrix �p with columns ua,b, a ∈ A ⊂ Fp, b ∈ B ⊂ Fp, where

ua,b = 1√
p

(
ep(ax2 + bx)

)
x∈Fp

(the sets A, B are defined below). Notice that the matrix �p can be extended to an
n × N matrix � by adding n − p rows of zeros. Clearly, the matrices �p and � have
the same RIP parameters.
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We take

α = 1

8m2
, L = �pα�, U = L4m−1, A = {x2 + Ux : 1 ≤ x ≤ L}. (2.1)

To define the set B, we take

β = α/2 = 1/(16m2), r =
⌊

β log p

log 2

⌋
, M = 2(1/β)−1 = 216m2−1,

and we let

B =
{ r∑

j=1

xj (2M)j−1 : x1, . . . , xr ∈ {0, . . . , M − 1}
}
.

We notice that all elements of B are at most p/2 and that

|B| 	 p1−β. (2.2)

It follows from (2.1) and (2.2) that

|A||B| 	 p1+β 	 n1+β.

For n ≤ N ≤ n1+β/2, take � to be the matrix formed by the first N columns of �p,
padded with n − p rows of zeros.

In the next four sections, we show that � has the required properties for Theorem
1. First, in Section 3, we show that in (1.1) we need only consider vectors x whose
components are zero or 1 (flat vectors). We prove the following.

LEMMA 1
Let k ≥ 210, and let s be a positive integer. Assume that the coherence parameter
of the matrix � is μ ≤ 1/k. Also, assume that for some δ ≥ 0 and any disjoint
J1, J2 ⊂ {1, . . . , N} with |J1| ≤ k, |J2| ≤ k, we have∣∣∣〈 ∑

j∈J1

uj ,
∑
j∈J2

uj

〉∣∣∣ ≤ δk.

Then � satisfies the RIP of order 2sk with constant 44s
√

δ log k.

Our main lemma concerns showing the RIP with flat vectors and order k = �√p�.
We prove the required estimates for matrices formed from more general sets A and
B having certain additive properties. Namely, let m ∈ 2N, and let 0 < α < 0.01.
Assume that

|A| ≤ pα (2.3)
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and, for a ∈ A and a1, . . . , a2m ∈ A \ {a}, that

m∑
j=1

1

a − aj

=
2m∑

j=m+1

1

a − aj

=⇒ (a1, . . . , am) is a permutation of (am+1, . . . , a2m). (2.4)

Here we write 1/x for the multiplicative inverse of x ∈ Fp. We will consider the sets
B satisfying

∀S ⊂ B, if |S| ≥ p1/3, then E(S, S) ≤ p−γ |S|3 (2.5)

with some γ > 0, where E(S, S) is the number of solutions of s1 + s2 = s3 + s4 with
each si ∈ S.

LEMMA 2
Let m ∈ 2N, let α ∈ (0, 0.01), let 0 < γ ≤ min(α, 1/3m), let p be sufficiently large
in terms of m, α, γ , let A satisfy (2.3) and (2.4), and let B satisfy (2.5). Then for any
disjoint sets �1, �2 ⊂ A × B such that |�1| ≤ √

p, |�2| ≤ √
p, the inequality

∣∣∣ ∑
(a1,b1)∈�1

∑
(a2,b2)∈�2

〈
ua1,b1, ua2,b2

〉 ∣∣∣ ≤ p1/2−ε1

holds, where ε1 = c0γ /20 − 43α/m.

The proof of Lemma 2 is quite involved, and will be handled in three subsequent
sections. We next demonstrate how Theorem 1 may be deduced from it.

We first prove (2.4) for the specific set A defined in (2.1), provided that p >

(2m)8m2
(and thus L ≥ 2m). We have to show that, for any distinct x, x1, . . . , xn ∈

{1, . . . , L} and any nonzero integers λ1, . . . , λn such that n ≥ 2m and |λ1| + · · · +
|λn| ≤ 2m, the sum

V =
n∑

j=1

λj

(x − xj )(x + xj + U )

is a nonzero element of Fp. However, we will treat V as a rational number. Denote

D1 =
n∏

j=1

(x − xj ), D2 =
n∏

j=1

(x + xj + U ).
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So, we have

D1D2V =
n∑

j=1

λjD1

x − xj

D2

x + xj + U
. (2.6)

All the summands in the right-hand side of (2.6) except the first one are divisible by
x + x1 + U . For the first summand, we have

λ1D1

x − x1

D2

x + x1 + U
≡ V1 (mod x0 + x1 + U ),

where

V1 = λ1

n∏
j=2

(x − xj )
n∏

j=2

(xj − x1).

We have

|V1| ≤ 2mL2n−2 ≤ 2mL4m−2 ≤ L4m−1 = U < U + x0 + x1.

This shows that V1 �= 0 (mod x0 + x1 + U ). Therefore, V �= 0. By assumption,
p � D1 and

|D2V | ≤ 2m(U + 2L)n/U ≤ 4mU 2m−1 ≤ U 2m < p.

Hence p � D1D2V , as desired.
Condition (2.5) is satisfied due to Corollary 4 of Section 5 with γ = β/50. If m >

86000c−1
0 , then Lemma 2 gives a nontrivial estimate with ε1 > 0. Thus, �p satisfies

the conditions of Corollary 1 with k = �√p� ≥ √
n/2 and δ = p−ε1 ≤ (n/2)−ε1

(using p ≥ 0.9n for large n, which follows from the prime number theorem). Let
ε0 = ε1/5. Let n ≤ N ≤ n1+ε0 and let � be the n × N matrix formed by taking
the first N columns of �p and then adding n − p rows of zeros. Clearly, � satisfies
the conditions of Corollary 1 with the same parameters as �p. By Lemma 1 with
s = �pε1/4�, Theorem 1 follows.

In Section 4, we introduce some notation and recall standard estimates in additive
combinatorics which will be applied to subsets of B. Section 5 is devoted to the sumset
theory of B, from which we deduce (2.5). The completion of the proof of Lemma 2
is in Section 6. We give some preliminaries here.

It is easy to see that, for a fixed a, the vectors {ua,b : b ∈ Fp} form an orthogonal
system. Using a well-known formula for Gauss sums

∑
x∈Fp

ep(dx2) (see, e.g., [24,
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Proposition 6.31]), we have, for a1 �= a2, the equality

〈ua1,b1, ua2,b2〉 = p−1ep

(
− (b1 − b2)2

4(a1 − a2)

) ∑
x∈Fp

ep

(
(a1 − a2)x2

)

= σp√
p

(a1 − a2

p

)
ep

(
− (b1 − b2)2

4(a1 − a2)

)
,

where ( d

p
) is the Legendre symbol∗ and where σp = 1 or i according to whether

p ≡ 1 or 3 (mod 4). We remark that there is no analogous formula for exponential
sums

∑
x∈Fp

ep(F (x)) when F is a polynomial of degree greater than or equal to 3.
Consequently, the assertion of Lemma 2 can be rewritten as

∣∣∣ ∑
(a1,b1)∈�1

∑
(a2,b2)∈�2

(a1 − a2

p

)
ep

( (b1 − b2)2

4(a1 − a2)

)∣∣∣ ≤ p1−ε1, (2.7)

where the summands with a1 = a2 are excluded from the summation. We next break
�1, �2 into balanced sets. For a ∈ A and i = 1, 2, let

�i(a) = {
b ∈ B : (a, b) ∈ �i

}
.

To prove (2.7), it is enough to show that

|S(A1, A2)| ≤ p1−1.1ε1, S(A1, A2) =
∑

a1∈A1,
a2∈A2

∑
b1∈�1(a1),
b2∈�2(a2)

(a1 − a2

p

)
ep

( (b1 − b2)2

4(a1 − a2)

)
,

(2.8)
whenever M1, M2 are powers of two and, for i = 1, 2 and for any ai ∈ Ai , that

Mi/2 ≤ |�i(ai)| < Mi, |Ai |Mi ≤ 2
√

p. (2.9)

Indeed, there are O(log2 p) choices for M1, M2. To prove the cancellation in (2.8),
we basically split it into two cases: (i) some B ′ = �i(aj ) has additive structure (i.e.,
E(B ′, B ′) is large), where the cancellation comes from the sum over b1, b2 (with
a1, a2 fixed), and (ii) when B ′ does not have additive structure, in which case one
gets dispersion of the phases from the dilation weights 1/(a1 − a2) (taking a large
moment and using (2.4)). Incidentally, oscillations of the factor ( a1−a2

p
) play no role in

the argument.

3. The flat RIP
Let u1, . . . , uN be the columns of an n × N matrix �. Suppose that, for every j ,
‖uj‖2 = 1. We say that � satisfies the flat RIP of order k with constant δ if, for any

∗For d ∈ F∗
p , we have ( d

p
) = 1 if the congruence x2 ≡ d (mod p) has a solution, and ( d

p
) = −1 otherwise.
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disjoint J1, J2 ⊂ {1, . . . , N} with |J1| ≤ k, |J2| ≤ k, we have
∣∣∣〈 ∑

j∈J1

uj ,
∑
j∈J2

uj

〉∣∣∣ ≤ δ(|J1||J2|)1/2. (3.1)

For technical reasons, it is more convenient to work with the flat RIP than with
the RIP. However, the flat RIP implies an RIP with an increase in δ. The flat RIP is
closely related to the property that (1.1) holds for any x with entries which are zero or
one and at most k ones (see the calculation at the end of this section).

LEMMA 3
Let k ≥ 210, and let s be a positive integer. Suppose that � satisfies the flat RIP of
order k with constant δ. Then � satisfies the RIP of order 2sk with constant 44sδ log k.

Proof
First, by a convexity-type argument and our assumption, we have

∣∣∣〈 ∑
j∈J1

xj uj ,
∑
j∈J2

yj uj

〉∣∣∣ ≤ δ(|J1||J2|)1/2 (3.2)

provided that |J1| ≤ k, |J2| ≤ k, and 0 ≤ xj , yj ≤ 1 for all j . Next, suppose that
|J1| ≤ k, |J2| ≤ k, and 0 ≤ xj , yj for all j . Without loss of generality, assume that
‖x‖2 = ‖y‖2 = 1, where ‖ · ‖2 denotes the l2 norm. For a positive integer ν, let

J1,ν = {j ∈ J1 : 2−ν < xj ≤ 21−ν}, J2,ν = {j ∈ J2 : 2−ν < yj ≤ 21−ν}.

Observe that
∑

ν

4−ν |J1,ν | ≤ 1,
∑

ν

4−ν |J2,ν | ≤ 1. (3.3)

Applying (3.2) to sets J1,ν, J2,ν , we get
∣∣∣〈 ∑

j∈J1

xj uj ,
∑
j∈J2

yj uj

〉∣∣∣ ≤
∑
ν1,ν2

∣∣∣〈 ∑
j∈J1,ν1

xj uj ,
∑

j∈J2,ν2

yj uj

〉∣∣∣

≤
∑
ν1,ν2

22−ν1−ν2δ(|J1,ν1 ||J2,ν2 |)1/2

= 4δ
∑

ν

2−ν |J1,ν |1/2
∑

ν

2−ν |J2,ν |1/2.
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Let t = �3 + log k/(2 log 2)�. By the Cauchy-Schwarz inequality, we infer that

∑
ν

2−ν |J1,ν |1/2 ≤
t∑

ν=1

2−ν |J1,ν |1/2 +
∞∑

ν=t+1

2−ν |J1,ν |1/2

≤ t1/2
( t∑

ν=1

4−ν |J1,ν |
)1/2

+
∞∑

ν=t+1

2−νk1/2 ≤ t1/2 + 1

4
.

Similarly,

∑
ν

2−ν |J2,ν |1/2 ≤ t1/2 + 1

4
.

Therefore, we have

∣∣∣〈∑
j∈J1

xj uj ,
∑
j∈J2

yj uj

〉∣∣∣ ≤ 4δ
(
t1/2 + 1

4

)2
≤ 5.5δ log k. (3.4)

For the next step, suppose that xj , yj take arbitrary complex values |J1| ≤ sk and
|J2| ≤ sk, respectively. We partition J1 and J2 into s subsets of cardinality at most k

each: J1 = ⋃s

μ=1 J1,μ, J2 = ⋃s

μ=1 J2,μ. Next, for any j , we have

xj =
4∑

ν=1

xj,νi
ν, yj =

4∑
ν=1

yj,νi
ν, |xj |2 =

4∑
ν=1

x2
j,ν, |yj |2 =

4∑
ν=1

y2
j,ν,

where xj,ν, yj,ν are nonnegative. By (3.4) and the Cauchy-Schwarz inequality,

∣∣∣〈 ∑
j∈J1

xj uj ,
∑
j∈J2

yj uj

〉∣∣∣ ≤
s∑

μ1=1

4∑
ν1=1

s∑
μ2=1

4∑
ν2=1

∣∣∣〈 ∑
j∈J1,μ1

xj,ν1 uj ,
∑

j∈J2,μ2

yj,ν2 uj

〉∣∣∣

≤
∑

μ1,ν1,μ2,ν2

5.5δ(log k)
( ∑

j∈J1,μ1

x2
j,ν1

)1/2( ∑
j∈J2,μ2

y2
j,ν2

)1/2

≤ 22sδ‖x‖2‖y‖2 log k. (3.5)

To complete the proof of the lemma, assume that N ≥ 2sk, and consider a vector
x = ∑

j∈J xj ej with ‖x‖2 = 1 and |J | = 2sk, where (e1, . . . , eN ) is the standard
basis of CN . Take arbitrary partitions of J into two sets J1, J2 of cardinality sk each.
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By (3.5), we have
∣∣∣‖�x‖2

2 − ‖x‖2
2

∣∣∣ =
∣∣∣ ∑

j1,j2∈J,j1 �=j2

〈xj1 uj1, xj2 uj2〉
∣∣∣

=
(

2sk − 2

sk − 1

)−1∣∣∣ ∑
J1,J2

〈 ∑
j∈J1

xj uj ,
∑
j∈J2

xj uj

〉∣∣∣

≤
(

2sk − 2

sk − 1

)−1 ∑
J1,J2

22sδ(log k)
( ∑

j∈J1

|xj |2
)1/2( ∑

j∈J2

|xj |2
)1/2

≤
(

2sk − 2

sk − 1

)−1 ∑
J1,J2

11sδ‖x‖2
2 log k

=
(

2sk

sk

)(
2sk − 2

sk − 1

)−1

11sδ‖x‖2
2 log k ≤ 44sδ‖x‖2

2 log k. �

Proof of Lemma 1
For any disjoint J1, J2 ⊂ {1, . . . , N} with |J1| ≤ k, |J2| ≤ k, we have

∣∣∣〈 ∑
j∈J1

uj ,
∑
j∈J2

uj

〉∣∣∣ ≤ min(δk, μ|J1||J2|) ≤ min(δk, |J1||J2|/k) ≤
√

δ|J1||J2|,

and it remains to apply Lemma 3. �

Remark 4
Using the assumptions of the Lemma 1 directly rather than reducing it to Lemma 3,
one can get a better constant for the RIP; however, we do not need a stronger version
of the corollary for our purposes.

4. Some definitions and results from additive combinatorics
For an (additive) abelian group G, we define the sum and the difference of subsets
A, B ⊂ G:

A + B = {a + b : a ∈ A, b ∈ B}, A − B = {a − b : a ∈ A, b ∈ B}.

We denote −A = {−x : x ∈ A}. If A ⊆ G = Fp and b ∈ Fp, write bA = {ba : a ∈
A}.

Consider G = Fp, and let B ⊂ G be the set defined in Section 2. There is a
natural bijection � between B and the cube CM,r = {0, . . . , M − 1}r defined by
�(

∑r

j=1 xj (2M)j−1) = (x1, . . . , xr ). Moreover, it is trivial that b1 + b2 = b3 + b4 if
and only if �(b1)+�(b2) = �(b3)+�(b4). In the language of additive combinatorics,
� is a Freiman isomorphism between B and CM,r . Thus, |B1+B2| = |�(B1)+�(B2)|
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for any B1 ⊆ B, B2 ⊆ B. The problem of the size of sumsets in CM,r is investigated
in the next section.

We use the following lemma which is a particular case of Plünecke-Ruzsa esti-
mates.

LEMMA 4 ([44, Exercise 6.5.15])
For any nonempty set A ⊂ G, we have |A + A| ≤ |A − A|2/|A|.

If A, B ⊂ G, we define the (additive) energy E(A, B) of the sets A and B as the
number of solutions of the equation

a1 + b1 = a2 + b2, a1, a2 ∈ A, b1, b2 ∈ B.

Next, let F ⊂ A × B. The F -restricted sum of A and B is defined as

A +F B = {
a + b : a ∈ A, b ∈ B, (a, b) ∈ F

}
.

Trivially, E(A, A) ≤ |A|3. If E(A, A) is close to |A|3, then A must have a special
additive structure.

LEMMA 5 ([44, Lemma 2.30])
If E(A, A) ≥ |A|3/K , then there exists F ⊂ A × A such that |F | ≥ |A|2/(2K) and
|A +F A| ≤ 2K|A|.

The following lemma (see [11]) is a version of the Balog-Szemerédi-Gowers lemma
which plays a very important role in additive combinatorics.

LEMMA 6
If F ⊂ A × A, |F | ≥ |A|2/L, and |A +F A| ≤ L|A|, then there exists a set A′ ⊂ A

such that |A′| ≥ |A|/(10L) and |A′ − A′| ≤ 104L9|A|.

Combining Lemmas 5 and 6 gives the following.

COROLLARY 1
If E(A, A) ≥ |A|3/K , then there exists a set A′ ⊂ A such that |A′| ≥ |A|/(20K)
and |A′ − A′| ≤ 107K9|A|.

For a function f : Fp → C and a number r ≥ 1, we define the Lr norm of f as

‖f ‖r =
( ∑

x∈Fp

|f (x)|r
)1/r

.
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The additive convolution of two functions f, g : Fp → C is defined as

f ∗ g(x) =
∑
y∈Fp

f (y)g(x − y).

By 1A we denote the indicator function of the set A. With this notation, we have

E(A, B) = E(A, −B) = ‖1A ∗ 1B‖2
2. (4.1)

We say that a function f : Fp → R+ is a probability measure if ‖f ‖1 = 1.
Notice that if f, g are probability measures, then f ∗ g is also a probability measure.

PROPOSITION 3 ([10, Theorem C])
Assume that A ⊂ Fp, B ⊂ F∗

p with |A| ≥ |B|. For some c0 > 0, we have

∑
b∈B

E(A, bA) 
 min(p/|A|, |B|)−c0 |A|3|B|. (4.2)

Remark 5
An explicit version of Proposition 3, with c0 = 1/10430, is given in [12].

Note that if |A| < |B|, we may decompose B as a disjoint union of at most
2|B|/|A| sets Bj with |A|/2 < |Bj | ≤ |A| and apply (4.2) for each Bj . Hence

∑
b∈B

E(A, bA) 

[

min
(
|A|, |B|, p

|A|
)]−c0 |A|3|B|.

Applying the Cauchy-Schwarz inequality, we get
∑
b∈B

‖1A ∗ 1bA‖2 
 |A|3/2(|A|−c0/2|B| + |B|1−c0/2 + p−c0/2|A|c0/2|B|). (4.3)

Remark 6
It would be interesting to find the best possible value for c0 in Proposition 3. The
example A = B = {1, . . . , [

√
p]} shows that c0 < 1.

COROLLARY 2
For any A ⊂ Fp and a probability measure λ, we have

∑
b∈F∗

p

λ(b)‖1A ∗ 1bA‖2 
 (‖λ‖2 + |A|−1/2 + |A|1/2p−1/2)c0 |A|3/2.
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Proof
Put λ(p) = 0, and let b be a permutation of {1, . . . , p} such that λ(b1) ≥ · · · ≥
λ(bp) = 0. By Lemma 3, for 1 ≤ j ≤ p − 1, we have Sj 
 Gj , where

Sj =
j∑

h=1

‖1A ∗ 1bA‖2, Gj := |A|3/2(|A|−c0/2j + |A|c0/2p−c0/2j + j 1−c0/2).

Applying summation by parts, we have

∑
b∈F∗

p

λ(b)‖1A ∗ 1bA‖2 =
p∑

j=1

λ(bj )(Sj − Sj−1) =
p−1∑
j=1

Sj

(
λ(bj ) − λ(bj+1)

)



p−1∑
j=1

Gj

(
λ(bj ) − λ(bj+1)

) =
p−1∑
j=1

λ(bj )(Gj − Gj−1)

= |A|3/2
[
|A|−c0/2 + p−c0/2|A|c0/2 + O

( p∑
j=1

λ(bj )j−c0/2
)]

.

Denote u0 = ‖λ‖−2
2 . Notice that 1 ≤ u0 ≤ p since ‖λ‖1 = 1. Separately

considering j ≤ u0 and j > u0 and using the Cauchy-Schwarz inequality, we get

p∑
j=1

λ(bj )j−c0/2 ≤ ‖λ‖2

( ∑
j≤u0

j−c0

)1/2
+ u

−c0/2
0 = O

(‖λ‖c0
2

)
. �

Although Corollary 2 suffices for the purposes of this paper, a further generalization of
Proposition 3 might be useful. For z ∈ F∗

p, we define a function ρz[f ] by ρz[f ](x) =
f (x/z).

THEOREM 4
Let λ, μ be probability measures on Fp. Then

∑
b∈F∗

p

λ(b)‖μ ∗ ρb[μ]‖2 
 (‖λ‖2 + ‖μ‖2 + ‖μ‖−1
2 p−1/2)c0/7‖μ‖2.

Proof
Using a parameter � ≥ 1, which will be specified later, we define the sets

A− = {
x : μ(x) ≥ ‖μ‖2

2�
}
, A+ = {

x : μ(x) < ‖μ‖2
2�

−2
}
, A = Fp\A−\A+.
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Decompose μ = μ− + μ0 + μ+, where

μ− = μ1A−, μ0 = μ1A, μ+ = μ1A+ .

The contribution to the sum in the theorem from μ− and μ+ is negligible. First,

‖μ−‖1 ≤ 1

�‖μ‖2
2

∑
x∈A−

μ(x)2 ≤ �−1 (4.4)

and

‖μ+‖2 ≤ ‖μ‖2�
−1‖μ+‖1/2

1 ≤ ‖μ‖2�
−1. (4.5)

Using Young’s inequality (see [44, Theorem 4.8]), we find that
∑
b∈F∗

p

λ(b)‖μ− ∗ ρb[μ]‖2 ≤
∑
b∈F∗

p

λ(b)‖μ−‖1‖ρb[μ]‖2

≤
∑
b∈F∗

p

λ(b)�−1‖μ‖2 ≤ �−1‖μ‖2,

(4.6)

∑
b∈F∗

p

λ(b)‖μ+ ∗ ρb[μ]‖2 ≤
∑
b∈F∗

p

λ(b)‖μ+‖2‖ρb[μ]‖1

≤
∑
b∈F∗

p

λ(b)�−1‖μ‖2 ≤ �−1‖μ‖2. (4.7)

Similarly, we have
∑
b∈F∗

p

λ(b)‖μ0 ∗ ρb[(μ− + μ+)]‖2 ≤ 2�−1‖μ‖2. (4.8)

So, it suffices to estimate the contribution of μ0. We have

1 = ‖μ‖1 ≥
∑
x∈A

μ(x) ≥ |A|‖μ‖2
2�

−2.
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Hence, |A| ≤ ‖μ‖−2
2 �2. Now we can use Corollary 2 to get

∑
b∈F∗

p

λ(b)‖μ0 ∗ ρb[μ0]‖2 ≤ ‖μ‖4
2�

2
∑
b∈F∗

p

λ(b)‖1A ∗ 1bA‖2


 ‖μ‖4
2�

2(‖λ‖c0
2 + |A|−c0/2 + |A|c0/2p−c0/2)|A|3/2

≤ ‖μ‖4
2�

2(‖λ‖c0
2 ‖μ‖−3

2 �3 + ‖μ‖−3+c0
2 �3−c0 + ‖μ‖−3−c0

2 �3+c0 )

≤ �6‖μ‖2(‖λ‖c0
2 + ‖μ‖c0

2 + ‖μ‖−c0
2 p−c0/2).

Combining the last inequality with (4.6) – (4.8), we get
∑
b∈F∗

p

λ(b)‖μ ∗ ρb[μ]‖2 ≤ 4�−1‖μ‖2 + O(�6‖μ‖2S),

where

S = ‖λ‖c0
2 + ‖μ‖c0

2 + ‖μ‖−c0
2 p−c0/2.

Taking � = max(1, S1/7) completes the proof of the theorem. �

5. A sumset estimate in product sets
The main result of this section is the following.

THEOREM 5
Let r, M ∈ N, let M ≥ 2, and let C = CM,r = {0, . . . , M − 1}r . Let τ = τM be the
solution of the equation

( 1

M

)2τ

+
(M − 1

M

)τ

= 1.

Then for any subsets A, B ⊂ C , we have

|A + B| ≥ (|A||B|)τ . (5.1)

Proof
Observe that, for A = B = C , we have |A + B| = |A|τ ′ |B|τ ′

, where

τ ′ = τ ′
M = log(2M − 1)

2 log M
.

By Theorem 5, τ ≤ τ ′. On the other hand, τ > 1/2. If M → ∞, then

u2τ = 1 − (1 − u)τ ∼ u

2
, 2τ − 1 ∼ log 2

log M
∼ 2τ ′ − 1. (5.2)
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So, the asymptotic behavior of 2τM − 1 as M → ∞ is sharp. Likely, inequality (5.1)
holds with τ = τ ′. This was proved in the case M = 2 by Woodall [47].

Results of a similar spirit, concerning addition of subsets of Fp
r and related

groups, are considered in [9].
For positive integers K, L, we define a UR-path as a sequence of pairs of integers

P = ((i1, j1) = (0, 0), . . . , (iK+L−1, jK+L−1) = (K − 1, L − 1)) such that, for any
n, either in+1 = in + 1, jn+1 = jn or in+1 = in, jn+1 = jn + 1.

LEMMA 7
Let KL ≤ M2, let u0 ≥ · · · ≥ uK−1 ≥ 0, let v0 ≥ · · · ≥ vL−1 ≥ 0, and let τ = τM .
Then there exists a UR-path P such that

K+L−1∑
n=1

(uinvjn
)τ ≥

( K−1∑
i=0

ui

)τ( L−1∑
j=0

vj

)τ

. (5.3)

Proof
We proceed by induction on K + L. For K = 1 or L = 1 the assertion is obvious.
We prove it for K, L with min(K, L) ≥ 2, KL ≤ M2 supposing that it holds for
(K, L) replaced by (K − 1, L) and (K, L− 1). Without loss of generality, we assume
that

K−1∑
i=0

ui =
L−1∑
j=0

vj = 1.

By the induction supposition, there exists a UR-path P such that i1 = 1, j1 = 0, and

K+L−1∑
n=2

(uinvjn
)τ ≥

( K−1∑
i=1

ui

)τ( L−1∑
j=0

vj

)τ

= (1 − u0)τ .

Therefore, we have

S := max
P

K+L−1∑
n=1

(uinvjn
)τ ≥ (u0v0)τ + (1 − u0)τ .

Similarly, S ≥ (u0v0)τ + (1 − v0)τ . Thus S ≥ w2τ + (1 − w)τ , where

w = (u0v0)1/2 ≥ (KL)−1/2 ≥ 1/M.

The function f (x) = x2τ + (1 − x)τ − 1 has a negative third derivative on [0, 1] and
f (0) = f (1/M) = f (1) = 0. By Rolle’s theorem, f has no other zeros on [0, 1], and
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since f (u) > 0 for u close to 1, f (x) ≥ 0 for 1/M ≤ x ≤ 1. Therefore, f (w) ≥ 0
as desired. �

We will need Lemma 7 only for K = L = M (although for the proof it was convenient
to have varying K, L).

LEMMA 8
Let U0, . . . , UM−1, V0, . . . , VM−1 be nonnegative numbers, and let τ = τM . Then

2M−2∑
μ=0

max
κ+λ=μ,
κ≥0,λ≥0

(UκVλ)τ ≥
( M−1∑

κ=0

Uκ

)τ( M−1∑
λ=0

Vλ

)τ

. (5.4)

Lemma 8 has some similarity with inequality (2.1) from [37].

Proof
We order U0, . . . , UM−1 and V0, . . . , VM−1 in the descending order u0 ≥ · · · ≥ uM−1

and v0 ≥ · · · ≥ vM−1, respectively, where for some permutations π and σ of the set
{0, . . . , M − 1}, we have ui = Uπi

, vj = Vσj
. We consider an arbitrary UR-path P

with K = L = M . Since |{πi1, . . . , πin}| = in + 1 and |{σj1, . . . , σjn
}| = jn + 1, we

have

|{πi1, . . . , πin} + {σj1, . . . , σjn
}| ≥ in + jn + 1.

Consequently, there is a permutation ψ of {0, . . . , 2M − 2} so that

ψ(n − 1) ∈ {πi1, . . . , πin} + {σj1, . . . , σjn
} (1 ≤ n ≤ 2M − 1).

Thus, for some κ0 ∈ {πi1, . . . , πin} and λ0 ∈ {σj1, . . . , σjn
}, we have

max
κ+λ=ψ(n−1),

κ≥0,λ≥0

(UκVλ)τ ≥ (Uκ0Vλ0 )
τ .

But Uκ0 = ui for some i ∈ {i1, . . . , in}. Recalling that i1 ≤ i2 ≤ . . . and that
u1 ≥ u2 ≥ . . . , we obtain Uκ0 ≥ uin . Similarly, Vλ0 ≥ vjn

. Therefore, we have

max
κ+λ=ψ(n−1),

κ≥0,λ≥0

(UκVλ)τ ≥ (uinvjn
)τ

and

2M−2∑
μ=0

max
κ+λ=μ,
κ≥0,λ≥0

(UκVλ)τ =
2M−1∑
n=1

max
κ+λ=ψ(n−1),

κ≥0,λ≥0

(UκVλ)τ ≥
2M−1∑
n=1

(uinvjn
)τ ,

and the result follows from Lemma 7. �
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Now we are ready to prove Theorem 5. We proceed by induction on r . For r = 0, the
set CM,r is a singleton, and there is nothing to prove. Now suppose that the assertion
holds for r replaced by r − 1 ≥ 0. We consider arbitrary subsets A, B ⊂ C = CM,r .
For i = 0, . . . , M − 1, we denote

Ai = {
(x1, . . . , xr−1) : (x1, . . . , xr−1, i) ∈ A

}
,

Bi = {
(x1, . . . , xr−1) : (x1, . . . , xr−1, i) ∈ B

}
.

Let D = A + B. For n = 0, . . . , 2M − 2, we denote

Dn = {
(x1, . . . , xr−1) : (x1, . . . , xr−1, n) ∈ D

}
.

Observe that

|A| =
∑

i

|Ai |, B =
∑

j

|Bj |, D =
∑

n

|Dn|.

For any n = 0, . . . , 2M − 2, we have

|Dn| ≥ max
i+j,

i≥0,j≥0

|Ai + Bj |.

By the induction supposition, |Ai + Bj | ≥ (|Ai ||Bj |)τ . Hence

|Dn| ≥ max
i+j,

i≥0,j≥0

(|Ai ||Bj |)τ .

Applying Lemma 8, we have

|D| =
∑

n

|Dn| ≥
∑

n

max
i+j,

i≥0,j≥0

(|Ai ||Bj |)τ ≥
(∑

i

|Ai |
)τ(∑

j

|Bj |
)τ

= (|A||B|)τ .

The proof of Theorem 5 is complete. �

COROLLARY 3
Let m be a positive integer. For the set B ⊂ Fp defined in Section 2, and for any
subset B ⊂ B, |B| > p1/4, we have |B − B| ≥ pβ/5|B|.

Proof
The set −B is a translate of some set B ′ ⊂ B, and B is Freiman isomorphic to CM,r .
Hence, for any B ⊂ B, we have |B − B| = |B + B ′| ≥ |B|2τM . If |B| > p1/4,
then |B − B| ≥ |p|(2τM−1)/4|B|. By (5.2) and a short calculation using M ≥ 215,
p(2τM−1)/4 ≥ pβ/5. �



168 BOURGAIN, DILWORTH, FORD, KONYAGIN, and KUTZAROVA

COROLLARY 4
Fix m ∈ N, and let p ≥ p(m) be a sufficiently large prime. Let B ⊂ Fp be
the set defined in Section 2. Then for any subset S ⊂ B, |S| > p1/3, we have
E(S, S) ≤ p−β/50|S|3.

Proof
Let E(S, S) = |S|3/K . By Corollary 1, there is a set B ⊂ S such that |B| ≥ |S|/(20K)
and |B − B| ≤ 107K9|S|. If K ≤ pβ/50 < p1/24 and p is so large that 107 ≤ pβ/50,
then we get a contradiction with Corollary 3. �

6. The proof of Lemma 2
We may assume that ε1 > 0; otherwise there is nothing to prove. Adopt the notation
(Ai, Mi, �i(a)) from Section 2. If |A1|M1 < p1/2−γ /10, then, by (2.9), |S(A1, A2)| ≤
2p1−γ /10 and (2.8) holds (recall that c0 < 1; hence ε1 < γ/20). Thus, we can assume
that |A1|M1 ≥ p1/2−γ /10, which implies, by (2.3), that

M1 ≥ p1/2−α−γ /10. (6.1)

LEMMA 9
For any θ ∈ F∗

p, B1 ⊂ Fp, B2 ⊂ Fp, we have

∣∣∣ ∑
b1∈B1,
b2∈B2

ep

(
θ(b1 − b2)2

) ∣∣∣ ≤ |B1|1/2E(B1, B1)1/8|B2|1/2E(B2, B2)1/8p1/8.

Proof
Let W denote the double sum over b1, b2. By the Cauchy-Schwarz inequality, we get

|W |2 ≤ |B1|
∑
b1∈B1

∣∣∣ ∑
b2∈B2

ep

(
θ(b1 − b2)2

) ∣∣∣2

= |B1|
∑

b2,b
′
2∈B2

∑
b1∈B1

ep

(
θ(b2

2 − (b′
2)2 − 2b1(b2 − b′

2))
)
.

Another application of the Cauchy-Schwarz inequality gives

|W |4 ≤ |B1|2|B2|2
∑

b2,b
′
2∈B2

∣∣∣ ∑
b1

ep

(
2θb1(b2 − b′

2)
) ∣∣∣2

= |B1|2|B2|2
∑

x,y∈Fp

λxμyep(−2θxy),
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where

λx = 1B1 ∗ 1(−B1)(x), μy = 1B2 ∗ 1(−B2)(y).

A third application of the Cauchy-Schwarz inequality, followed by Parseval’s identity,
yields a well-known inequality (see [46, Chapter 6, Problem 14(a)])

∣∣∣ ∑
x,y∈Fp

λxμyep(−2θxy)
∣∣∣2

≤ ‖λ‖2
2

∑
x∈Fp

∣∣∣ ∑
y∈Fp

μyep(−2θxy)
∣∣∣2

= p‖λ‖2
2‖μ‖2

2 = pE(B1, B1)E(B2, B2). �

By (6.1), |�i(ai)| ≥ p1/3, Lemma 9, and (2.5), we have

∣∣∣ ∑
b1∈�1(a1)
b2∈�2(a2)

ep

( (b1 − b2)2

4(a1 − a2)

)∣∣∣ ≤ |�1(a1)|7/8|�2(a2)|7/8p1/8−γ /4.

Next, by (2.9), we have

|S(A1, A2)| ≤ 4|A1|1/8|A2|1/8p1−γ /4.

Thus, if |A1| < pγ/2, and |A2| < pγ/2, then |S(A1, A2)| ≤ 4p1−γ /8, and (2.8) follows.
Otherwise, without loss of generality, we may assume that

|A2| ≥ pγ/2. (6.2)

The following lemma gives the necessary estimates to complete the proof of Lemma
2. For a1 ∈ A1, set

T (A, B) = Ta1 (A, B) =
∑
b1∈B

a2∈A,b2∈�2(a2)

(a1 − a2

p

)
ep

( (b1 − b2)2

4(a1 − a2)

)
.

LEMMA 10
If a1 ∈ A1, 0 < γ ≤ min(α, 1/(3m)), conditions (2.9) and (6.2) are satisfied, and a
set B ⊂ Fp is such that

p1/2−6α ≤ |B| ≤ p1/2 (6.3)

and

|B − B| ≤ p28α|B|, (6.4)
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then

|T (A2, B)| ≤ |B|p(1/2)−ε2, ε2 = c0γ

20
− 42α

m
. (6.5)

Remark 7
The proof of Lemma 10 applies to more general sums; for example, in T (A, B), one
may replace the Legendre symbol ( a1−a2

p
) with arbitrary complex numbers ψ(a1, a2)

with modulus less than or equal to 1, and one may replace 1/(a1 − a2) with different
quantities g(a1, a2) having the dissociative property (the analog of (2.4) holds).

Postponing the proof of Lemma 10, we first show how to deduce Lemma 2.
We take a maximal subset B0 ⊂ �1(a1) so that (6.5) holds for B = B0. Denote

B1 = �1(a1) \ B0. By Lemma 9, (2.9), and (2.3), we have

|Ta1 (A2, B1)| ≤
∑
a2∈A2

|B1|1/2E(B1, B1)1/8|�2(a2)|1/2E
(
�2(a2), �2(a2)

)1/8
p1/8

≤ |A2| |B1|1/2E(B1, B1)1/8M
7/8
2 p1/8

≤ 2|B1|1/2E(B1, B1)1/8p(9/16)+(α/8).

Consider the case when

E(B1, B1) ≤ p−3αM3
1 . (6.6)

Then, due to (2.9), we have

|Ta1 (A2, B1)| ≤ 2M
7/8
1 p(9/16)−α/4. (6.7)

Now assume that (6.6) does not hold. By (2.9), we get

|B1| > p−αM1, E(B1, B1) ≥ p−3α|B1|3.

Now by applying Corollary 1 and (2.9), we obtain the existence of a set B ′
1 ⊂ B1 such

that

|B ′
1| ≥ M1

20p4α
≥ p1/2−5α−γ /10

20
≥ p1/2−6α

and |B ′
1 − B ′

1| ≤ 107p27α|B1| ≤ p28α|B1|. Using Lemma 10, we get inequality (6.5)
for B = B ′

1. Therefore, (6.5) is also satisfied for B = B0 ∪ B ′
1, contradicting the

choice of B0.
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Thus, we have shown that (6.6) must hold. Using (6.5) for B = B0 and (6.7), we
get

∣∣Ta1

(
A2, �1(a1)

)∣∣ ≤ M1p
(1/2)−ε2 + 2M

7/8
1 p(9/16)−α/4.

Summing on a1 ∈ A1 and using (2.3) and (2.9), we obtain

|S(A1, A2)| ≤ |A1|(M1p
(1/2)−ε2 + 2M

7/8
1 p(9/16)−α/4)

≤ 2p1−ε2 + 4|A1|1/8p1−α/4 ≤ 2p1−ε2 + 4p1−α/8,

completing the proof of Lemma 2. �

Proof of Lemma 10
By the Cauchy-Schwarz inequality, we have

|T (A2, B)|2 ≤ √
p

∑
b1,b∈B

|F (b, b1)|,

where

F (b, b1) =
∑
a2∈A2

b2∈�2(a2)

ep

( b2
1 − b2

4(a1 − a2)
− b2(b1 − b)

2(a1 − a2)

)
.

Consequently, by Hölder’s inequality, we have

|T (A2, B)|2 ≤ √
p|B|2−2/m

( ∑
b1,b∈B

|F (b, b1)|m
)1/m

. (6.8)

Next, we have

∑
b1,b∈B

|F (b, b1)|m ≤
∑

x∈B+B,
y∈B−B

∣∣∣ ∑
a2∈A2,

b2∈�2(a2)

ep

( xy

4(a1 − a2)
− b2y

2(a1 − a2)

)∣∣∣m

≤
∑

y∈B−B

∑
a

(i)
2 ∈A2

b
(i)
2 ∈�2(a(i)

2 )
1≤i≤m

∣∣∣ ∑
x∈B+B

ep

(xy

4

m/2∑
i=1

[ 1

a1 − a
(i)
2

− 1

a1 − a
(i+m/2)
2

])∣∣∣.
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Hence, for some complex numbers εy,ξ of modulus less than or equal to 1, we have

∑
b1,b∈B

|F (b, b1)|m ≤ Mm
2

∑
y∈B−B

∑
ξ∈Fp

λ(ξ )εy,ξ

∑
x∈B+B

ep(xyξ/4), (6.9)

where

λ(ξ ) =
∣∣∣{a(1), . . . , a(m) ∈ A2 :

m/2∑
i=1

( 1

a1 − a(i)
− 1

a1 − a(i+m/2)

)
= ξ

}∣∣∣.
By (2.4), we have

λ(0) ≤ (m/2)!|A2|m/2. (6.10)

Let

ζ ′(z) =
∑

y∈B−B
ξ∈F∗

p

yξ=z

εy,ξλ(ξ ), ζ (z) =
∑

y∈B−B
ξ∈F∗

p

yξ=z

λ(ξ ).

Then |ζ ′(z)| ≤ ζ (z). By Hölder’s inequality,
∣∣∣ ∑

y∈B−B

∑
ξ∈F∗

p

λ(ξ )εy,ξ

∑
x∈B+B

ep(xyξ/4)
∣∣∣

=
∣∣∣ ∑

x∈B+B
z∈Fp

ζ ′(z)ep(xz/4)
∣∣∣

≤ |B + B|3/4
( ∑

x∈Fp

∣∣∣ ∑
z∈Fp

ζ ′(z)ep(xz/4)
∣∣∣4)1/4

= |B + B|3/4
( ∑

x∈Fp

∣∣∣ ∑
z′∈Fp

(ζ ′ ∗ ζ ′)(z′)ep(xz′/4)
∣∣∣2)1/4

= |B + B|3/4‖ζ ′ ∗ ζ ′‖1/2
2 p1/4

≤ |B + B|3/4‖ζ ∗ ζ‖1/2
2 p1/4. (6.11)
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As ζ (z) = ∑
ξ 1B−B(z/ξ ), we have by the triangle inequality,

‖ζ ∗ ζ‖2 ≤
∑

ξ,ξ ′∈F∗
p

λ(ξ )λ(ξ ′)‖1ξ (B−B) ∗ 1ξ ′(B−B)‖2

=
∑

ξ,ξ ′∈F∗
p

λ(ξ )λ(ξ ′)‖1B−B ∗ 1(ξ ′/ξ )(B−B)‖2. (6.12)

Define the probability measure λ1 by

λ1(ξ ) = λ(ξ )

‖λ‖1
= λ(ξ )

|A2|m .

The sum
∑

ξ∈Fp
λ(ξ )2 is equal to the number of solutions of the equation

1

a1 − a(1)
+ · · · + 1

a1 − a(m)
− 1

a1 − a(m+1)
− 1

a1 − a(2m)
= 0

with a(1), . . . , a(2m) ∈ A2. By (2.4), this has only trivial solutions, and thus
∑
ξ∈Fp

λ(ξ )2 ≤ m!|A2|m. (6.13)

Now we are in position to apply Corollary 2 which gives, for any ξ ′ ∈ F∗
p,

∑
ξ∈F∗

p

λ1(ξ )‖1B−B ∗ 1(ξ ′/ξ )(B−B)‖2


 (‖λ1‖2 + |B − B|−1/2 + |B − B|1/2p−1/2)c0 |B − B|3/2. (6.14)

By (6.2) and (6.13), we have

‖λ1‖2 ≤
√

m!p−mγ/4.

By (6.3) and α < 0.01, we have

|B − B| ≥ |B| ≥ p1/2−6α ≥ p0.44.

On the other hand, it follows from (6.3) and (6.4) that

|B − B| ≤ p1/2+28α ≤ p0.78.

Since mγ ≤ 1/3, we get

‖λ1‖2 + |B − B|−1/2 + |B − B|1/2p−1/2 ≤
√

m!p−mγ/4 + p−0.1 ≤ p−mγ/5.
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So, by (6.12) and (6.14), we have

‖ζ ∗ ζ‖2 ≤ |A2|2m
∑
ξ ′∈F∗

p

λ1(ξ ′)
∑
ξ∈F∗

p

λ1(ξ )‖1B−B ∗ 1(ξ ′/ξ )(B−B)‖2


 |A2|2mp−(c0/5)mγ |B − B|3/2.

Subsequent application of (6.9), (6.10), and (6.11) gives

∑
b1,b∈B

|F (b, b1)|m ≤ (m

2 )!(M2|A2|)m|A2|−m/2|B − B||B + B|

+ O(Mm
2 |A2|m|B − B|3/4|B + B|3/4p−(c0/10)mγ p1/4).

Due to Lemma 4, condition (6.4) implies that

|B + B| ≤ p56α|B|.

By (6.3), p1/4 ≤ |B|1/2p3α . Recalling γ ≤ α, (2.9), (6.2), and (6.4), we conclude that
∑

b1,b∈B

|F (b, b1)|m 
 (m

2 )!(2
√

p)mp−mγ/4p84α|B|2

+ (2
√

p)mp63α|B|3/2p−(c0/10)mγ p1/4

≤ |B|2pm/2−(c0/10)mγ+84α.

Plugging the last estimate into (6.8), we get

|T (A2, B)|2 ≤ √
p|B|2−2/m(|B|2pm/2−(c0/10)mγ+84α)1/m ≤ |B|2p1+84α/m−(c0/10)γ . �

7. Thin sets with small Fourier coefficients
Denote by (a−1)m the inverse of a modulo m. It is easy to see, for relatively prime
integers a, b, that

(a−1)b
b

+ (b−1)a
a

− 1

ab
∈ Z. (7.1)

LEMMA 11
Let P ≥ 4, S ≥ 2, and let R be a positive integer. Suppose that, for every prime
p ≤ P , Sp is a set of integers in (−p/2, p/2). Suppose that q is a prime satisfying
q ≥ RP 2. Then the numbers r + s(p)(p−1)q , where 1 ≤ r ≤ R, P/2 < p ≤ P , and
s(p) ∈ Sp are distinct modulo q.
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Proof
Suppose that

r1 + s
(p1)
1 (p−1

1 )q ≡ r2 + s
(p2)
2 (p−1

2 )q (mod q).

Multiplying both sides by p1p2 gives

r1p1p2 + p2s
(p1)
1 ≡ r2p1p2 + p1s

(p2)
2 (mod q).

By hypothesis, we have

|(r1 − r2)p1p2 + p2s
(p1)
1 − p1s

(p2)
2 | < (R − 1)P 2 + P 2 ≤ q,

thus

(r1 − r2)p1p2 = −p2s
(p1)
1 + p1s

(p2)
2 .

The right side is divisible by p1p2, and the absolute value of the right side is < p1p2;
hence both sides are zero, r1 = r2, p1 = p2, and s

(p1)
1 = s

(p2)
2 . �

For brevity, we write e(z) for e2πiz is what follows.

LEMMA 12
Let P ≥ 4, S ≥ 2, and let R be a positive integer. Suppose that, for every prime
p ∈ (P/2, P ], Sp is a multiset of integers in (−p/2, p/2), |Sp| = S, and |fSp

| ≤ ε.
Suppose that q is a prime satisfying q > P . Then the multiset

T = {
r + s(p)(p−1)q : 1 ≤ r ≤ R, P/2 < p ≤ P, s(p) ∈ Sp

}

of residues modulo q satisfies

|fT | ≤ ε + 2/
√

3

R
+ log(q/3)

V log(P/2)
, (7.2)

where V is the number of primes in (P/2, P ].

Proof
Since |fT (k)| = |fT (q − k)|, we may assume without loss of generality that 1 ≤ k <

q/2. We have

fT (k) = A(k)
∑

P/2<p≤P

B(p, k),
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where

A(k) =
∑
r≤R

e
(kr

q

)
, B(p, k) =

∑
s∈Sp

e
(ks(p−1)q

q

)
.

Trivially,

|A(k)| ≤ min
(
R,

2

|e(k/q) − 1|
)
. (7.3)

If k ≥ q/3, we use the trivial bound |B(p, k)| ≤ S, and we conclude that

|fT (k)|
|T | ≤ 2

R|e(k/q) − 1| ≤ 2

R|e(1/3) − 1| = 2/
√

3

R
.

Now assume that k ≤ q/3. If p|k, then |B(p, k)| ≤ S. When p � k, by (7.1), we get

|B(p, k)| =
∣∣∣ ∑

s∈Sp

e
(

− sk(q−1)p
p

+ ks

pq

)∣∣∣

≤ |Sp| max
s∈Sp

∣∣∣e( ks

pq

)
− 1

∣∣∣ +
∣∣∣ ∑

s∈Sp

e
(sk(q−1)p

p

)∣∣∣
≤ (

ε + |e(k/2q) − 1|)S.

Since there are ≤ log k/log(P/2) primes p|k with p > P/2, we have

∑
P/2<p≤P

|B(p, k)| ≤ (
ε + |e(k/2q) − 1|)SV + log(q/3)

log(P/2)
S.

Combining our estimates for |A(k)| and |B(p, k)|, we arrive at

|fT (k)|
|T | ≤ ε + log(q/3)

V log(P/2)
+ 2

R

∣∣∣∣e(k/2q) − 1

e(k/q) − 1

∣∣∣∣
≤ ε + log(q/3)

V log(P/2)
+ 2/

√
3

R
. �

For a specific choice of Sp, the inequality (7.2) can be strengthened.

LEMMA 13
Let P ≥ 4, and let R be a positive integer. For every prime p ∈ (P/2, P ], denote by
Sp the set of all integers in (−p/2, p/2). Suppose that q is a prime satisfying q > P .
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Then the multiset

T = {
r + s(p)(p−1)q : 1 ≤ r ≤ R, P/2 < p ≤ P, s(p) ∈ Sp

}

of residues modulo q satisfies

|fT | ≤ W

2V
+ W

RV

(
1 + log

(
1 + V

W

)
2

)
, (7.4)

where V is the number of primes in (P/2, P ] and where W = 4(log(q/2))/
(log(P/2)).

Proof
Again, we may assume without loss of generality that 1 ≤ k < q/2. We use notation
from the proof of Lemma 12. If p|k, we use the trivial estimate |B(p, k)| ≤ |Sp| ≤ P .
Now there are ≤ log(q/2)/log(P/2) primes p|k with p > P/2. When p � k, by (7.1),
we get

|B(p, k)| ≤
∣∣∣

(p−1)/2∑
s=(1−p)/2

e
(

− sk(q−1)p
p

+ ks

pq

)∣∣∣ =

∣∣∣e( k

q

)
− 1

∣∣∣∣∣∣e( − k(q−1)p
p

+ k

pq

)
− 1

∣∣∣

≤

∣∣∣e( k

q

)
− 1

∣∣∣∣∣∣e( − 2|k(q−1)p |−1
2p

)
− 1

∣∣∣ ≤

∣∣∣e( k

q

)
− 1

∣∣∣∣∣∣e( − 2|k(q−1)p |−1
2P

)
− 1

∣∣∣ ,

where it is assumed that k(q−1)p ∈ (−p/2, p/2). For a = 1, . . . , [(P − 1)/2], we
denote

Pa = {
p ∈ (P/2, P ] : |k(q−1)p| = a

}
.

Taking into account that |e(u) − 1|−1 ≤ 1/(4u) for u ∈ (0, 1/2], we get

∑
p�k

|B(p, k)| ≤ P

2

∣∣∣e( k

q

)
− 1

∣∣∣ ∑
a

|Pa| 1

2a − 1
. (7.5)

If k(q−1)p = ±a, then k ± aq is divisible by p. But |k ± aq| ≤ Pq/2. There-
fore, the number of prime divisors p > P/2 of any number k ± aq is at most
(log q)/log(P/2) + 1, and, for any a, we get

|Pa| ≤ 2
[ log q

log(P/2)

]
+ 2 ≤ W.
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Let A = [V/W ] + 1. We have

∑
a

|Pa| 1

2a − 1
≤

∑
a≤A

|Pa| 1

2a − 1
+

(
V −

∑
a≤A

|Pa|
) 1

2A + 1

≤
∑
a≤A

W
1

2a − 1
+

(
V −

∑
a≤A

W
) 1

2A + 1
≤

∑
a≤A

W
1

2a − 1

≤ W
(

1 + log A

2

)
≤ W

(
1 + log

(
1 + V

W

)
2

)
.

Combining our estimates for |A(k)| and |B(p, k)| ((7.3) and (7.5)), we arrive at

|fT (k)|
|T | ≤ 2 log(q/2)

V log(P/2)
+ PW/2

R(P − 2)V/2

(
1 + log

(
1 + V

W

)
2

)

= W

2V
+ W

RV

(
1 + log

(
1 + V

W

)
2

)
. �

Remark 8
Applying Lemma 12 for all primes q in a dyadic interval, we can then feed these
multisets T = Tq back into the lemma and iterate.

Using explicit estimates for counts of prime numbers (see [39]), we have the
following.

PROPOSITION 4
For P ≥ 250, there are more than 2P/(5 log(P/2)) primes in (P/2, P ]. For any
P > 2, there are at most 0.76P/ log P primes in (P/2, P ].

Using Proposition 4, we obtain a more convenient version of Lemma 13.

LEMMA 14
Let P ≥ 250. For every prime p ∈ (P/2, P ], denote by Sp the set of all nonzero
integers in (−p/2, p/2). Suppose that q is a prime satisfying q > P , and suppose
that R ≥ 1 + log(1 + 0.26P/ log(2q))/2 is a positive integer. Then the multiset

T = {
r + s(p)(p−1)q : 1 ≤ r ≤ R, P/2 < p ≤ P, s(p) ∈ Sp

}

of residues modulo q satisfies

|fT | ≤ 15
log q

P
. (7.6)
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Proof
We use the notation of Lemma 13. By Proposition 4, we have

W

2V
≤ 5

log q

P
. (7.7)

On the other hand, using Proposition 4 again, we get

V

W
≤ 0.76P/ log P

4 log(q/2)/ log(P/2)
≤ 0.19

P

log(q/2)
≤ 0.26

P

log(2q)
.

Hence, we have

R ≥ 1 + log
(
1 + V

W

)
2

.

Now the inequality (7.6) follows from (7.7) and (7.4). �

Using just one iteration, one can get the following effective result on thin sets with
small Fourier coefficients of nearly the same strength as (1.12).

COROLLARY 5
For sufficiently large prime N and μ such that N−1/2 log2 N ≤ μ < 1, there is a set
T of residues modulo N so that

|fT | ≤ μ, |T | = O
(L2

1

μ2

( 1 + log(1/μ)

L2 + log(1/μ)

))
.

Proof
We choose P = (15/μ) log N and

R =
[
2 + log (1 + 5/μ)

2

]
≥ 1 +

log
(

1 + 0.26P

log N

)
2

.

Clearly, R 
 1 + log(1/μ). Let T be the multiset constructed in Lemma 14. We have
|fT | ≤ μ. By Lemma 11, T is a set. Moreover, we have

|T | 
 P 2 1 + log(1/μ)

log P

 P 2(1 + log(1/μ))

L2 + log(1/μ)
. �
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Proof of Theorem 2
We choose real parameters P0, P1 and positive integers R0, R1 so that

P0 ≥ 250, P1 ≥ 2R0P
2
0 , N ≥ R1P

2
1 , R0 ≥ 1 +

log
(

1 + 0.26P0

log P1

)
2

,

(7.8)

and also that

2/
√

3

R1
+ 15

log P1

P0
+ 5 log N

2P1
≤ μ. (7.9)

For P0/2 < p ≤ P0, let Sp be the set of integers in (−p/2, p/2). By Lemmas 11 and
14 and (7.8), for each prime q ∈ (P1/2, P1], there is a set T = Sq of residues modulo
q such that

|fSq
| ≤ 15

log(P1)

P0
=: ε1.

By an application of Lemmas 11 and 12 with P = P1, ε = ε1, q = N , and
S = R0

∑
P0/2<p≤P0

p, together with (7.9), there is a set T of residues modulo N so
that

|fT | ≤ ε1 + 2/
√

3

R1
+ 5 log N

2P1
≤ μ.

Using Proposition 4, we find that

|T | ≤ (0.76)2R0R1
P1P

2
0

(log P0)(log P1)
.

Recalling that 1/μ ∈ N, we now take

R0 = [
2 + log(1 + 13/μ)/2

]
, R1 = 4/μ,

P1 = (8/μ) log N, P0 = (45/μ) log P1

so that (7.9) follows immediately. Condition (1.13) implies (7.8) for large en-
ough N . �

Remark 9
Theorem 2 supersedes Corollary 5 for μ � L

−1/2
1 L

1/2
2 .



EXPLICIT CONSTRUCTIONS OF RIP MATRICES 181

8. An explicit construction for Turán’s problem

Proof of Theorem 3
We follow the proof of Theorem 2 and Lemma 12. We choose real parameters P0, P1

and a positive integer R0 so that

P0 ≥ 250, P1 > 2P 2
0 , R0 ≥ 1 +

log
(

1 + 0.26P0

log P1

)
2

, (8.1)

and also that

15
log P1

P0
+ 5 log N

2P1
≤ μ. (8.2)

For P0/2 < p ≤ P0, let Sp be the set of integers in (−p/2, p/2). By Lemma 14 and
(8.1), for each prime q ∈ (P1/2, P1], there is a multiset T = Sq of residues modulo
q such that

|fSq
| ≤ 15

log(P1)

P0
:= ε1. (8.3)

We have |Sq | = S for all q, where S = R0
∑

P0/2<p≤P0
p. Now define a multiset

{z1, . . . , zn} as a union of multisets {e(s/q) : s ∈ Sq, q ∈ (P1/2, P1]}. We have, for
1 ≤ k ≤ N ,

n∑
j=1

zk
j =

∑
P1/2<q≤P1

B(q, k), B(q, k) =
∑
s∈Sq

e
(ks

q

)
.

If q|k, then B(q, k) = S. When q � k, by (8.3), |B(q, k)| ≤ ε1S. Therefore, we have

∑
q�k

|B(q, k)| ≤ ε1n. (8.4)

The sum over q|k is estimated in the same way as in Lemma 12:

∑
q|k

|B(q, k)| ≤ log N

log(P1/2)
S. (8.5)

Combining (8.4), (8.5), and using Proposition 4, we arrive at

1

n

∣∣∣
n∑

j=1

zk
j

∣∣∣ ≤ ε1 + 5 log N

2P1
,
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as required. Moreover, by Proposition 4, we have

n ≤ (0.76)2R0
P1P

2
0

(log P0)(log P1)
.

Now we take R0, P0, P1 the same as in the proof of Theorem 2 so that (8.2) follows
immediately. The condition (1.14) implies (8.1) for large enough N . �

Remark 10
As in [1], one can construct thin sets T modulo N with |T | = o(L1L2) and |fT |
small by iterating Lemma 12. Roughly speaking, applying Lemma 14 followed by r

iterations of Lemma 12 produces sets T , with small |fT | as small as |T | = O(L1Lr+1),
where Lj is the j th iterate of the logarithm of N . We omit the details.
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