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Abstract. A large portion of computation is concerned with approximating a function u. Typ-
ically, there are many ways to proceed with such an approximation leading to a variety of
algorithms. We address the question of how we should evaluate such algorithms and compare
them. In particular, when can we say that a particular algorithm is optimal or near optimal? We
shall base our analysis on the approximation error that is achieved with a given (computational
or information) budget n. We shall see that the formulation of optimal algorithms depends to a
large extent on the context of the problem. For example, numerically approximating the solution
to a PDE is different from approximating a signal or image (for the purposes of compression).
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1. Introduction

A generic scientific problem is to approximate a function u. The problem takes
different forms depending on what we know about u. We describe five common
settings.

The Data Fitting Problem (DFP). We are given data λj (u), j = 1, 2, . . . , n, where
each λj is a linear functional. The problem is to approximate u the best we can from
this information. Often the λj (u)’s are point values of u or averages of u over certain
sets (called cells).

The Sensing Problem (SP). In this setting we may ask for the values λj (u), j =
1, . . . , n, of any linear functionals λj applied to u . We are given a budget of n such
questions and we wish to determine what are the best questions to ask in order to
approximate u effectively. This problem differs from DFP because we can choose the
functionals to apply.

The Encoding Problem (EP). Here we have complete knowledge of u. We are given
a bit budget n and we wish to transmit as much information about u as possible while
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using at most n bits. An encoder maps u into a bitstream and a decoder converts
the bitstream into a function which approximates u. Both these maps are typically
nonlinear.

The Computation Problem (CP). We are only given the information that u is a solu-
tion to some (linear or nonlinear) equation A(u) = f . We have complete knowledge
of the operator A and any additional information (such as boundary or initial con-
ditions) that are sufficient to uniquely determine u. We are given a computational
budget n, say of floating point operations (flops), and we wish to approximate u as
efficiently as possible within this budget. This problem is related to numerically
inverting the operator A.

The Learning Problem (LP). We are given data zi = (xi, yi) ∈ X×Y , i = 1, . . . , n,
which are drawn independently with respect to some unknown probability measure
ρ on X × Y . We wish from this data to fit a function which best represents how
the response variable y is related to x. The best representation (in the sense of least
squares minimization) is given by the regression function fρ(x) := E(y|x) with E
the expectation. Since we do not know ρ, we do not know fρ The problem is to best
approximate fρ from the given sample data.

These problems have a long history and still remain active and important research
areas. The first three of these problems are related to major areas of Approximation
Theory and Information Based Complexity and our presentation is framed by core
results in these disciplines. CP is the dominant area of Numerical Analysis and LP
is central to Nonparametric Statistics. The complexity of algorithms is also a major
topic in Theoretical Computer Science. The purpose of this lecture is not to give a
comprehensive accounting of the research in these areas. In fact, space will only allow
us to enter two of these topics (SP and LP) to any depth. Rather, we want to address
the question of how to evaluate the myriad of algorithms for numerically resolving
these problems and decide which of these is best. Namely, we ask “what are the ways
in which we can evaluate algorithms?”

2. Some common elements

There are some common features to these problems which we want to underscore. The
obvious starting point is that in each problem we want to approximate a function u.

2.1. Measuring performance. To measure the success of the approximation, we
need a way to measure error between the target function u and any candidate approx-
imation. For this, we use a norm ‖ · ‖. If un is our approximation to u, then the error
in this approximation is measured by

‖u− un‖. (2.1)

Thus, our problem is to make this error as small as possible within the given budget n.
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The norm may be of our choosing (in which case we would want to have a theory
that applies to a variety of norms) or it may be dictated by the problem at hand. The
typical choices are the Lp norms, 1 ≤ p ≤ ∞. Suppose that � is a domain in R

d

where R
d is the d dimensional Euclidean space. We define

‖g‖Lp(�) :=
⎧⎨
⎩
(
∫
�

|g(x)|p dx)1/p, 1 ≤ p < ∞,

esssup
x∈�

|g(x)|, p = ∞.
(2.2)

When studying the solutions to PDEs, norms involving derivatives of u are often
more appropriate. We shall delay a discussion of these norms till needed.

In numerical considerations, the norms (2.2) are replaced by discrete versions. If
x ∈ R

N , then

‖x‖�p :=
⎧⎨
⎩

(∑N
j=1 |xj |p

)1/p
, 0 < p < ∞,

maxj=1...,N |xj |, p = ∞.
(2.3)

2.2. The form of algorithms: linear versus nonlinear. The numerical algorithms
we consider will by necessity be a form of approximation. To understand them, we
can use the analytical tools of approximation theory. This is a classical subject which
began with the work of Weierstrass, Bernstein, Chebyshev, and Kolmogorov. The
quantitative portion of approximation theory seeks to understand how different meth-
ods of approximation perform in terms of rates of convergence. If a certain method
of approximation is used in the construction of an algorithm then approximation the-
ory can tell us the optimal performance we could expect. Whether we reach that
performance or something less will be a rating of the algorithm.

Approximation theory has many chapters. We will partially unfold only one of
these with the aim of describing when numerical algorithms are optimal. To keep
the discussion as elementary as possible we will primarily focus on approximation
in Hilbert spaces where the theory is most transparent. For approximation in other
spaces, the reader should consult one of the major books [16], [31].

Let H be a separable Hilbert space with inner product 〈 ·, ·〉 and its induced norm
‖f ‖ := 〈f, f 〉1/2. The prototypical examples for H would be the space L2(�) de-
fined in (2.2) and �2 defined in (2.3). We shall consider various types of approximation
in H which will illustrate notions such as linear, nonlinear, and greedy approximation.
At the start, we will suppose that B := {gk}∞k=1 is a complete orthonormal system
for H and use linear combinations of these basis vectors to approximate u. Later, we
shall consider more general settings whereB is replaced by more general (redundant)
systems.

We begin with linear approximation in this setting. We consider the linear spaces
Vn := span{gk}nk=1. These spaces are nested: Vn ⊂ Vn+1, n = 1, . . . . Each element
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f ∈ H has a unique expansion

f =
∞∑
k=1

ckgk, ck := ck(f ) := 〈f, gk〉, k = 1, 2, . . . . (2.4)

For an important concrete example, the reader can have in mind the space H = L2(�)

of 2π -periodic functions defined on R and the Fourier basis. Then (2.4) is just the
expansion of f into its Fourier series.

Given f ∈ H the functionPVnf := ∑n
k=1 ck(f )gk is the best approximation to f

from Vn and the error we incur in such an approximation is given by

En(f ) := ‖f − PVn(f )‖ =
( ∞∑
k=n+1

|ck(f )|2
)1/2

, n = 1, 2, . . . . (2.5)

We are in the wonderful situation of having an explicit formula for the error of ap-
proximation in terms of the coefficients ck(f ). We know that for any f ∈ H the right
side of (2.5) tends to zero as n tends to infinity. The faster the rate of decay, the better
we can approximate f and the nicer f is with respect to this basis.

To understand the performance of an approximation process, such as the one
described above, it is useful to introduce approximation classes which gather together
all functions which have a common approximation rate. For us, it will be sufficient
to consider the classes Ar , r > 0, consisting of all functions f that are approximated
with a rate O(n−r ). For example, in the case we are discussing Ar := Ar ((Vn)) :=
Ar ((Vn),H) consists of all functions f ∈ H such that

En(f ) ≤ Mn−r , n = 1, 2, . . . . (2.6)

The smallest M such that (2.6) holds is defined to be the norm on this space:

|f |Ar := sup
n≥1

nrEn(f ). (2.7)

Notice that these approximation spaces are also nested: Ar ⊂ Ar ′ if r ≥ r ′. Given an
f ∈ H there will be a largest value of r = r(f, B) for which f ∈ Ar ′ for all r ′ < r .
We can think of this value of r as measuring the smoothness of f with respect to this
approximation process or what is the same thing, the smoothness of f with respect
to the basis {gk}.

For standard orthonormal systems, the approximation spaces Ar often have an
equivalent characterization as classical smoothness spaces. For example, in the case
of the Fourier basis, Ar is identical with the Besov space Br∞(L2(�)). This space is
slightly larger than the corresponding Sobolev spaceWr(L2(�)). In the case that r is
an integer,Wr(L2(�)) is the set of all f ∈ L2(�)whose r-th derivative f (r) is also in
L2(�). We do not have the space here to go into the precise definitions of smoothness
spaces, but if the reader thinks of the smoothness order as simply corresponding to
the number of derivatives that will give the correct intuition.
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Observe that two elements are coming into play: the basis we select and the
ordering of that basis. A function f may have a faster convergent expansion with
respect to one basis B than another B ′. That is r(f, B) > r(f, B ′). If we knew
this in advance the better basis would be preferable. Such knowledge is only present
through some additional analysis of the problem at hand, e.g. in the case of numerically
solving PDEs such information could be provided by a regularity theorem for the PDE.
The ordering of the basis functions also plays an important role. Reordering these
basis functions results in a different rate of decay for the approximation error and
therefore a different r(f, B). Such reordering is done in practice through nonlinear
approximation which we now discuss.

Approximation by the elements of Vn is called linear approximation because the
approximants are taken from the linear space Vn. This is to be contrasted with the
following notion of n-term approximation. For each n ≥ 1, we let �n denote the
set of all functions that can be expressed as a linear combination of n terms of the
orthonormal basis:

S =
∑
k∈	

akgk, #	 ≤ n, (2.8)

where #	 is the cardinality of 	. We consider the approximation of f ∈ H by the
elements of �n and define the error of such approximation by

σn(f ) := σn(f )H := inf
S∈�n

‖f − S‖, n = 1, 2, . . . . (2.9)

Notice that En is generally reserved for the error in linear approximation and σn for
the error in nonlinear approximation.

Another view of n-term approximation is that we approximate the function f
by the elements of a linear space Wn spanned by the elements of n basis functions.
However, it differs from linear approximation in that we allow the space Wn to also
be chosen depending on f , that is, it is not fixed in advance as was the case for linear
approximation.

It is very easy to describe the best approximant to f from�n and the resulting error
of approximation. Given f ∈ H we denote by (c∗k ) the decreasing rearrangement
of the sequence (cj = cj (f )). Thus, |c∗k | is the k-th largest of the numbers |cj (f )|,
j = 1, 2, . . . . Each c∗k = cjk (f ) for some jk . The choice of the mapping k �→ jk is not
unique because of possible ties in the size of coefficient but the following discussion
is immune to such differences. A best approximation to f ∈ H from �n is given by

S∗ =
n∑
k=1

cjk (f )gjk =
∑
j∈	∗

n

cj (f )gj , 	∗
n := 	∗

n(f ) := {j1, . . . , jn}, (2.10)

and the resulting error of approximation is

σn(f )
2 =

∑
k>n

(c∗k )2 =
∑
j /∈	∗

n

|cj (f )|2. (2.11)
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Indeed, if S = ∑
j∈	 ajgj is any element of �n, then

‖f − S‖2 =
∑
j∈	

(cj − aj )
2 +

∑
j∈	c

c2
j , (2.12)

where 	c is the complement of 	. The second sum on the right side of (2.12) is
at least as large as

∑
k>n(c

∗
k )

2 and so we attain the smallest error by taking a set
of indices 	 = 	∗

n(f ) corresponding to the n largest coefficients and then taking
aj = cj (f ) for j ∈ 	.

Notice that the space �n is not linear. If we add two elements from �n, we
will generally need 2n terms to represent the sum. For this reason, n-term approxi-
mation is a form of nonlinear approximation. We can define approximation classes
Ar ((�n),H) for this form of approximation by replacingEn(f ) byσn(f ) in (2.6) and
(2.7). To distinguish between linear and nonlinear approximation we will sometimes
write Ar (L) and Ar (NL) for the two approximation classes thereby indicating that
the one corresponds to linear approximation and the other to nonlinear approximation.

It is easy to characterize when an f belongs to Ar ((�n),H) in terms of the
coefficients ck(f ). For this, recall that a sequence (ak) is said to be in the space w�p
(weak �p) if

#{k : |ak| ≥ η} ≤ Mpη−p (2.13)

and the smallestM for which (2.13) holds is called the weak �p norm (‖(ak)‖w�p ) of
this sequence. An equivalent definition is that the decreasing rearrangement of (ak)
satisfies

|a∗
k | ≤ M1/pk−1/p, k = 1, 2, . . . . (2.14)

A simple exercise proves that f ∈ Ar ((�n),H) if and only if (ck(f )) ∈ w�p with
1/p = r + 1/2, and the norms |f |Ar and ‖(ck(f ))‖w�p are equivalent (see [30]
or [16]). Notice that Ar (L) ⊂ Ar (NL) but the latter set is much larger. Indeed,
for linear approximation a function f ∈ H will be approximated well only if its
coefficients decay rapidly with respect to the usual basis ordering but in nonlinear
approximation we can reorder the basis in any way we want. As an example, consider
again the Fourier basis. The space A1/2(NL) consists of all functions whose Fourier
coefficients are in w�1. A slightly stronger condition is that the Fourier coefficients
are in �1 which means the Fourier series of f converges absolutely.

In n-term approximation, the n-dimensional space used in the approximation de-
pends on f . However, this space is restricted to be spanned by n terms of the given
orthonormal basis. If we are bold, we can seek even more approximation capability
by allowing the competition to come from more general collections of n-dimensional
spaces. However, we would soon see that opening the competition to be too large will
render the approximation process useless in computation since it would be impossible
to implement such a search numerically (this topic will be discussed in more detail in
Section 4).

There is a standard way to open up the possibilities of using more general families
in the approximation process. We say a collection of function D = {g}g∈D ⊂ H is a
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dictionary if each g ∈ D has norm one (‖g‖ = 1). We define�n := �n(D) as the set
of all S that are a linear combination of at most n dictionary elements: S = ∑

g∈	 cgg
with #(	) ≤ n. The n-term approximation error σn and the approximation classes
Ar (D,H) are then defined accordingly. Notice that the elements in D need not be
linearly independent, i.e., the dictionary allows for redundancy.

It is a bit surprising that meaningful theorems about Ar can be proved in this very
general setting. To find good n-term approximations, we cannot simply select indices
with large coefficients because of the possible redundancy in the dictionary. Rather,
we proceed by an important technique known as greedy approximation (sometimes
called matching pursuit). This is an iterative procedure which selects at each step
a best one-term approximation to the current residual. Given f ∈ H , we initially
define f0 := 0 and the residual r0 := f − f0 = f . Having defined the current
approximation fn−1 and its residual rn−1 := f − fn−1 for some n ≥ 1, we will
choose an element gn ∈ D and update the approximation to f by including gn in the
n-term approximation. The usual way of proceeding is to choose gn as

gn := Argmax
g∈D

〈rn−1, g〉, (2.15)

although there are important variants of this strategy. Having chosen gn in this way,
there are different algorithms depending on how we proceed. In the Pure Greedy
Algorithm (PGA), we define

fn := fn−1 + 〈fn−1, gn〉gn (2.16)

which yields the new residual rn := f − fn. We can do better, but with more
computational cost, if we define

fn := PVnf (2.17)

where Vn := span{g1, . . . , gn}. This procedure is called the Orthogonal Greedy
Algorithm (OGA). There is another important variant which is analogous to numerical
descent methods called Restricted Greedy Approximation(RGA). It defines

fn := αnfn−1 + βngn (2.18)

where 0 < αn < 1 and βn > 0. Typical choices for αn are 1 − 1/n or 1 − 2/n. There
are other variants in the RGA where the choice of gn is altered. The most general
procedure is to allow α, β, g to be arbitrary and choose αfn−1 + βg that minimizes
the norm of the residual r = f − αfn−1 − βg.

Greedy algorithms have been known for decades. Their numerical implementa-
tion and approximation properties were first championed in statistical settings ([42],
[4], [46]). The approximation properties have some analogy to those for nonlinear
approximation from a basis but are not as far reaching. To briefly describe some of
these results, let L1 consist of all functions f ∈ H such that

f =
∑
g∈D

cgg,
∑
g∈D

|cg| < +∞. (2.19)
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We can define a norm on this space by

|f |L1 := inf
{ ∑

g∈D |cg| : f = ∑
g∈D cgg

}
. (2.20)

Thus, the unit ball of L1 is the convex closure of D ∪ (−D).
If f ∈ L1, then both the OGA and properly chosen RGA will satisfy

‖f − fn‖ ≤ C0|f |L1n
−1/2, n = 1, 2, . . . , (2.21)

as was proved in [42] (see also [29]). The convergence rates for the PGA are more
subtle (see [29]) and its convergence rate on L1 are not completely known. These
results show that L1 ⊂ A1/2 which is quite similar to our characterization of this
approximation class for nonlinear approximation when using a fixed orthonormal
basis.

One unsatisfactory point about (2.21) is that it does not give any information
about convergence rates when f is not in L1. Using interpolation, one can introduce
function classes that guarantee approximation rates O(n−r ) when 0 < r < 1/2
(see [5]). Also, using (2.21), one can prove that for r > 1/2 a sufficient condition
for f to be in Ar (D,H) is that it has an expansion f = ∑

g∈D cgg with (cg) ∈ �p,

p := (r + 1/2)−1. However, this condition is generally not sufficient to ensure the
convergence of the greedy algorithm at the corresponding rate n−r .

Although greedy approximation is formulated in a very general context, any nu-
merical algorithm based on this notion will have to deal with finite dictionaries. The
size of the dictionary will play an important role in the number of computations needed
to execute the algorithm. Greedy approximation remains an active and important area
for numerical computation. A fairly up to date survey of greedy approximation is
found in [56]. We will touch on greedy approximation again in our discussion of the
Sensing Problem and the Learning Problem.

3. Optimality of algorithms

Our goal is to understand what is the optimal performance that we can ask from an
algorithm. Recall that in each of our problems, our task is to approximate a function
u. What differs in these problems is what we know in advance about u and how we
can access additional information about u.

Because of the diversity of problems we are discussing, we shall not give a precise
definition of an algorithm until a topic is discussed in more detail. Generically an
algorithm is a sequence A = (An) of mappings. Here n is the parameter associated
to each of our problems, e.g., it is the number of computations allotted in the compu-
tation problem. The input for the mapping An is different in each of our problems.
For example, in the data fitting problem it is values λj (u), j = 1, . . . , n, that are
given to us. The output of An is an approximation un to the target function u. To
study the performance of the algorithm, we typically consider what happens in this
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approximation as n → ∞. Such a theory will miss out on important but usually very
subtle questions about performance for small n.

We fix the space X and the norm ‖ · ‖ = ‖ · ‖X in which to measure error. Then,
for any u,

E(u,An) := ‖u− un‖, n = 1, 2, . . . , (3.1)

measures how well the algorithm approximates u. It is tempting to define an optimal
algorithm to be a sequence (A∗

n) such that

E(u,A∗
n) ≤ inf

An
E(u,An), u ∈ X, n = 1, 2, . . . , (3.2)

where the infimum is taken over all algorithms An. However, such a definition is
meaningless, since to achieve such a performance the algorithm would typically in-
volve a search which is prohibitive from both a theoretical and numerical perspective.

Here is another important point. An algorithm only sees the given data. In
the Recovery Problem and Sensing Problem, An will only act on the data λj (u),
j = 1, . . . , n. This means that many functions have the same approximation un.
If N is the null space consisting of all functions v such that λj (v) = 0, j = 1, . . . , n,
then all functions u + η, η ∈ N , have the same data and hence un is a common
approximation to all of these functions. Since ‖η‖ can be arbitrarily large, we cannot
say anything about ‖u− un‖ being small without additional information about u.

There are two ways to come to a meaningful notion of optimality which we shall
describe: optimality on classes and instance-optimal. We begin with the first of
these which is often used in statistics, approximation theory and information based
complexity. Consider any compact set K ⊂ X. We define

E(K,An) := sup
u∈K

E(u,An), n = 1, 2, . . . , (3.3)

which measures the worst performance of An on K . We shall say that (A∗
n) is near

optimal on K with constant C = C(K) if

E(K,A∗
n) ≤ C inf

An
E(K,An), n = 1, 2, . . . . (3.4)

If C = 1 we say (A∗
n) is optimal onK . Usually, it is not possible to construct optimal

algorithms, so we shall mainly be concerned with near optimal algorithms, although
the size of the constant C is a relevant issue.

The deficiency of the above notion of optimality is that it depends on the choice of
the class K . An appropriate class for u may not be known to us. Thus, an algorithm
is to be preferred if it is near optimal for a large collection of classes K . We say that
an algorithm A is universal for the collection K , if the bound (3.4) holds for each
K ∈ K where the constant C = C(K) may depend on K .

There are two common ways to describe compact classes in a function space X.
The first is through some uniform smoothness of the elements. For example, the unit
ballK = U(Y ) of a smoothness space Y ofX is a typical way of obtaining a compact
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subset of X. We say that Y is compactly embedded in X if each finite ball in Y is a
compact subset of X.

The classical smoothness spaces are the Sobolev and Besov spaces. The Sobolev
space Ws(Lq) = Ws(Lq(�)), � ⊂ R

d , consists of all functions u which have
smoothness of order s in Lq . In the case s = k is an integer and 1 ≤ q ≤ ∞ this
simply means that u and all its (weak) derivatives are inLq . There are generalizations
of this definition to arbitrary s, q > 0. The Besov spacesBsλ(Lq) are also smoothness
spaces of order s in Lq but they involve another parameter λ which makes subtle
distinctions among these spaces. They are similar to but generally different from the
Sobolev spaces. The Sobolev embedding theorem describes the smoothness spaces
which are embedded in a space X = Lp(�) provided the domain � has sufficient
smoothness (a C1 smooth boundary is more than enough). This embedding theorem
has a simple geometrical interpretation. We identify each space Ws(Lq) (likewise
Bsλ(Lq)) with the point (1/q, s) in the upper right quadrant of R

2. Given a value
p ∈ (0,∞], the line s = d/q − d/p is called the critical line for embedding into
Lp(�). Any Sobolev or Besov space corresponding to a point above this line is
compactly embedded into Lp(�). Any point on or below the line is not compactly
embedded into Lp(�). For example, if s > d/q, then the Sobolev spaceWs(Lq(�))

is compactly embedded into the space C(�) of continuous functions on �.
A second way to describe compact spaces is through approximation. For example,

suppose that Xn ⊂ X, n = 1, 2, . . . , is a sequence of linear spaces of dimension n.
Then each of the approximation classes Ar , r > 0, describes compact subsets of X:
any finite ball in Ar (with the norm defined by (2.7)) gives a compact subset ofX. In
the same way, the approximation classes Ar , r > 0, for standard methods of nonlinear
approximation also give compact subsets of X.

Given the wide range of compact sets in X, it would be too much to ask that an
algorithm be universal for the collection of all compact subsets of X. However, uni-
versality for large families would be reasonable. For example, if our approximation
takes place inX = Lp(�), we could ask that the algorithm be universal for the collec-
tion K of all finite balls in all the Sobolev and Besov spaces with smoothness index
0 < s ≤ S that compactly embed into X. Here S is arbitrary but fixed. This would
be a reasonable goal for an algorithm. There are approximation procedures that have
this property. Namely, the two nonlinear methods (i) n-term wavelet approximation
restricted to trees, and (ii) adaptive piecewise polynomial approximation described in
the following section have this property.

In many settings, it is more comfortable to consider optimality over classes de-
scribed by approximation. Suppose that we have some approximation procedure
(linear or nonlinear) in hand. Then, the set K := {B(Ar ) : 0 < r ≤ R} of all
finite balls of the Ar , is a collection of compact sets and we might ask the algorithm
to be universal on this collection. Notice that this collection depends very much on
the given approximation procedure, and in a sense the choice of this approximation
procedure is steering the form of the algorithms we are considering. Since most often,
algorithms are designed on the basis of some approximation procedure, finite balls in
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approximation classes are natural compact sets to consider.
In the setting of a specific approximation process, we can carry the notion of

optimality even further. IfEn(u) denotes the error in approximating u by the approx-
imation procedure, then we say that the algorithm A = (An) is instance-optimal with
constant C > 0 if

E(u,An) ≤ CEn(u) for all u ∈ X. (3.5)

In other words, the algorithm, in spite of having only partial knowledge about u,
approximates, up to a constant, as well as the best approximation. Instance-optimal
is a stronger notion than universality on approximation classes. Consider for example
n term approximation from a dictionary D . Then En(u) on the right side of (3.5) is
the error σn(u) of n term approximation. Knowing that (3.5) is valid, we conclude
immediately that the algorithm is universal on the class of approximation spaces Ar ,
r > 0. The choice of the dictionary plays a critical role in defining these notions of
optimality.

In summary, we have two possible ways to evaluate the performance of an algo-
rithm. The first is to test its behavior over classes which leads to the notion of optimal,
near optimal, and universal. If we consider algorithms based on a specific approxi-
mation process, then we can ask for the finer description of optimality described as
instance-optimal.

4. Two important examples

Before returning to our main subject of optimal computation, it will be useful to
have some concrete approximation processes in hand. We consider two examples of
approximation systems that are used frequently in computation and serve to illustrate
some basic principles.

4.1. Wavelet bases. A univariate wavelet is a function ψ ∈ L2(R) whose shifted
dilates

ψj,k(x) := 2j/2ψ(2j x − k), j, k ∈ Z, (4.1)

are a basis forL2(R). In the case that the functions (4.1) form a complete orthonormal
system we say that ψ is an orthogonal wavelet. The simplest example is the Haar
orthogonal wavelet

H(x) := χ[0,1/2) − χ[1/2,1) (4.2)

where χA the indicator function of a setA. Although the Haar function was prominent
in harmonic analysis and probability, it was not heavily used in computation because
the function H is not very smooth and also the Haar system has limited approxima-
tion capacity. It was not until the late 1980s that it was discovered (Meyer [50] and
Daubechies [26]) that there are many wavelet functionsψ and they can be constructed
to meet most numerical needs. The most popular wavelets are the compactly sup-
ported orthogonal wavelets of Daubechies [26] and the biorthogonal wavelet of Cohen
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and Daubechies [22]. They can be constructed from the framework of multiresolution
analysis as described by Mallat [48]. Wavelet bases are easily constructed for R

d and
more generally for domains � ⊂ R

d . There are several books which give far reach-
ing discussions of wavelet decompositions (see e.g. [51] for wavelets and harmonic
analysis, [27] for wavelet constructions, [49] for wavelets in signal processing, and
[16] for wavelets in numerical PDEs.).

We shall denote a wavelet basis by {ψλ}λ∈� . In the case of R
d or domains� ⊂ R

d ,
the index λ depends on three parameters (j, k, e). The integer j gives the dyadic level
of the wavelet as in (4.1). The multi-integer k = (k1, . . . , kd) locates the wavelet in
space (it is associated to the point 2−j k). The index e corresponds to a vertex of the
unit cube [0, 1]d and describes the gender of the wavelet. We can also think of the
wavelets as indexed on the pairs I, e where I = 2−j (k+[0, 1]d) is a dyadic cube. In
this way, the wavelets are associated to a tree of dyadic cubes. This tree structure is
important in computation.

We will always suppose that the wavelets ψλ are compactly supported. Each
locally integrable function has a wavelet decomposition

f =
∑
λ∈�

fλψλ =
∑
(I,e)

fI.eψI,e. (4.3)

The wavelet system is an unconditional basis for Lp and many function spaces such
as the Sobolev and Besov spaces.

Let � be a domain in R
d and {ψλ}λ∈� be an orthogonal (or more generally a

biorthogonal) wavelet system for L2(�). The nonlinear spaces �n and their corre-
sponding approximation spaces Ar ((ψλ), L2(�)) were already introduced in §2.2.
These spaces are closely related to classical smoothness spaces. Consider for example
the space Ar which as we know is identical with the space of functions whose wavelet
coefficients are weak �p with p = (r + 1/2)−1. While this is not a Besov space, it
is closely related to the space Brdp (Lp) which is contained in Ar . This latter Besov
space is characterized by saying that the wavelet coefficients are in �p.

General n-term wavelet approximation cannot be used directly in computational
algorithms because the largest wavelet coefficients could appear at any scale and it
is impossible to implement a search over all dyadic scales. There are two natural
ways to modify n-term approximation to make it numerically realizable. The first is
to simply restrict n-term approximation to dyadic levels ≤ a log n where a > 0 is
a fixed parameter to be chosen depending on the problem at hand. Notice that the
number of wavelets living at these dyadic levels does not exceed C2ad log n = Cnad .
The larger the choice of a then the more intensive will be the computation.

The second way to numerically implement the ideas of n-term approximation in
the wavelet setting is to take advantage of the tree structure of wavelet decompositions.
Given a dyadic cube I , its children are the 2d dyadic subcubes J ⊂ I of measure
2−d |I | and I is called the parent of these children. We say that T is a tree of dyadic
cubes if whenever J ∈ T with |J | < 1, then its parent is also in T . We define Tn to be
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the collection of all trees of cardinality ≤ n. We define �tn as the set of all functions

S =
∑
I∈T

∑
e∈EI

ceIψ
e
I , #T ≤ n, (4.4)

where EI = E′ if |I | = 1 and EI = E otherwise. Replacing�n by�tn in (2.9) leads
to σ tn and the approximation classes Ar ((�tn)). Tree approximation is only slightly
more restrictive than n-term approximation. For example, if Bsλ(Lp) is a Besov space
that compactly embeds into Lq then any function in this space is in As/d((�tn), Lq).
This is the same approximation rate as is guaranteed by general n-term approximation
for this class.

4.2. Adaptive partitioning. Much of numerical PDEs is built on approximation by
piecewise polynomials on partitions of the domain �. A partition � of � is a finite
collection of setsCi (called cells), i = 1, . . . , N , whose interiors are pairwise disjoint
and union to �. We have already met the partitions Dj of the domain � = [0, 1]d
into dyadic cubes.

The typical way of generating partitions is through a refinement rule which tells
how a cell is to be subdivided. In the dyadic subdivision case, the cells are dyadic
cubes and if a cell I in the partition is subdivided then it is replaced by the set C(I )
of its children.

There are many possible refinement strategies. For simplicity, we discuss only
the additional case when � is a polygonal domain in R

2 and the cells are triangles.
We begin with an initial triangulation �0. If any triangle � is to be refined then its
children consist of a ≥ 2 triangles which form a partition of�. We shall assume that
the refinement rule is the same for each triangle and thus a is a fixed constant. The
refinement rule induces an infinite tree T ∗ (called the master tree) whose nodes are
the triangles that can arise through the refinement process.

The refinement level j of a node of T ∗ is the smallest number of refinements
(starting from�0) to create this node. We denote by Tj the proper subtree consisting
of all nodes with level ≤ j and we denote by �j the partition corresponding to Tj
which is simply all� ∈ Tj of refinement level j , i.e., the leaves of Tj . The partitions
�j , j = 0, 1, . . . , we obtain in this way are called uniform partitions. The cardinality
#(�j ) of �j is aj#(�0).

Another way of generating partitions is by refining some but not all cells. One
begins with the cells in �0 and decides whether to refine � ∈ �0 (i.e. subdivide �).
If � is subdivided then it is removed from the partition and replaced by its children.
Continuing in this way, we obtain finite partitions which are not necessarily uniform.
They may have finer level of refinements in some regions than in others. Each such
partition � can be identified with a finite subtree T = T (�) of the master tree T ∗.
The cardinalities of � and T (�) are comparable.

Given a partition �, let us denote by Sk(�) the space of piecewise polynomials
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of degree k that are subordinate to �. Each S ∈ Sk�) can be written

S =
∑
I∈�

PIχI , (4.5)

where PI is a polynomial of degree ≤ k. The functions in Sk(�) are not continuous.
In many applications, one is interested in subspaces of Sk(�) obtained by imposing
some global smoothness conditions.

We fix k ≥ 0 and some norm ‖ · ‖ = ‖ · ‖X where X is an Lp or Sobolev space.
We consider two types of approximation. The first corresponds to uniform refinement
and gives the error

En(u) := En,k(u) := inf
S∈Sk(�n)

‖u− S‖, n = 0, 1, . . . . (4.6)

This is a form of linear approximation.
To describe an alternative to linear approximation, we let Pn denote the set of all

partitions of size ≤ n obtained by using successive refinements. Each partition in Pn
corresponds to a finite tree T contained in the master tree. We define�n,k as the union
of all the spaces Sk(�), � ∈ Pn, and the approximation error σn(u) := σn,k(u) as
usual (see (2.9)). This is a form of nonlinear approximation. Its advantage over fixed
partitions is that given u, we have the possibility to refine the partition only where u
is not smooth and keep it coarse where u is smooth. This means we should be able to
meet a given approximation tolerance with a fewer number of cells in the partition.
This is reflected in the following results. For either of the two refinement settings
we are describing, approximation from�n,k is very similar to wavelet approximation
on trees. For example, if the approximation takes place in an Lq space, then any
Besov or Sobolev classes of smoothness order s that compactly embeds into Lq will
be contained in As/d((�n,k), Lq) (see [8] and [32]).

In numerical implementations of nonlinear partitioning, we need a way to decide
when to refine a cell or not. An adaptive algorithm provides such a strategy typically
by using local error estimators that monitor the error e(I ) between u and the current
approximation on a given cell I . Constructing good error estimators in the given
numerical setting is usually the main challenge in adaptive approximation.

5. The Sensing Problem

The Sensing Problem is a good illustration of the concepts of optimality that we
have introduced. We are given a budget of n questions we can ask about u. These
questions are required to take the form of asking for the values λ1(u), . . . , λn(u) of
linear functionalsλj , j = 1, . . . , n. We want to choose these functionals to capture the
most information about u in the sense that from this information we can approximate u
well. The sensing problem is most prominent in signal processing. Analog signals
are time dependent functions. A sensor might sample the function through the linear
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functionals λj , j = 1, . . . , n, and record quantizations of these samples for later
processing.

We begin the discussion by assuming that the functions u we wish to sense come
from a space X = Lp(�) with � ⊂ R

d and 1 ≤ p ≤ ∞ and that we will measure
the error of approximation in the norm ‖ · ‖ := ‖ · ‖X for this space. An algorithm
A = (An) takes the following form. For each n = 1, 2, . . . , we have an encoder �n
which assigns to u ∈ X the vector

�n(u) := (λn1(u), . . . , λ
n
n(u)) ∈ R

n, (5.1)

where theλnj , j = 1, . . . , n, are fixed linear functionals onX. The mapping�n : X →
R
n is linear and the vector �n(u) is the information the sensor will extract about u.

Note that we allow these questions to change with n. Another possibility is to require
that these questions are progressive which means that for n + 1 we simply add one
additional question to our current set. We will also need a decoder�n which says how
to construct an approximation to u from this given data. Thus,�n will be a (possibly
nonlinear) mapping from R

n back intoX. Our approximation to u then takes the form

An(u) := �n(�n(u)), n = 1, 2, . . . . (5.2)

Given a vector y ∈ R
n, the set of functions F (y) = {u ∈ X : �n(u) = y} all

have the same sensing information and hence will all share the same approximation
An(u) = �n(y). If u0 is any element of F (y), then

F (y) = u0 + N , (5.3)

where N := Nn := F (0) is the null space of �n. The structure of this null space is
key to obtaining meaningful results.

We have emphasized that in comparing algorithms, we have two possible avenues
to take. The one was optimality over classes of functions, the other was instance-
optimal. If K is a compact subset of X and �n is an encoder then

�̄n(y) := Argmin
ū∈X

sup
u∈F (y)∩K

‖u− ū‖ (5.4)

is an optimal decoder for�n onK . Notice that �̄n is not a practical decoder, its only
purpose is to give a benchmark on how well �n is performing. This also leads to the
optimal algorithm on the class K which uses the encoder

�∗
n := Argmin

�n

sup
u∈K

‖u− �̄n(�n(u))‖ (5.5)

together with the optimal decoder �̄n associated to �∗
n and gives the optimal error

E∗
n(K) = sup

u∈K
‖u− �̄N(�

∗
n(u))‖. (5.6)
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We have used the asterisk to distinguish E∗
n from the linear approximation error En.

E∗
n(K) is essentially related to the Gelfand n-width dn(K) of K (see [47], [54]

for the definition and properties of Gelfand widths). For example, if K = −K and
K + K ⊂ C0K , then dn(K) ≤ E∗

n(K) ≤ C0d
n(K). Gelfand widths of classical

classes of functions such as unit balls of Besov and Sobolev spaces are known. The
deepest results in this field are due to Kashin [44] who used probabilistic methods
to find optimal sensing functionals. In Kashin’s constructions, the problems are
discretized and the discrete problems are solved using certain random matrices. We
shall return to these ideas in a moment when we turn to discrete compressed sensing.

The usual models for signals are band-limited functions. A typical function class
consists of all functions u ∈ L2 whose Fourier transform vanishes outside of some
interval [−Aπ,Aπ] with A > 0 fixed. The famous Shannon sampling theorem says
that sampling the signal u at the points n/A contains enough information to exactly
recover u. The Shannon theory is the starting point for many Analog to Digital
encoders. However, these encoders are severely taxed when A is large. In this case,
one would like to make much fewer measurements. Since the Shannon sampling is
optimal for band-limited signals, improved performance will require the introduction
of new (realistic) model classes for signals. One model in this direction, that we will
utilize, is to assume that the signal can be approximated well using n terms of some
specified dictionary D of waveforms. For example, we can assume that u is in one
of the approximation classes Ar ((�n),X) for n-term approximation by the elements
of D . We will consider the simplest model for this problem where D = B is an
orthogonal basis B. When this basis is the wavelet basis then we have seen that Ar is
related to Besov smoothness, so the case of classical smoothness spaces is included
in these models.

The obvious way of approximating functions in these classes is to retain only the
largest terms in the basis expansion of u. However, this ostensibly requires examining
all of these coefficients or in other words, using as samples all of the expansion
coefficients. Later we would discard most or many of these coefficients to obtain an
efficient decomposition of u using only a few terms. A central question in the Sensing
Problem is whether one could avoid taking such a large number of sensing samples
and still retain the ability to approximate u well. Of course, we have to deal with the
fact that we do not know which of these coefficients will be large. So the information
will have to, in some sense, tell us both the position of the large coefficients of u and
their numerical value as well.

5.1. Discrete compressed sensing. To numerically treat the sensing problem, we
have to make it finite – we cannot deal with infinite expansions or computations with
infinite length vectors. Discretization to finite dimensional problems is also used
to prove results for function spaces. We will therefore restrict our attention to the
following discrete sensing problem. We assume our signal is a vector x in R

N whereN
is large. We are given a budget of n linear measurements of x (the application of n
linear functionals to x) and we ask how well we can recover x from this information.
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The previously mentioned results of Kashin [44] show that using n randomly
generated functionals will carry almost as much information as knowing the positions
and values of the n largest coordinates of x. However, Kashin’s results were never
implemented into practical algorithms. It was not until the exciting results of Candès,
Romberg, and Tao [12] applied to tomography that the door was opened to view the
power of random sampling. This was followed by the fundamental papers [13, 15, 34]
which addressed how to build practical encoder/decoders and proved the first results
on their provable performance. There was a related development in the computer
science community which used random measurements to sketch large data sets which
we shall say a little more about later.

The discrete sensing problem can be described by an n × N matrix �. Row i

of � corresponds to a vector that represents the linear functional λi . Thus, sensing
with these linear functionals is the same as evaluating�(x) = y. The vector y which
lives in the lower dimensional space R

n represents the information we have about x.
We are interested in how well we can recover x from this information. As we have
noted, the exact way we recover x (or an approximation to x) from the information y
is a significant component of the problem. A decoder for � is a (possibly nonlinear)
mapping � from R

n to R
N . Given y = �(x), then �(y) is our approximation to x.

In analogy with the continuous case, we can use the �p norms, defined in (2.3),
to measure error. Then, the error associated to a particular algorithm An built on a
matrix � and a particular decoder � is given by

E(x,An)p := E(x,�,�)p := ‖x −�(�(x))‖�p . (5.7)

The approximation on a class K of signals is defined as in (3.3). Let us denote by
E∗
n(K, �p) the optimal error onK achievable by any sensing algorithm of order n (we

are suppressing the dependence onN). In keeping with the main theme of this paper,
let us mention the types of results we could ask of such a sensing/decoding strategy.
We denote by �k the space of all k-sparse vectors in R

N , i.e., vectors with support
≤ k. For any sequence space X, we denote by σk(x)X the error in approximating x
by the elements of �k in the norm ‖ · ‖X.

I. Exact reconstruction of sparse signals. Given k, we could ask that

�(�(x)) = x, x ∈ �k. (5.8)

We would measure the effectiveness of the algorithm by the largest value of k (de-
pending on n and N) for which (5.8) is true.

II. Performance on classes K . We have introduced optimality and near optimality of
an algorithm on a classK in §3. We will restrict our attention to the following setsK:
the unit ball of the approximation space Ar ((�k), �p); the unit ball of spaces �τ
and weak �τ . We recall that the norm on Ar ((�k), �p) is equivalent to the weak �τ
norm, 1/τ = r + 1/p. As we have noted earlier, the optimal performance of sensing
algorithms is determined by the Gelfand width of K . These widths are known for all
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of the above classes (see Chapter 14 of [47], especially (5.1) and Notes 10.1 of that
chapter). Since, the results are extensive, we mention only one result, for the case
p = 2, which will orient the reader. For the unit ball U(�1) of �1 in R

N , we have

C1 min(

√
log(eN/n)

n
, 1) ≤ E∗

n(U(�1), �2) ≤ C2

√
log(eN/n)

n
, (5.9)

with absolute constants C1, C2 > 0. This is the result of Kashin improved (in the
logarithm) by Gluskin. The appearance of the logarithm in (5.9) is the (small) price
we pay in doing compressed sensing instead of sampling all coefficients and taking
the n largest. We can use theoretical results like (5.9) to gauge the performance of
any proposed algorithm.

III. Instance-optimal. Instead of asking for optimal performance on classes, we
could ask that the sensing/decoding performs as well as k-term approximation on
each x ∈ R

N . If ‖ · ‖X is a norm on R
N , we say the sensing encoder/decoder pair

�/� is instance-optimal of order k if

E(x,�,�)X ≤ C0σk(x)X, x ∈ R
N, (5.10)

holds for a constant independent ofN and n. GivenN and n, we want the largest value
of k for which (5.10) holds. Since we are dealing with finite-dimensional spaces, the
role of the constant C0 is important.

In each case, some relevant issues are: (i) what are the properties of a matrix �
that guarantee optimal or near optimal performance, (ii) which decoders work with�,
(iii) what is the computational complexity of the decoding - how many computations
are necessary to compute �(y) for a given y?

In [34], Donoho gave an algorithm which is optimal in the sense of II for p = 2
and for the unit ball of �τ , τ ≤ 1 (hence it is universal for these sets). His approach
had three main features. The first was to show that if a matrix � has three properties
(called CS1-3), then � will be an optimal sensor for these classes. Secondly, he
showed through probabilistic arguments that such matrices� exist. Finally, he showed
that �1 minimization provides a near-optimal decoder for these classes. Independently
Candès and Tao ([14], [15]) developed a similar theory. One of the advantages of
their approach is that it is sufficient for� to satisfy only a version of the CS1 property
and yet they obtain the same and in some cases improved results.

To describe the Candès–Tao results, we introduce the following notation. Given
an n×N matrix�, and any set T ⊂ {1, . . . , N}, we denote by�T the n×#(T )matrix
formed from these columns of�. We also use similar notation for the restriction xT of
a vector from R

N to T . The matrix � is said to have the restricted isometry property
for k if there is a 0 < δk < 1 such that

(1 − δk)‖xT ‖�2 ≤ ‖�T xT ‖�2 ≤ (1 + δk)‖xT ‖�2 (5.11)

holds for all T of cardinality k.
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Given the matrix �, and any x ∈ R
N , the vector y = �(x) represents our

information about x. As we have noted before, we need a decoding strategy for y.
Both Candès–Romberg–Tao and Donoho suggest taking the element x̄ that minimizes
the �1 norm over all vectors which share the data y:

x̄ := �(y) := Argmin
z∈F (y)

‖z‖�1 . (5.12)

Numerically, the decoding can be performed through linear programming. From our
perspective, the main question is how well this encoding/decoding approximates x.
The main result of [13] is that if

δ3k + 3δ4k < 2, (5.13)

then

‖x − x̄‖�2 ≤ C
σk(x)�1√

k
. (5.14)

Under the same conditions on� and k, the following variant of (5.14) was shown
in [18]

‖x − x̄‖�1 ≤ Cσk(x)�1 . (5.15)

By interpolation inequalities, we obtain for 1 ≤ p ≤ 2

‖x − x̄‖�p ≤ C
σk(x)�1

k1−1/p . (5.16)

In all these inequalities, we can take C as an absolute constant once we have strict
inequality in (5.13).

Before interpreting these results, let us first address the question of whether we
have matrices � that satisfy (5.13). This is where randomness enters the picture.
Consider ann×N matrix�whose entries are independent realizations of the Gaussian
distribution with mean 0 and variance 1. Then, with high probability, the matrix �
will satisfy (5.13) for any k ≤ C0n/ log(N/n). Similar results hold if the Gaussian
distribution is replaced by a Bernoulli distribution taking the values ±1 with equal
probability [2]. Here we have returned to Kashin who used such matrices in his
solution of the n-width problems. Thus, there are many matrices that satisfy (5.13)
and any of these can be used as sensing matrices. Unfortunately, this probabilistic
formulation does not give us a vehicle for putting our hands on one with absolute
certainty. This leads to the very intriguing question of concrete constructions of good
sensing matrices.

Let us now return to our three formulations of optimality.

Exact reproduction of k sparse signals (Case I). If we have a matrix� that satisfies
(5.11) and (5.13) in hand then the above encoding/decoding strategy gives an optimal
solution to the Sensing Problem for the class of k-sparse signals: any signal with
support k will be exactly captured by �(�(x)). Indeed, in this case σk(x)�1 = 0
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and therefore this follows from (5.14). Thus, for any k ≤ Cn log(N/n), there is a
matrix � and a decoder � given by (5.12) that is optimal for the class of k sparse
signals under this restriction on k. However, in this case the range of k is not optimal
(the logarithm can be eliminated) as can easily be seen and was pointed out in [3].
For any k, we can create a matrix � of size 2k × N that has the exact reproduction
property of k sparse signals. For example, for k = 1, any two linear functionals∑N
i=1 q

ixi with two distinct numbers q will have enough information to recover a
one-sparse signal exactly.

The key to proving optimality of k-sparse signals is to prove that the null space N
of� has no nonzero vector with support ≤ 2k. This is an algebraic property of�. Any
matrix with this property will solve the optimality for k-sparse vectors. Such matrices
are readily seen to exist. For any k andN ≥ 2k, we can find a set	N ofN vectors in
R

2k such that any 2k of them are linearly independent. The matrix� whose columns
are the vectors in 	N will have the exact reproduction property. There are many
examples of such sets 	N . For example, if x1 < x2 < · · · < xN are arbitrary real
numbers, then we can take the vectors vj ∈ R

n whose entries are xi−1
j , i = 1, . . . , n,

which gives a van der Monde matrix. Such matrices are unfortunately very unstable
in computation and cannot be used for the other sensing problems.

Optimality for classes K (Case II). To go further and discuss what happens in the
case that x is not k-sparse, we assume first that p = 2, i.e., we measure error in �2.
From our discussion of the existence of matrices � that satisfy (5.11),(5.13), we see
that we can take k = Cn/ log(N/n) in (5.14). Since σk(x)�1 ≤ ‖x‖�1 , we obtain
optimality on the class U(�1) (see (5.9)). The inequality (5.16) can be used to obtain
similar results for approximation in �p.

Instance-optimal (Case III). If ‖·‖X is any norm on R
N and� is an n×N matrix, we

say� has the null space property (NSP) forX of order k if for each η ∈ N = N (�),

‖η‖X ≤ C0‖ηT c‖X, #(T ) = k, (5.17)

where T c is the complement of T in {1, . . . , N} and whereC0 ≥ 1 is a fixed constant.
A sufficient condition for � to have a decoder � such that the pair �/� is instance-
optimal of order k is that N have the NSP forX of order 2k and a necessary condition
is that N have the NSP for X of order k (see [18]).

In view of (5.15), the probabilistic constructions give instance-optimal sensing for
X = �1 and k ≤ Cn/ log(N/n). On the other hand, it can be shown (see [18]) that
any matrix which has the null space property for k = 1 in �2 will necessarily have
n ≥ N/C2

0 rows. This means that in order to have instance-optimal for one sparse
vectors in �2 requires the matrix � to have O(N) rows. Therefore, instance-optimal
is not a viable possibility for �2. For �p, 1 < p < 2, there are intermediate results
where the conditions on k relative to N, n are less severe (see [18]).

One final note about the discrete compressed sensing problem. We have taken as
our signal classes the approximation spaces Ar which are defined by k-term approx-
imation using the canonical basis for R

n. In actuality the probabilistic construction
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of sensing matrices works for sparsity measured by approximation using much more
general bases. All we need is that the matrix representation of � with respect to the
new basis also have properties (5.11), (5.13). Thus, the choice of a random sensing
matrix � will encode sparsity simultaneously in many (most) bases. However, the
decoding has to be done relative to the chosen basis. This is sometimes referred to
as a universal property of the randomly constructed matrices � (see [2] for a more
precise discussion of universality).

5.2. Computational issues. Notice that in compressed sensing, we have reduced
greatly the number of samples nwe need from the signal when compared with thresh-
olding techniques. However, this was at the cost of severely complicating the decoding
operator. The decoding by �1 minimization generally requires polynomial in N ma-
chine operations which may be prohibitive in some settings when N is large. Issues
of this type are a major concern in Theoretical Computer Science (TCE) and some
of the work in TCE relates to the sensing problem. For example, there has been a
fairly long standing program in TCE , going back to the seminal work of Alon, Matias
and Szegedy [1], to efficiently sketch large data sets (see also Henzinger, Raghavan
and Rajaopalan [41]). The emphasis has been to treat streaming data with efficient
computation measured not only by the number of computations but also the space
required in algorithms. Streaming algorithms call for different encoders. The sensing
matrix � needs to be constructed in a small amount of time. So their constructions
typically use less randomness and sometimes are possible using coding techniques
such Kerdoch codes or, more generally, Reed–Muller codes.

In some settings, the flavor of the results is also different. Rather than construct
one sensing matrix �, one deals with a stochastic family �(ω) of n × N matrices
with ω taking values in some probability space�. An algorithm proceeds as follows.
Given x, one takes a draw of an ω ∈ � according to the probability distribution on�
(this draw is made independent of any knowledge of x). The information recorded
aboutx is then�(ω)x. There is a decoder�(ω)which when applied to the information
�(ω)x produces the approximation x(ω) := �(ω)�(ω).

Changing the problem by demanding only good approximation in probability
rather than with certainty allows for much improvement in numerical performance
of decoding in the algorithm (see [36], [37], [38]). For example, in some construc-
tions the decoding can be done using greedy algorithms with P(n logN) operations
where P is a polynomial. This is a distinct advantage over decoding by �1 mini-
mization when n is small and N is large. Also, now the spectrum of positive results
also improves. For example, when calling for deterministic bounds on the error, we
saw that instance-optimal in �2 is not possible (even for one-term sparsity) without
requiring n ≥ c0N . In this new setting, we can obtain instance-optimal performance
for k with high probability even in �2 (see [18] and [24]).
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6. The learning problem

This problem differs from the Data Fitting Problem in that our measurements are
noisy. We shall assume that X = [0, 1]d (for simplicity) and that Y ⊂ [−M,M].
This assumption implies that fρ also takes values in [−M,M]. The measure ρ factors
as the product

dρ(x, y) = dρX(x, y)dρ(y|x) (6.1)

of the marginal ρX and the conditional ρ(y|x) measures.
Let Z := X × Y . Given the data z ∈ Zn, the problem is to find a good ap-

proximation fz to fρ . We shall call a mapping En that associates to each z ∈ Zn a
function fz defined onX to be an estimator. By an algorithm, we shall mean a family
of estimators {En}∞n=1. To evaluate the performance of estimators or algorithms, we
must first decide how to measure the error in the approximation of fρ by fz. The
typical candidates to measure error are the Lp(X, ρX) norms:

‖g‖Lp(X,ρX) :=
⎧⎨
⎩

(∫
X

|g(x)|pdρX
)1/p

, 1 ≤ p < ∞,

esssup
x∈X

|g(x)|, p = ∞.
(6.2)

Other standard choices in the statistical literature correspond to taking measures other
than ρX in the Lp norm, for instance the Lebesgue measure. We shall limit our
discussion to the L2(X, ρX) norm which we shall simply denote by ‖ · ‖. This is
the most common and natural measurement for the error. Note that since we do not
know ρ, we do not know this norm precisely. However, this will not prevent us from
obtaining estimates relative to this norm.

The error ‖fz−fρ‖ depends on z and therefore has a stochastic nature. As a result,
it is generally not possible to say anything about this error for a fixed z. Instead, we
can look at behavior in probability as measured by

ρn{z : ‖fρ − fz‖ > η}, η > 0, (6.3)

or in expectation

Eρn(‖fρ − fz‖) =
∫
Zn

‖fρ − fz‖ dρn, (6.4)

where the expectation is taken over all realizations z obtained for a fixed n and ρn is
the n-fold tensor product of ρ.

We can define optimal, near optimal, and universal algorithms as in §3. The starting
point of course are the compact classesK ⊂ L2(X, ρX). For each such compact setK ,
we have the set M(K) of all Borel measures ρ on Z such that fρ ∈ K . There are two
notions depending on whether we measure performance in expectation or probability.
We enter into a competition over all estimators En : z → fz and define

en(K) := inf
En

sup
ρ∈M(K)

Eρn(‖fρ − fz‖L2(X,ρX)), (6.5)
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and
ACn(K, η) := inf

En

sup
ρ∈M(K)

ρn{z : ‖fρ − fz‖ > η}. (6.6)

As emphasized by Cucker and Smale [25] estimates in probability are to be preferred
since they automatically imply estimates in expectation (by integrating with respect
to dρn). However, for the sake of simplicity of this presentation, most of our remarks
will center around estimates in expectation.

Since we do not know the measure ρX, the compact subsets K of L2(X, ρX) are
also not completely known to us. One way around this is to consider only compact
subsets of C(X) since these will automatically be compact in L2(X, ρX). Thus,
classical spaces such as Sobolev and Besov classes which embed compactly into
C(X) are candidates for our analysis. A second, more robust, approach, is to consider
the compact sets defined by an approximation process as described in §3.

The problem of understanding optimal performance on a compact set K ⊂
L2(X, ρX) takes a different turn from the analysis in our other estimation problems
because the stochastic nature of the problem will prevent us from approximating fρ to
accuracy comparable to best approximation on classes. This means that understanding
optimality requires the establishment of both lower and upper bounds on convergence
rates. There are standard techniques in statistics based on Kuhlbach–Leibler informa-
tion and Fano inequalities for establishing such lower bounds. In [28] a lower bound
for the performance of an algorithm onK was established using a slight modification
of Kolmogorov entropy. This result can be used to show that whenever K is a finite
ball in a classical Besov or Sobolev class of smoothness order s which compactly
embed into C(X), then the optimal performance attainable by any algorithm is

en(K) ≥ c(K)n− s
2s+d , n = 1, 2, . . . . (6.7)

An algorithm (En) is near optimal in expectation on the class K if for data z of
size n, the functions fz produced by the estimator En satisfy

Eρn(‖fρ − fz‖) ≤ C(K)en(K), (6.8)

whenever fρ ∈ K . It is often the case that estimation algorithms may miss near
optimal performance because of a log n factor. We shall call such algorithms quasi-
optimal.

There are various techniques for establishing upper bounds comparable to the best
lower bounds. On a very theoretical level, there are the results of Birgé and Massart
[10] which use ε nets for Kolmogorov entropy to establish upper bounds. While these
results do not lead to practical algorithms, they do show that optimal performance is
possible. Practical algorithms are constructed based on specific methods of linear or
nonlinear approximation. The book [40] gives an excellent accounting of the state
of the art in this regard (see Theorems 11.3 and 13.2). Let us point out the general
approach and indicate some of the nuances that arise.
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Suppose that we have chosen a sequence (�m) of spaces �m (linear or nonlinear
of dimension m) to be used for the approximation of fρ from our given data z. How
should we define our approximation? Since all that we have available to us is the
data z, the natural choice for an approximation from �m is the minimizer of the
empirical risk

fz,�m := Argmin
f∈�m

Ez(f ), with Ez(f ) := 1

n

n∑
j=1

(yj − f (xj ))
2. (6.9)

In other words, fz,�m is the best approximation to (yj )nj=1 from �m in the empirical
norm

‖g‖2
z := 1

n

n∑
j=1

|g(xj )|2. (6.10)

A key issue is how should we choose the dimension m. Choosing m too large
results in fitting the noise (to be avoided) while choosing m too small reduces the
approximation effectiveness. If we knew that fρ was in the approximation class

As((�m), L2(X, ρX)) then a choice m ≈ (
n

log n

) 1
2s+1 would result in an algorithm

that is quasi-optimal on the class. However, we do not know s and so we need a
method to get around this. The common approach is what is called model selection.

Model selection automatically chooses a good value of m (depending on z) by
introducing a penalty term. For each m = 1, 2, . . . , n, we have the corresponding
function fz,�m defined by (6.9) and the empirical error

Em,z := 1

n

n∑
j=1

(yj − fz,�m(xj ))
2. (6.11)

Notice thatEm,z is a computable quantity. In complexity regularization, one typically
chooses a value of m by

m∗ := m∗(z) := Argmin
1≤m≤n

[
Em,z + κm log n

n

]
, (6.12)

with the parameter κ to be chosen (it will govern the range of s that is allowed). Then,
one defines the estimator

f̂z := fz,�m∗ . (6.13)

Here is an important remark. One does not use f̂z directly as the estimator of fρ
since it is difficult to give good estimates for its performance. The main difficulty
is that this function may be large even though we know that |fρ | ≤ M . Given this
knowledge about fρ , it makes sense to post-truncate f̂z and this turns out to be crucial
in practice. For this, we define the truncation operator

TM(x) := min(|x|,M) sign(x) (6.14)
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for any real number x and define

fz := TM(f̂z) (6.15)

as our estimator to fρ .
One can show that under quite general conditions, the estimator (6.15) is quasi-

optimal on the approximation classes As((�m), L2(X, ρX)). The question arises as
to which approximation process (�m) should be employed. We mention some of the
main issues in making this choice. First note that each approximation scheme has its
own approximation classes. Without any additional knowledge about fρ there is from
the viewpoint of approximation rates no obvious preference of one approximation
process over another except that nonlinear methods are preferable to linear methods
since the resulting approximation classes for nonlinear methods are larger.

A major issue, especially in implementing nonlinear methods, is computational
cost. The larger the nonlinear process (e.g. the larger the dictionary in n-term approx-
imation), then the more computation needed for minimization in the model selection
(6.12). This factor is one of the major concerns in choosing the approximation scheme.
It is especially critical for high space dimension d. We mention a couple of methods
that can address these computational issues and relate to the methods of approximation
introduced in this lecture.

Suppose we use a dictionary D of size na and employ model selection. This
would require examining all m dimensional subspaces formed by elements of the
dictionary for eachm = 1, 2, . . . , n. While the number of computations can possibly
be reduced by using the fact that the data size is n, it will still involve solving O(2n)
such least squares problems. This computation can be reduced considerably by using
greedy algorithms. Through such an algorithm, we can find, with the evaluation
of O(na+1) inner products, the greedy sequence v1, . . . , vn of the dictionary that
provides near optimal empirical approximation with respect to the approximation
classes described in our discussion of greedy algorithms (see [5]). We can then do
model selection over the n subspaces Vm := span{v1, . . . , vm},m = 1, . . . , n, to find
the approximation fz. Thus, the model selection is done over n, rather than O(2n),
subspaces, after the implementation of the greedy algorithm. The price we pay for
this increased efficiency is that the approximation classes for greedy algorithms are
in general smaller than those for m-term approximation. This means that in general
we may be losing approximation efficiency.

Another setting in which a model selection based on n-term approximation can
be improved is in the use of adaptive approximation as described in §4. Here, one
takes advantage of the tree structure of such adaptive methods. For a given data
set z of size n, one associates to each node of the master tree T ∗ the empirical
least squares error on the cell associated to the node. There are fast algorithms
known as CART algorithms (see [33]) for assimilating the local errors and pruning the
master tree to implement model selection. Another alternative put forward in [6] is to
utilize empirical thresholding in a very similar fashion to wavelet tree approximation.
Another advantage of adaptive algorithms is that they can be implemented on-line.
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Adding one or several new data points does not require re-solving the entire empirical
minimization problem but only to do tree updates. Moreover, in some cases, the
analysis of adaptive algorithms can be made in probability.

7. Concluding remarks

Because of space limitations, we were only able to discuss the Sensing Problem and
the Learning Problem in any detail. We will make a few brief remarks to direct the
reader interested in some of the other problems.

The Data Fitting Problem is a special case of the optimal recovery problem. An
excellent resource for results on optimal recovery is the survey [52] and the articles
referenced in that survey. This problem, as well as aspects of the sensing problem, are
also treated in the wealthy literature in Information Based Complexity (see [57] and
[58] for a start) where the approach is very similar to our discussion of optimality.

The encoding problem is a main consideration in image processing and informa-
tion theory. Our approach of deterministic model classes is in contrast to the usual
stochastic models used in information theory. While stochastic models still dominate
this field, there are a growing number of treatments addressing the image compression
problem from the deterministic viewpoint. Optimal algorithms for Besov and Sobolev
classes for the encoding problem can be obtained by employing wavelet thresholding
and quantization (see [17]). More advanced methods of image compression model
images by approximation classes based on other forms of approximation such as
curvelets [11] and wedgeprints [55].

The computation problem is the most dominant area of numerical analysis. The
most advanced and satisfying theory appears in the solution of elliptic equations
with error measured in the energy norm. For model classes described by linear
approximation (for example, classical Finite Element Methods based on piecewise
polynomial approximations on fixed partitions), the Galerkin solutions relative to
these spaces provide optimal algorithms. Much less is known for nonlinear methods.
For model classes based on wavelet tree approximation, near optimal algorithms (in
terms of total number of computations) have been given in [19], [20], [21]. For
adaptive finite element methods, similar results have been given for simple model
problems (the Poisson problem) in [7] by building on the results in [35], [53].
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[58] Traub, J. F., Wasilkowski, G. W., and Woźniakowski, H., Information-Based Complexity.
Academic Press, New York, NY, 1988.

Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.
E-mail: devore@math.sc.edu


